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Selectively increasing GHS-R1a expression 
in dCA1 excitatory/inhibitory neurons have 
opposite effects on memory encoding
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Abstract 

Aim: Growth hormone secretagogue receptor 1a (GHS-R1a) is widely distributed in brain including the hippocam-
pus. Studies have demonstrated the critical role of hippocampal ghrelin/GHS-R1a signaling in synaptic physiology, 
memory and cognitive dysfunction associated with Alzheimer’s disease (AD). However, current reports are inconsist-
ent, and the mechanism underlying memory modulation of GHS-R1a signaling is uncertain. In this study, we aim to 
investigate the direct impact of selective increase of GHS-R1a expression in dCA1 excitatory/inhibitory neurons on 
learning and memory.

Methods: Endogenous GHS-R1a distribution in dCA1 excitatory/inhibitory neurons was assessed by fluorescence 
in situ hybridization. Cre-dependent GHS-R1a overexpression in excitatory or inhibitory neurons was done by stere-
otaxic injection of aav-hSyn-DIO-hGhsr1a-2A-eGFP virus in dCA1 region of vGlut1-Cre or Dlx5/6-Cre mice respectively. 
Virus-mediated GHS-R1a upregulation in dCA1 neurons was confirmed by quantitative RT-PCR. Different behavioral 
paradigms were used to evaluate long-term memory performance.

Results: GHS-R1a is distributed both in dCA1 excitatory pyramidal neurons (αCaMKII+) and in inhibitory interneurons 
 (GAD67+). Selective increase of GHS-R1a expression in dCA1 pyramidal neurons impaired spatial memory and object-
place recognition memory. In contrast, selective increase of GHS-R1a expression in dCA1 interneurons enhanced 
long-term memory performance. Our findings reveal, for the first time, a neuronal type-specific role that hippocam-
pal GHS-R1a signaling plays in regulating memory. Therefore, manipulating GHS-R1a expression/activity in different 
subpopulation of neurons may help to clarify current contradictory findings and to elucidate mechanism of memory 
control by ghrelin/GHS-R1a signaling, under both physiological and pathological conditions such as AD.
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Ghrelin is the only identified orexigenic gastric hor-
mone that promotes feeding, and is critical for metabo-
lism regulation in both human and rodents [1]. It has 
been reported that only acylated ghrelin (AG) in circula-
tion is capable of binding to ghrelin receptor, the growth 
hormone secretagogue receptor 1a (GHS-R1a), which is 

widely distributed in multiple brain regions including the 
hippocampus [2]. In contrast, unacylated ghrelin (UAG), 
the most abundant form of circulating ghrelin, is unable 
to activate GHS-R1a [3, 4].

Studies have highlighted intriguing contradictory 
roles that ghrelin and GHS-R1a play in regulating mul-
tiple neuronal functions such as learning and memory, 
other than nutrient sensing and metabolic control [5]. 
For instance, pharmacological studies have reported 
that ghrelin activating GHS-R1a either facilitates or 
impairs memory processes [6, 7]. Genetic GHS-R1a null 
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mutation also gave rise to opposite effects on hippocam-
pus-dependent memory encoding [8, 9]. To date, the rea-
son for those conflicting findings remains unclear, and 
the mechanism underlying memory modulation by GHS-
R1a signaling is not well explored.

It is important to note that GHS-R1a displays two 
uncommon features that may greatly contribute to its 
functional complexity, extremely high constitutive 
activity [10] and multiple downstream signaling path-
ways involved under different experimental conditions 
[11]. In particular, recent studies have illustrated physi-
ological importance of constitutive activity of GHS-
R1a in regulating food intake, growth hormone release, 
and memory processes [12, 13]. Therefore, altered 
GHS-R1a expression might lead to distinct biological 
outcomes from that of ghrelin-dependent activation, 
under both physiological and pathological conditions 
like AD. Therefore, in this study, we sought to investi-
gate the direct effect of increasing GHS-R1a expression 

in specific populations of dCA1 neurons on hippocam-
pus-dependent learning and memory.

Endogenous GHS-R1a distribution in both excita-
tory and inhibitory dCA1 neurons was confirmed 
by fluorescent in  situ hybridization assays (Fig.  1a). 
Cre-dependent GHS-R1a-expressing virus (aav-hSyn-
DIO-hGhsr1a-2A-eGFP) or control virus (aav-hSyn-
DIO-eGFP) was delivered in dCA1 of Vglut1-Cre or 
Dlx5/6-Cre male mice (3–4  month old) respectively 
to selectively increase GHS-R1a expression in excita-
tory or inhibitory neurons in dorsal hippocampus. GFP 
fluorescence in dCA1 region indicated successful viral 
transfection and virus-mediated GHS-R1a expression 
in pyramidal neurons or interneurons 3  weeks after 
injection (Fig. 1b, i). Virus-mediated GHS-R1a expres-
sion in dorsal hippocampus was quantified by RT-
qPCR analyses (Fig.  1c, j). The detailed methods were 
described in Additional file 1.

Fig. 1 Selective GHS-R1a upregulation in dCA1 pyramidal neurons or interneurons has opposite effect on hippocampus-dependent memory 
encoding. a Representative fluorescent in situ hybridization images showing endogenous Ghsr1a expression in both excitatory and inhibitory dCA1 
neurons of C57BL/6J mice. Ghsr1a (red), Camk2a (green), Gad1 (yellow), DAPI (blue). Arrowheads (white) indicate Ghsr1a signals within Camk2a- or 
Gad1-expressing neurons. b, i Representative fluorescent images of dorsal hippocampus taken 4 weeks after virus injection. Vglut1-Cre mice (b), 
Dlx5/6-Cre mice (i). GFP (green), DAPI (blue). c, j RT-qPCR analyses showing increased hGhsr1a expression in dorsal hippocampus 4 weeks after 
delivery of hGhsr1a-expressing virus. Vglut1-Cre mice (c), n = 3 per group; Dlx5/6-Cre mice (j), n = 4 per group. d–h, k–o Learning and memory 
performance. Vglut1-Cre mice (d–h), Dlx5/6-Cre mice (k–o). d–f, k–m Morris water maze assays. d, k GHS-R1a upregulation does not affect spatial 
learning. e, l Spatial memory tested 24 h after the 6th day training. Elevated GHS-R1a in excitatory neurons impairs spatial memory (e), while 
increased GHS-R1a expression in inhibitory neurons enhances spatial memory (l). f, m Averaged swimming speed during probe test. g, h, n–o 
Object-place recognition (OPR) assays. g Cre-dependent GHS-R1a upregulation in excitatory neurons impairs OPR memory. n Cre-dependent 
GHS-R1a upregulation in inhibitory neurons improves OPR memory. h, o Total object exploration time during OPR test. Vglut1-Cre mice with 
GHS-R1a-expressing virus (n = 9), Vglut1-Cre mice with control virus (n = 8), Dlx5/6-Cre mice, n = 9 per group. All data is shown as means ± SEM. 
Two-way repeated-measure ANOVA with Sidak’s multiple comparisons test for (d, e, g, k, l, n), unpaired t test for (c, f, h, j, m, o), ****P < 0.0001, 
***P < 0.001, ** P < 0.01 or *P < 0.05 means significant difference, n.s. means no significance
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The effect of increasing GHS-R1a expression on 
hippocampus-dependent learning and memory per-
formance was evaluated 4  weeks after viral injec-
tion. We found that selective GHS-R1a upregulation 
in dCA1 excitatory pyramidal neurons impairs hip-
pocampus-dependent memory processes. Specifically, 
Vglut1-Cre mice transfected with aav-hSyn-DIO-hGh-
sr1a-2A-eGFP virus exhibited poor spatial memory 
(Fig.  1d, f ), impaired object-place recognition (OPR) 
memory (Fig. 1g, h), in comparison to Vglut1-Cre mice 
receiving control aav-hSyn-DIO-eGFP virus injection. 
In contrast, we found that Dlx5/6-Cre mice receiv-
ing aav-hSyn-DIO-hGhsr1a-2A-eGFP virus displayed 
better spatial memory (Fig.  1k, m) and OPR memory 
(Fig.  1n, o) than control Dlx5/6-Cre mice, indicating 
that selective GHS-R1a upregulation in dCA1 inhibi-
tory interneurons improves hippocampus-dependent 
memory. Our findings thus reveal, for the first time, 
that elevated GHS-R1a expression selectively in dCA1 
excitatory/inhibitory neurons differentially regulates 
memory encoding. It will be interesting to know what 
kind of GHS-R1a activity, ligand-dependent or ligand-
independent or both, mediates the differential effect of 
elevated GHS-R1a on memory. Additional studies are 
also needed to explore synaptic mechanisms and sign-
aling cascades mediating these cell-type specific effects 
of GHS-R1a activation on memory.

The hippocampus is a complex network tightly regu-
lated by interactions between excitatory pyramidal neu-
rons and inhibitory interneurons. Although represent a 
minority in the hippocampus, interneurons play a criti-
cal role in shaping network activities [14]. However, no 
previous study has reported the physiological importance 
of ghrelin/GHS-R1a signaling in hippocampal interneu-
rons. In this study, we uncovered its memory improve-
ment effect by directly increasing GHS-R1a expression 
in dCA1 inhibitory neurons, as opposed to the memory 
impairment effect of GHS-R1a upregulation in excitatory 
neurons. Our current findings, together with on-going 
study based on conditional GHS-R1a knockout mice, will 
help to reveal causal association between hippocampal 
GHS-R1a expression and memory. In addition, accumu-
lating evidence suggests a correlation between altered 
GHS-R1a expression and AD pathogenesis [15]. There-
fore, it is necessary to test the direct impact of manipu-
lating hippocampal GHS-R1a expression on AD memory 
impairment.

In conclusion, our findings reveal, for the first time, 
that elevated GHS-R1a expression selectively in dCA1 
excitatory/inhibitory neurons differentially regulates 
memory encoding. It also suggests a causal relationship 
between hippocampal GHS-R1a expression and memory.
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