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Abstract
Background: The signalling mechanisms involved in the induction of N-methyl-D-aspartate
(NMDA) receptor-dependent long-term depression (LTD) in the hippocampus are poorly
understood. Numerous studies have presented evidence both for and against a variety of second
messengers systems being involved in LTD induction. Here we provide the first systematic
investigation of the involvement of serine/threonine (ser/thr) protein kinases in NMDAR-LTD,
using whole-cell recordings from CA1 pyramidal neurons.

Results: Using a panel of 23 inhibitors individually loaded into the recorded neurons, we can
discount the involvement of at least 57 kinases, including PKA, PKC, CaMKII, p38 MAPK and
DYRK1A. However, we have been able to confirm a role for the ser/thr protein kinase, glycogen
synthase kinase 3 (GSK-3).

Conclusion: The present study is the first to investigate the role of 58 ser/thr protein kinases in
LTD in the same study. Of these 58 protein kinases, we have found evidence for the involvement
of only one, GSK-3, in LTD.

Background
A primary function of synapses is to store information by
alterations in their efficiency of transmission. There are
two major forms of long-lasting synaptic plasticity, long-
term potentiation (LTP) and LTD, and these have been
best characterised at synapses in the hippocampus [1,2].

The most extensively studied forms of both LTP and LTD
are triggered by the synaptic activation of one class of
glutamate receptor, the NMDA receptor, and are expressed
to a large extent as alterations in synaptic transmission
mediated by another class of glutamate receptor, the α-
amino-3-hydroxy-5-methyl-4-isoxazole propionic acid
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(AMPA) receptor [3-5]. With respect to NMDA receptor-
dependent LTD (NMDAR-LTD) it is generally believed
that the process is expressed by the internalisation of
AMPARs from the plasma membrane, resulting in a reduc-
tion in the number of AMPARs at synapses [6,7]. How-
ever, how the transient activation of NMDARs leads to this
process is not well understood.

The first step involves Ca2+ entry via NMDARs [8] and
Ca2+ release from intracellular stores [9,10]. Several Ca2+-
dependent proteins have then been implicated in the
process, including calmodulin [11], hippocalcin [12] and
protein interacting with C-kinase 1 (PICK1) [13]. There is
also strong evidence for the involvement of a ser/thr pro-
tein phosphatases cascade involving protein phosphatase
2B (calcineurin) and protein phosphatase 1 [11,14]. In
addition, there is also evidence for the involvement of var-
ious protein kinases in hippocampal NMDAR-LTD,
including cAMP-dependent protein kinase (PKA) [15,16],
cyclin-dependent kinase 5 (CDK5) [17], mitogen-acti-
vated protein kinase 14 (p38 MAPK) [18] and glycogen
synthase kinase-3 β (GSK3-β) [19]. However, the role of
protein kinases has often not been substantiated and is, in
some cases, controversial. In addition, the role of many
protein kinases in LTD has not yet been investigated.

In the present study we have examined the role of 58 pro-
tein kinases in hippocampal NMDAR-LTD in slices
obtained from two-week old rats. Inhibitors were applied
directly to the cell under investigation via the patch-
pipette, to avoid potential problems of access and to min-
imise the possibility of presynaptic effects. Based on these
experiments, we can discount an involvement of at least
57 ser/thr protein kinases, but we are able to confirm a
role for GSK-3. Thus, LTD not only involves high affinity
Ca2+-sensors and protein phosphatases but also a ser/thr
kinase. A major challenge for the future will be to estab-
lish the interactions between these various proteins dur-
ing LTD.

Methods
Experiments were performed on 400 μm thick parasagittal
hippocampal slices obtained from juvenile (13 – 17 day
old) rats. Procedures involving animals and their care
were conducted in conformity with the institutional
guidelines that are in compliance with national (UK ani-
mals (Scientific Procedures) Act 1986 and D.L.n.116,
G.U., Suppl. 40, 1992) and international laws and poli-
cies (EEC Council Directive 86/609, OJ L 358, 1, 12
December 1987; Guide for the Care and Use of Laboratory
Animals, U.S. National Research Council, 1996).

The slices were perfused with artificial cerebrospinal fluid
(ACSF) which comprised (mM): NaCl, 124; KCl, 3;
NaHCO3, 26; NaH2PO4, 1.25; CaCl2, 2; MgSO4, 1; glu-
cose, 15; ascorbate, 2; (-)-bicuculline methochloride,

0.01. Visually-guided, whole-cell recordings were
obtained at room temperature from the soma of CA1 neu-
rons using patch electrodes that contained (mM):
CsMeSO4, 130; HEPES, 10; NaCl, 8; EGTA, 0.5; Mg-ATP,
4; Na-GTP, 0.3; QX-314, 5. Schaffer collateral-commis-
sural fibres were stimulated at a frequency of 0.1 Hz and
excitatory postsynaptic current (EPSC) amplitude and
access resistance recorded on-line at a holding potential of
-70 mV. To attempt to induce NMDAR-dependent LTD,
we delivered 300 pulses (at 0.66 Hz) at -40 mV, 20 to 40
minutes after formation of the whole-cell configuration
[19]. Under control conditions this usually induced a
robust LTD. Provided LTD was induced in the controls,
experiments were interleaved in which various kinase
inhibitors were included in the patch solution. Data were
stored and analysed using the LTP Program [20,21] and
are presented as mean ± s.e.m.

The magnitude of LTD was determined by comparing the
average amplitude of responses over a 5 min period
obtained immediately before and at least 20 min follow-
ing the LTD induction protocol. To compare the magni-
tude of LTD in the different conditions, a non-parametric
one-way ANOVA was performed. Significance was set at P
< 0.05.

The following compounds were included in the whole-
cell solution: Akt-I-1/2 (Akt1/2 kinase inhibitor, 1,3-dihy-
dro-1-(1-((4-(6-phenyl-1H-imidazo [4,5-g]quinoxalin-7-
yl)phenyl)methyl)-4-piperidinyl)-2H-benzimidazol-2-
one hydrate trifluoroacetate salt), DMSO (dimethyl sul-
foxide), H-89 (N-[2-(p-bromocinnamylamino)ethyl]-5-
isoquinolinesulfonamide dihydrochloride), (all from
Sigma-Aldrich, St. Louis, MO), Bis-1 (bisindolylmaleim-
ide I, 2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-
(1H-indol-3-yl)-maleimide), DMAT (2-dimethylamino-
4,5,6,7-tetrabromo-1H-benzimidazole), EGCG (()-epi-
gallocatechin gallate, (2R,3R)-2-(3,4,5-trihydroxyphe-
nyl)-3,4-dihydro-1 [2H]-benzopyran-3,5,7-triol-3-(3,4,5-
trihydroxybenzoate), H-8 (N-[2-(methylamino)ethyl]-5-
isoquinolinesulfonamide, 2HCl), IC261 (3-[(2,4,6-tri-
methoxyphenyl)methylidenyl]-indolin-2-one), IP3K
inhibitor (inositol-1,4,5-trisphosphate 3-kinase inhibitor,
N2-(m-trifluorobenzyl), N6-(p-nitrobenzyl)purine),
LY294002 (2-(4-morpholinyl)-8-phenyl-4H-1-benzo-
pyran-4-one), KN62 (4-[(2S)-2-[(5-isoquinolinylsulfo-
nyl)methylamino]-3-oxo-3-(4-phenyl-1-
piperazinyl)propyl] phenyl isoquinolinesulfonic acid
ester), KT5720 ((9R,10S,12S)-2,3,9,10,11,12-hexahydro-
10-hydroxy-9-meth yl-1-oxo-9,12-epoxy-1H-diindolo
[1,2,3-fg:3',2',1'-kl]pyrrolo [3,4-i][1,6]benzodiazocine-
10-carboxylic acid, hexyl ester), SB203580 (4-[5-(4-fluor-
ophenyl)-2-[4-(methylsulfonyl)phenyl]-1H-imidazol-4-
yl]pyridine), SP600125 (anthra [1-9-cd]pyrazol-6(2H)-
one), U0126 (1,4-diamino-2,3-dicyano-1,4-bis [2-ami-
nophenylthio]butadiene) (all from Tocris Cookson,
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Avonmouth, UK), CT99021 (6-{2-[4-(2,4-dichloro-phe-
nyl)-5-(4-methyl-1H-imidazol-2-yl)-pyrimidin-2-
ylamino]-ethylamino}-nicotinonitrile), (provided by
Prof. P. Cohen, University of Dundee, UK), AR-164 (3-
amino-6-{3-fluoro-4-[(4-methylpiperazin-1-yl)sulfo-
nyl]phenyl}-N-pyridin-3-ylpyrazine-2-carboxamide)
(synthesised as described previously [22]), PenGSKi (a
26-mer phosphopeptide rqikiwfqnrrmkwkkpltapsps*lq
(s* = Phosphoserine)) and PenCTRL (penetratin peptide
rqikiwfqnrrmkwkk) (synthesized for Prof A.J. Harwood
and W.J. Ryves by Zinsser Analytic, UK).

Appropriate stock solutions were made and diluted with
intracellular solution just before use.

Results
LTD was routinely induced in interleaved control neurons
by delivering 300 pulses at -40 mV [23]. This resulted in a
stable depression of the conditioned input, quantified 20
min following pairing, to 63 ± 2% of baseline (n = 28; Fig-
ure 1A). Inclusion of 0.5% DMSO, used as a solvent in
some of the protein kinase experiments, had no effect on
LTD (63 ± 3%; n = 7).

Further Evidence for a role of GSK-3 in LTD
We previously proposed that activation of GSK-3 is
required for LTD based on the sensitivity of this process to
three structurally-unrelated inhibitors, SB415286, ken-
paullone and lithium. However, none of these inhibitors
are entirely specific for GSK-3 [24]. We therefore tested
three additional inhibitors, which are believed to be more
selective for GSK-3. First we examined CT99021 (1 μM),
since this was recommended as the most selective GSK-3
inhibitor in a recent systematic analysis [24]. This com-
pound invariably blocked the induction of LTD (98 ± 2%;
n = 6; Figure 1B). The second GSK-3 inhibitor we exam-
ined, AR-164, also invariably blocked the induction of
LTD (1 μM: 92 ± 3%; n = 5; Figure 1C; 5 μM: 97 ± 2%; n
= 8; data not shown). Next we examined the effect of
PenGSKi. This peptide features a cell-penetrating motif
coupled to a GSK-3 inhibitor peptide and inhibits neuro-
nal GSK-3 in vitro in a substrate-dependent manner with
a Ki of 9 μM. This compound also blocked LTD whereas
its control peptide did not (20 μM PenCTRL, 62 ± 3%; n
= 3; Figure 1D and 20 μM PenGSKi, 96 ± 1%; n = 3; Figure
1E).

Lack of evidence for a role of other ser/thr protein kinases 
in LTD
Whilst these data strongly implicate GSK-3 in LTD, they
do not exclude a role for other ser/thr kinases, either oper-
ating in parallel with GSK-3 or acting in concert, perhaps
as a priming kinase. We therefore systematically explored
whether other ser/thr kinases were involved by testing a
range of different inhibitors, selected for their known

activity at the kinase under investigation. The protein
kinases of the mammalian genome can be divided into
several groups [25]. We started with the kinases that, like
GSK-3, also belong to the CMGC group. Of these, the
mitogen-activated protein kinases (MAPKs) are strongly
implicated in various forms of synaptic plasticity [26].
However, neither the p38 MAPK inhibitor SB203580 (5
μM; 61 ± 5%; n = 7; Figure 2A), the mitogen-activated/
extracellular signal regulated kinase (MEK) inhibitor
U0126 (20 μM; 64 ± 4%; n = 6; Figure 2B) or the mitogen-
activated protein kinase 8, 9 and 10 (JNK1, 2 and 3,
respectively) inhibitor SP600125 (20 μM; 52 ± 5%; n = 5;
Figure 2C) had any effect on LTD. We next tested inhibi-
tors of the dual specificity tyrosine phosphorylation-regu-
lated kinase (DYRK1A) and casein kinase 2 (CK2). Their
respective inhibitors EGCG (10 μM) and DMAT (1 μM)
were also without effect on LTD (70 ± 5%; n = 6, and 69 ±
6%; n = 5 respectively; Figure 2D and 2E). The potential
role of casein kinase 1 (CK1), the prototypic member of
the CK1 group of protein kinases, was tested using IC261
(50 μM); this inhibitor was also found to have no effect
on LTD (60 ± 5%; n = 6; Figure 2F).

The AGC group of protein kinases include several family
members, such as protein kinase A (PKA), cyclic GMP-
dependent protein kinase (PKG), and protein kinase C
(PKC), that have been implicated in synaptic plasticity.
However, in contrast to the GSK-3 inhibitors, PKA (10 μM
H-89; 55 ± 3%; n = 5; Figure 3A or 1 μM KT5720; 68 ± 5%;
n = 4; Figure 3B), PKG (10 μM H-8; 64 ± 6%; n = 3; Figure
3C) and PKC (1 μM Bis-1; 62 ± 6%; n = 3; Figure 3D)
inhibitors had no effect on LTD. We previously reported
that proto-oncogene proteins c-akt/protein kinase B (Akt/
PKB), a downstream effector of phosphatidylinositol 3-
kinase (PI3K), is not required for LTD, using a number of
different strategies (blocking antibody, false substrate,
dominant negative). Here we have extended this observa-
tion using a chemical inhibitor of this enzyme Akt-I-1/2
(10 μM; 67 ± 3%; n = 4; Figure 3E).

Calcium/calmodulin-dependent protein kinase II (CaM-
KII) is a member of the CAMK group of kinases and has
been extensively studied in synaptic plasticity. In our
study, the CaMKII inhibitor KN62 (3 μM), had no effect
on NMDAR-LTD (63 ± 4%; n = 4; Figure 3F).

Evidence that lipid kinases are not involved in LTD
We previously reported that activation of the lipid kinase
PI3K is not required for LTD, based on the lack of sensitiv-
ity to wortmannin [19]. We have confirmed this finding
using a different PI3K inhibitor, LY294002 (10 μM; 70 ±
3%; n = 5; Figure 3G). We also tested another kinase
involved in lipid signalling, inositol 1,4,5-trisphosphate
3-kinase B (IP3K). The IP3K inhibitor was also without
effect on LTD (20 μM; 64 ± 5%; n = 3; Figure 3H).
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GSK-3 inhibitors block the induction of LTDFigure 1
GSK-3 inhibitors block the induction of LTD. A, A single experiment (upper) and pooled data from 28 experiments 
(lower) illustrating LTD under control conditions. B, A single experiment (upper) and pooled data from 6 experiments (lower) 
illustrating the block of LTD by CT99021 (1 μM). C, A single experiment (upper) and pooled data from 5 experiments (lower) 
illustrating the block of LTD by AR-164 (1 μM). D, Pooled data from 3 experiments illustrating the effect of PenCTRL (20 μM) 
on LTD. E, Pooled data from 3 experiments illustrating blockade of LTD by penGSKi (20 μM). In each panel, the points are the 
average amplitude of 6 successive EPSCs normalised with respect to the baseline. At t = 0, the neuron was depolarised to -40 
mV and stimuli delivered at 0.66 Hz to the test input for the duration indicated by the bar. EPSCs (average of 6 consecutive 
records) obtained before and following the induction of LTD are illustrated at the times indicated (1, 2). The calibration bars 
for the traces depict 50 pA and 50 ms.
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Other protein kinases that are not involved in LTD
No protein kinase inhibitor is entirely specific for one
enzyme. In Figure 4 we present the selectivity information
that is available for each of the inhibitors that we have
used in this study and a previous one [19]. Data are also
summarised in this Figure and the statistics are presented.
Thus, by using a panel of 23 inhibitors, we have also
shown that the activity of at least 57 kinases is not
required for hippocampal NMDAR-LTD. Among these

kinases, around 40 have not previously been studied in
this respect: protein kinase AMP-activated (AMPK),
Aurora kinase B, Aurora kinase C, BR serine/threonine
kinase 2 (BRSK2), calcium/calmodulin-dependent pro-
tein kinase I (CaMKI), CaMK kinase (CaMKK) α and β,
some cyclin dependent kinases (CDK), checkpoint kinase
(CHK) 1 and 2, dual-specificity tyrosine-(Y)-phosphoryla-
tion regulated kinase (DYRK) 2 and 3, mitogen-activated
protein kinase 15 (ERK8), cyclin G associated kinase

Lack of effect of other CMGC group kinases inhibitors and a CK1 inhibitor on LTDFigure 2
Lack of effect of other CMGC group kinases inhibitors and a CK1 inhibitor on LTD. A, Pooled data (n = 7) illustrat-
ing the effects of SB203580 (5 μM). B, Pooled data (n = 6) illustrating the effects of U0126 (20 μM). C, Pooled data (n = 5) illus-
trating the effects of SP600125 (20 μM). D, Pooled data (n = 6) illustrating the effects of EGCG (10 μM). E, Pooled data (n = 5) 
illustrating the effects of DMAT (1 μM). F, Pooled data (n = 6) illustrating the effects of IC261 (50 μM).
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Lack of effect of AGC, CAMK and lipid group kinase inhibitors on LTDFigure 3
Lack of effect of AGC, CAMK and lipid group kinase inhibitors on LTD. A, Pooled data (n = 5) illustrating the effects 
of H-89 (10 μM). B, Pooled data (n = 4) illustrating the effects of KT5720 (1 μM). C, Pooled data (n = 3) illustrating the effects 
of H-8 (10 μM). D, Pooled data (n = 3) illustrating the effects of Bis-1 (1 μM). E, Pooled data (n = 4) illustrating the effects of 
Akt-I-1/2 (10 μM). F, Pooled data (n = 4) illustrating the effects of KN-62 (3 μM). G, Pooled data (n = 5) illustrating the effects 
of LY294002 (10 μM). H, Pooled data (n = 3) illustrating the effects of the IP3K inhibitor (20 μM).
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Effect of inhibitors on various kinases and NMDAR-LTDFigure 4
Effect of inhibitors on various kinases and NMDAR-LTD. The table shows the kinases (listed alphabetically) inhibited by 
each substance. The red cells depict a strong inhibition (over 66% inhibition), the orange a moderate inhibition (33–66%) and 
the yellow cells a weak inhibition (less than 33%). These data come from kinase assays performed at the same or a similar con-
centration as used in our experiments, except for AR-164 and KT5720 for which the kinase selectivity has been evaluated for 
a concentration 10-fold higher [24,54-58]. White cells indicate that specificity data are not available. The histogram shows the 
level of LTD, plotted as a percentage of baseline, for each of the conditions described immediately above. Black bars show a 
significant difference in LTD magnitude compared to control LTD (either with or without DMSO, as appropriate) and the gray 
bars show no difference with control.
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(GAK), homeodomain interacting protein kinase (HIPK)
2 and 3, I-kappa B Kinase (IKK), mitogen-activated pro-
tein kinase 1 (MAPK2/ERK2), ribosomal protein S6
kinase, 90 kDa, polypeptide 1 and 3 (MAPKAP-K1a/RSK1
and MAPKAP-K1b/RSK2, respectively), MAP/microtubule
affinity-regulating kinase 3 (MARK3), maternal embry-
onic leucine zipper kinase (MELK), myosin light chain
kinase (MLCK), ribosomal protein S6 kinase, polypeptide
5 (MSK-1), serine/threonine kinase 3 (MST2), p21-acti-
vated kinase (PAK) 4, 5 and 6, 3-phosphoinositide
dependent protein kinase-1 (PDK1), phosphorylase
kinase (PHK), pim-1, pim-2 and pim-3 oncogene (PIM1,
PIM2 and PIM3, respectively), protein kinase D (PKD),
polo-like kinase 1 (PLK1), MAP kinase-activated protein
kinase 5 (PRAK), protein kinase N2 (PRK2), Rho-associ-
ated coiled-coil containing protein kinase (ROCK), recep-
tor-interacting serine-threonine kinase 2 (RIP2),
ribosomal protein S6 kinase, 70 kDa (S6K1) and serum/
glucocorticoid regulated kinase (SGK).

Discussion
The primary conclusion of the present study, together
with our previous work [19], is that of 58 ser/thr protein
kinases investigated we found evidence for the involve-
ment of only one, GSK-3 in LTD. Our studies focused on
NMDAR-LTD at CA3-CA1 synapses of two-week-old rats,
used a pairing protocol to induce LTD within single neu-
rons and were performed at room temperature. Whilst
this represents a fairly standard protocol, we cannot
exclude a role of the other protein kinases in other neuro-
nal pathways or at CA1 synapses under different experi-
mental conditions.

To study a panel of inhibitors individually (in our case
23) via inclusion in the whole-cell solution is an
extremely labour-intensive approach, which has not been
applied previously in the study of synaptic plasticity. We
believe, however, that such a strategy is vitally important
due to the relative non-selectivity of most protein kinase
inhibitors. For example, KT5720, a commonly used PKA
inhibitor, is more potent on 7 other kinases, described in
Figure 4, than it is on PKA.

GSK-3
Our results confirm that GSK-3 plays an essential role in
hippocampal LTD. In the present study we have used
three of the most selective GSK-3 inhibitors that are avail-
able. Most GSK-3 inhibitors also inhibit the closely
related cyclin-dependent kinases (CDKs). However, inhi-
bition of CDKs cannot explain the block of LTD since,
firstly, the GSK-3 inhibitor lithium does not affect CDKs
yet blocks LTD [19] and, secondly, the pan-CDK inhibitor
roscovitine has no effect on LTD [19]. Furthermore, AR-
164 is over 100 fold more potent on GSK-3 (Ki = 9 nM)
than CDK1 (Ki = 1.4 μM). In total we have now tested six

structurally distinct inhibitors of GSK-3. Inspection of Fig-
ure 4 shows that the block of LTD is extremely unlikely to
be due to off-target effects of these inhibitors

Other CMGC group kinases and CKI
It has been suggested that NMDAR-LTD involves activa-
tion of p38 MAPK [27]. However, in agreement with other
studies [28-30], we are of the view that p38 MAPK is
important for mGluR-LTD [31,32] rather than NMDAR-
LTD in the hippocampus. We also obtained no evidence
for a role of either JNK or ERK in NMDAR-LTD; kinases
that have also been implicated in mGluR-LTD in the hip-
pocampus [33,34].

DYRK1A is of interest because it has been linked to
Down's syndrome and is expressed in the developing and
mature brain [35]. Transgenic mice expressing human
DYRK1A show impairment in hippocampal-dependent
memory and a modification of both LTP and LTD [36].
However, the lack of effect of four inhibitors able to affect
DYRK1A, strongly suggest that this enzyme is not directly
involved in NMDAR-LTD.

Previous work has suggested that CK2 is involved in the
regulation of NMDAR-mediated synaptic transmission
and LTP but not LTD [37]. Our findings confirm that CK2
is not involved in LTD. Additionally, we extend these
results by showing that CK1 is also not involved in LTD,
based on the lack of effect of three inhibitors that are able
to potently inhibit this kinase.

AGC group kinases
Whilst most evidence implicates PKA and PKC in LTP [26]
there are also indications for roles in LTD. Indeed, LTD is
absent in mice in which PKA subunits have been knocked
out [15,16] and LTD is blocked in wildtype mice by treat-
ment with KT5720 or H89 [15,38]. Conversely, other
work has suggested that dephosphorylation of a PKA sub-
strate, ser845 of GluA1, is involved in NMDAR-LTD [39].
This site is believed to be phosphorylated to maintain
basal synaptic transmission, such that inhibition of PKA
function can mimic and occlude LTD [39,40]. Our results,
showing that PKA is not implicated in LTD, do not con-
cord with either of these positions [41].

It has been proposed that PICK1, a protein that binds
PKCα [42], is involved in NMDAR-LTD [13,43,44] but see
[45]. Our finding that a PKC inhibitor failed to affect
NMDAR-LTD is consistent with previous work [10,43,46]
and suggests that any acute role of PICK1 in NMDAR-LTD
is independent of PKC.

The PKG signalling pathway has been implicated in LFS-
induced LTD in the dentate gyrus [47]. However, the
authors showed that the LTD induced by activation of the
Page 8 of 10
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cGMP/PKG pathway was dependent on mGluRs, rather
than NMDARs. In agreement with this study, we show
that PKG is not involved in NMDAR-LTD at CA1 synapses.

Akt (PKB) is a downstream effector of PI3K and an
upstream regulator of GSK-3. Our previous work sug-
gested that Akt was not involved in NMDAR-LTD per se,
rather that it was part of a mechanism that enables cross-
talk between NMDAR-LTP and NMDAR-LTD [19]. Con-
sistent with no direct involvement in LTD, we found no
effect of an Akt inhibitor on this process.

CaMKII
Our observation that LTD was unaffected by an inhibitor
of CaMKII is also consistent with another study that
applied the inhibitor directly into the postsynaptic neu-
ron [48]. In the latter study, it was found that LTD was
inhibited by the bath application of KN-62, suggesting
that LTD may require activation of CaMKII located presy-
naptically (see also [49]).

Lipid kinases
In agreement with our previous work, we found that
inhibitors of PI3K had no effect on NMDAR-LTD [10,19]
rather they enabled a heterosynaptic form of LTD [10]. In
the present study we also found no involvement of the
related kinase IP3K, an enzyme that is enriched in hippoc-
ampal dendritic spines [50,51]. Interestingly, previous
work suggested an involvement of IP3K in NMDAR-
dependent plasticity and LTP [52,53] but whether IP3K is
also involved in NMDAR-LTD was hitherto not known.

Conclusion
By use of a panel of inhibitors we have been able to dis-
count a role of at least 57 ser/thr protein kinases in
NMDAR-LTD at CA1 synapses. We suspect that several of
the kinases that have previously been implicated in this
form of LTD, such as PKA, can be explained by off-target
effects of the inhibitors used. Of course, a modulatory role
of these kinases that is only seen under certain experimen-
tal conditions cannot be excluded. Our experiments do,
however, strongly suggest that GSK-3 is required for this
form of LTD.
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