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Abstract

Alzheimer’s disease (AD) is characterized by episodic memory impairment that often precedes clinical diagnosis by
many years. Probing the mechanisms of such impairment may provide much needed means of diagnosis and
therapeutic intervention at an early, pre-dementia, stage. Prior to the onset of significant neurodegeneration, the
structural and functional integrity of synapses in mnemonic circuitry is severely compromised in the presence of
amyloidosis. This review examines recent evidence evaluating the role of amyloid-ß protein (Aβ) in causing rapid
disruption of synaptic plasticity and memory impairment. We evaluate the relative importance of different sizes and
conformations of Aβ, including monomer, oligomer, protofibril and fibril. We pay particular attention to recent
controversies over the relevance to the pathophysiology of AD of different water soluble Aβ aggregates and the
importance of cellular prion protein in mediating their effects. Current data are consistent with the view that both
low-n oligomers and larger soluble assemblies present in AD brain, some of them via a direct interaction with
cellular prion protein, cause synaptic memory failure. At the two extremes of aggregation, monomers and fibrils
appear to act in vivo both as sources and sinks of certain metastable conformations of soluble aggregates that
powerfully disrupt synaptic plasticity. The same principle appears to apply to other synaptotoxic amyloidogenic
proteins including tau, α-synuclein and prion protein.
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Introduction
Many different amyloidogenic proteins form water insol-
uble deposits in the brains of patients who die from neu-
rodegenerative diseases [1-3]. The common observation
of extensive synaptic loss and mixed neuropathology in
many of these diseases suggests that different amyloido-
genic proteins may share similar synaptic actions and
effects [4-8]. The most frequent cause of neurodegenera-
tive dementia, Alzheimer’s disease (AD), is characterized
by profound episodic memory loss which usually pre-
sages cognitive decline. The discovery that the hallmark
extracellular senile plaques found in the patients’ brains
are largely composed of water insoluble fibrillar amyloid
ß-protein (Aβ) laid the foundation of the amyloid
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reproduction in any medium, provided the or
cascade hypotheses of disease aetiology and led to the
investigation of the deleterious effects of Aβ on memory
and related neurophysiological processing [9-11].
In the light of the many recent reviews of the cellular

mechanisms [12-16], the present review focuses on de-
fining the roles of different Aβ assemblies [17,18] in
Aβ-mediated synaptic and memory disruption. Since cog-
nitive status in patients with AD is much more strongly
correlated with brain concentration of water soluble Aβ
rather than insoluble fibrillar Aβ-containing plaque load
[19,20], most recent research has focused on soluble spe-
cies of Aβ.
In order to investigate the effects of different Aβ spe-

cies on memory and related synaptic mechanisms, acute
treatment with Aβ provides a relatively simple but very
attractive and manipulable model system, compared to
transgenic amyloid precursor protein (APP) animal
models [21]. The acute application approach gives the
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opportunity to control and characterize the biophysical
state of aggregation-prone Aβ preparations prior to use.
Since pioneering in vivo studies found that injection of
synthetic Aβ-related peptides of undefined assembly can
impair learning [22,23] and reduce synaptic transmission
in the hippocampus of the rat brain [24], this approach
has been exploited in order to examine the role of differ-
ent Aβ assemblies. By comparing the relative activity of
different soluble preparations of Aβ in these acute models
it is hoped that it will be possible to determine the nature
and actions of synaptic and memory disrupting assem-
blies. These assemblies vary in primary sequence, size and
putative generic conformation. They include monomers,
low-n oligomers, larger oligomers such as Aβ derived dif-
fusible ligands (ADDLs) [25,26] and globulomers [27], and
protofibrils which are usually shorter and thinner than in-
soluble amyloid fibrils [28] (Figure 1). Currently there is
little agreement as to which, if any, of these assemblies is
most culpable in causing synaptic plasticity and memory
disruption. The present review examines recent evidence,
including the actions of other amyloidogenic peptides and
the possible involvement of cellular prion protein (PrPC)
as a selective target of certain oligomers.

Acute synaptic and behavioural effects of Aβ
Two of the most sensitive and robust measures of the
acute synaptic disruptive effects of Aβ are inhibition of
long-term potentiation (LTP) [29] and facilitation of
long-term depression (LTD) of excitatory synaptic trans-
mission [30], both of which engage plasticity mechan-
isms believed to underlie certain types of learning and
memory [31-33]. Baseline synaptic efficacy appears more
resistant to the effects of Aβ in most acute studies. Some
of the most sensitive behavioural indicants of rapid im-
pairment of cognition and memory include performance
of operant tasks [34] and aversive learning [35].

Aβ amino acid sequence and post-translational
modification
The cleavage of APP by the γ-secretase complex is per-
missive, with Aβ1-40 the dominant Aß species (Figure 1)
[17]. In AD brain the concentrations of highly amyloido-
genic species, especially the more potent synaptic
plasticity-disrupting Aβ1-42 [29,36], increase. Since the
discovery of rare early-onset autosomal dominant famil-
ial forms of AD caused by missense mutations of the
APP gene within the Aβ region, synthetic peptides bear-
ing familial and design mutations have been used to in-
vestigate the potential importance of primary sequence
in determining Aβ aggregation, toxicity and synaptic dis-
ruption [37]. Some years ago we found that Arctic syn-
thetic mutant Aβ1-40(E22G) peptide, which has a much
greater tendency than Aβ1-40 to form soluble aggregates
including protofibrils, is accompanied by a greater
potency to block LTP [38]. More recently Tomiyama
et al. [39] reported that familial AD-associated Aβ that
lacks glutamate-22 showed enhanced oligomerization in
the apparent absence of fibril formation, and was a more
potent inhibitor of LTP.
Beyond the primary sequence, biochemical modifica-

tions of Aβ, including post-translational processing, can
lead to the generation of highly aggregation prone species
in the brain [40,41]. Aminopeptidase removal of residues
1 and 2 of Aß followed by glutaminyl cylase-mediated
cyclization of the exposed glutamate to a pyroglutamate,
leads to the production of N-terminally truncated pyro-
glutamate –modified variants of Aβ (Aβ3pE-4x) [42]
(Figure 1) which have been proposed to be particularly
pathogenic [43]. In agreement, Aβ3pE-42 impairs spatial
working memory and retention of reference memory in
mice after intracerebroventricular (i.c.v.) injection with a
similar potency to Aβ1-42 [44]. In a detailed structure-
activity relationship analysis, freshly prepared synthetic
Aβ3pE-x inhibited LTP in vitro with the following order
of potency: Aβ3pE-42>Aβ1-42 =Aβ3pE-38 =Aβ3pE-
40>>Aβ1-40, Aβ1-38 or Aβ3-40, the latter three being
inactive at the highest concentration tested [45]. The
authors found that this activity correlated with the relative
ability to rapidly form oligomers and short fibrillar aggre-
gates. Clearly the N-terminus of Aβ can play a critical role
in determining aggregation and hence, presumably, ability
to disrupt synaptic plasticity.
Somewhat similarly, nitration of Aß at tyrosine 10

also promotes aggregation and increases the magnitude
of inhibition of LTP by Aß1-42 in hippocampal slices
[46]. Such nitration is likely to arise subsequent to the
formation of secondary products of NO production by
pro-inflammatory upregulation of inducible nitric oxide
synthase and can be pharmacologically targeted [46]. It
will be interesting in future studies to determine if the
activity in acute synaptic plasticity and memory models
of other Aβ species found in AD brain, including Aβx-43
[47], phosphorylated Aβ [48] and glycosylated Aβ [49]
relates to their tendency to form specific aggregates. One
of the difficulties of working with aggregation prone pep-
tides is to ensure consistent starting material in the ab-
sence of extensive solvent pretreatment. Recently, it has
been shown that Aβ1-42 aggregates can be reliably gen-
erated from a precursor isopeptide by direct dissolution
in physiological buffers [50]. Aβ oligomers prepared in
this manner impede spatial learning and inhibit LTP both
in vitro [50] and in vivo (Klyubin et al., unpublished)
(Figure 2).

Aβ assembly size
Aβ monomers
What do we know about the synaptic and mnemonic ac-
tivity of Aβ monomers? Despite the natural ability of
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Figure 1 Schematic representation of Aβ processing and aggregation. (A) Primary sequence of human Aß1-42 with examples of natural or
designed intra-Aß mutations (above sequence) and post-translational modifications (below sequence). (B) Amyloid precursor protein (APP)
cleavage by β- and γ- secretases releases aggregation-prone Aβ peptides, particularly Aβ1-42. Intra-Aβ mutations and post-translational
modifications increase Aβ ability to aggregate even more. It has been suggested that diffusible Aβ aggregates rather than monomer form or
fibrils are the synaptotoxic species. These aggregates include ADDLS (Aß-derived diffusible ligands), globulomers (globule-like 12-mers), Aß*56
(56 kDa Aß-containing aggregates derived from brain), protofibrils (soluble, short fibril-shaped often “worm-like” structures) and annular
protofibrils (protofibrils that can form pores in membranes). Other aggregation-prone proteins also form synaptotoxic soluble species that may
share conformation recognized by antibodies.
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Aβ, especially the human sequence, to form aggregates,
the majority of Aβ prepared by chemical synthesis or Aβ
produced naturally by cells in vitro and the brain in vivo
usually contains a sizable fraction of Aβ monomers. Bio-
physical methods such as size exclusion chromatography
(SEC) are employed to enrich them. The results
obtained by our group and by others suggest that Aβ
monomers probably have little or no ability to disrupt
synaptic functioning. Firstly, Aβ monomers produced by
cultured CHO cells overexpressing human APP, known
as 7PA2 cell line, did not affect LTP in vivo [51] or
learned behavior [34]. Secondly, SEC fractions of Aβ
monomers from AD brain homogenates and native
human cerebrospinal fluid (CSF) failed to inhibit LTP
in vitro and in vivo, respectively [35,52]. Thirdly, SEC-
separated monomers of a synthetic analog of Aβ1-40,
Aβ1-40(S26C), had no effect on LTP in the CA1 area
in vivo [53]. Fourthly, and most recently, Aβ 1-42



Figure 2 Aβ1-42 oligomers prepared from a precursor
isopeptide by direct dissolution in physiological buffer [50]
inhibits long-term potentiation in the hippocampus in vivo.
Animals were injected with either vehicle (open circles) or Aβ1-42
(2.5 μg, closed circles) by intracerbroventricular injection (asterisk)
10 min before the conditioning high frequency stimulation (HFS,
arrow) in the CA1 area of the anaesthetized rat hippocampus. Values
are the mean± SEM baseline field EPSP (fEPSP) (n = 6-7 per group).

Klyubin et al. Molecular Brain 2012, 5:25 Page 4 of 10
http://www.molecularbrain.com/content/5/1/25
monomers, used in the preparation of oligomers using
photo-induced cross-linking of unmodified proteins
(PICUP), failed to inhibit LTP or facilitate LTD induc-
tion in hippocampal slices [54].
Some “physiological” effects of Aß on synaptic trans-

mission, plasticity and learning have been described
[55-59]. For example, extremely low concentrations of
Aβ, both exogenously applied and endogenously gener-
ated, can enhance synaptic LTP and improve perform-
ance of learning tasks [58]. Because neurotrophic and
neuroprotective effects of Aβ in cultured cells [60] have
been attributed to Aβ monomers [61], it might be
expected that these apparently positive effects are
mediated by Aβ monomers [58,59]. However, Puzzo
et al. [58] reported that whereas pre-aggregated Aβ1-42
reversed the impairment of LTP caused by an anti-
rodent Aβ antibody, they did not detect any effect of a
synthetic Aβ1-42 preparation enriched in monomers. It
will be of interest to determine if the same applies to
the more abundant Aβ1-40 or cell-derived Aβ.

Small and large aggregates
Given the findings that Aβ monomers per se don't ap-
pear to impair synaptic function, the question arises as
to which soluble Aβ aggregates are disruptive. Several
lines of evidence suggest that small highly diffusible Aβ
aggregates may be responsible for memory impairment
in AD [2,62]. The size of these aggregates varies from
Aβ dimers, containing only two Aβ molecules, to ap-
proximately 20-mers. Although several protocols for the
generation of well-characterized synthetic Aβ aggregates
have been established to date, the question remains as to
how relevant these Aβ assemblies are to the situation in
an AD brain in vivo where there is a complex mixture of
potentially interacting species [17,18,63].
Acute administration of extremely low doses of low-n

Aβ oligomer-enriched fractions of conditioned medium
from cultured 7PA2 cells rapidly disrupts synaptic plasti-
city [51] and performance of learned behaviours [34,64].
In contrast, medium from APP transfected HEK293 cells
that contained Aβ1-x or Aβ3-x peptides as a mixture of
monomers and dimers (total Aβ concentration ~700 nM)
did not significantly inhibit LTP [45]. However medium
containing soluble large oligomers of Aβ3pE-x peptides
in addition to an equivalent amount of monomer/dimer,
inhibited LTP, indicating that larger assemblies of some
natural Aβ may be particularly active.
Interestingly, the impairment of avoidance learning by

7PA2 conditioned medium, that contains low-n Aβ oli-
gomers but no detectible large soluble assemblies such
as protofibrils, is associated with disruption of synaptic
remodeling in the dentate gyrus [65]. Furthermore, recall
of hippocampus-dependent contextual fear learning is
more susceptible to impairment than recall of amygdala-
dependent cued learning after i.c.v. injection of 7PA2
conditioned medium [66]. These studies indicate that
low-n oligomers may have preferential interactions with
synapses in key hippocampal pathways.
The group led by Selkoe, having shown the presence

of various Aβ assemblies in AD brain, suggested that
soluble Aβ dimers are the smallest synaptotoxic species
[35]. Indeed, a combination of biochemical analysis,
electrophysiological experiments and behavioral tests
revealed that sodium dodecyl sulfate (SDS) stable Aβ
dimers found in water soluble extracts of AD brain dis-
rupt the performance of an aversive learning task, inhibit
LTP and facilitate LTD in rodents [35,67-69]. AD brain
soluble Aβ, containing SDS-stable dimers, disrupts syn-
aptic plasticity in a dose-dependent manner and is very
potent (Klyubin et al., unpublished observations)
(Figure 3). In contrast, the larger Aβ*56 oligomers
extracted from APP transgenic mouse brain [70] appear
to be much less potent than cell-derived low-n oligo-
mers or human brain Aβ dimer-containing soluble
extracts at causing deficits in cognitive tasks [35,64].
In apparent support of the proposal that dimers are

key synaptotoxic species, synthetic Aβ1-40 dimers
blocked LTP both in vivo and in vitro when acutely ap-
plied at a concentration approximately 50-fold lower
than unmodified Aβ1-40 [35,53]. These dimers were cre-
ated using Aβ with a single conservative amino acid sub-
stitution (cysteine in place of serine 26, S26C) enabling
covalent cross-linking with a disulfide bond under oxi-
dizing conditions. However, soon after this, Walsh and
colleagues found evidence that these dimers need to as-
semble into large protofibril-like aggregates before being



Figure 3 Aβ in soluble extracts of Alzheimer’s disease brain
inhibits LTP in vivo. Representative example of LTP impairment
after intracerebroventricular (i.c.v.) injection (asterisk) of Tris-buffered
saline (TBS) extract of an AD brain containing Aβ (130 pg in total)
(closed circles). In vehicle-injected controls, HFS (arrow) induces
stable LTP (open circles) in the CA1 area of the anaesthetized rat.
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able to potently inhibit LTP [71]. In fact, freshly pre-
pared non-aggregated synthetic Aβ1-40(S26C) dimers,
like monomers (see above), were found to have no sig-
nificant effect on synaptic plasticity whereas protofibril-
rich assemblies of these dimers strongly inhibited LTP
in vitro. An explanation given by the authors for the dis-
crepancy from the earlier findings was a lack of defin-
ition of aggregation state of materials used in previous
studies. This conclusion is in agreement with the work
of another group who demonstrated that tissue transglu-
taminase, an enzyme implicated in neurodegeneration
with the catalytic capability to covalently cross-link “wild
type” Aβ between lysine and glutamine residues, induced
synthetic Aβ1-40 to form large assemblies including pro-
tofibrils which potently inhibited LTP in the CA1 area
in vitro [72]. In contrast, a similar low concentration
(100 nM) of untreated Aβ1-40 had no effect.
Some synthetic Aβ low-n and high-n oligomers are

not harmful to neurons. Thus aggregation of synthetic
Aß1-42 where the glycine residue at position 33 is sub-
stituted with alanine generated Aβ1-42(G33A) tetramers
which failed to inhibit LTP, as was the case with Aβ1-42
(G33I) which only formed high-n oligomers when aggre-
gated [73].
Just as in the case of the disruptive effects of synthetic

Aβ on synaptic plasticity, there is evidence that only cer-
tain “intermediate” synthetic Aβ assemblies, including
protofibrils, can rapidly impair learning [74,75]. How-
ever, regardless of the relationship between size of sol-
uble Aβ aggregates and synaptic dysfunction, insoluble
fibrils per se are unlikely candidates for memory impair-
ment in AD. Rather, plaque-containing insoluble fibrils
are likely to provide a major source and sink of memory
disrupting soluble Aβ [35,74].
Because of difficulties in determining the size of bio-
logically active Aβ aggregates, especially under non-
denaturing conditions, size-selective ligands such as
antibodies should prove useful. Recently, O'Nuallain
et al. [76] developed an antibody, 3C6, that preferentially
binds soluble aggregates of covalently cross-linked
dimers of Aβ1-40(S26C), and recognizes only a portion
of SDS-stable dimers in aqueous extracts of AD brain
[76]. Importantly, such apparent selectivity was sufficient
to prevent block of LTP by the AD brain soluble extract
in vivo. It is possible that 3C6-mediated abrogation of
LTP inhibition triggered by AD brain soluble Aβ was
due to rapid direct neutralization of aggregates of Aβ
larger than single SDS-stable dimers.
In an analogous approach with synthetic Aβ, N7, an

agent believed to selectively block large Aβ assemblies that
form ion-permeable pores in membranes, prevented Aβ
aggregate-induced depletion of presynaptic glutamatergic
vesicles and consequent depression of spontaneous synap-
tic currents in cultured hippocampal neurons [77].

Conformation versus size
Not only size, but also the spatial conformation of
synapse-disruptive soluble Aβ aggregates varies. Thus Aβ
aggregates can be classified based on the ability of
conformation-specific antibodies to recognize aggregates
in a manner that appears relatively independent of size
[78]. Such conformation-specific antibodies, for example,
are used to distinguish between so-called “prefibrillar”
and “fibrillar” types of aggregates regardless of their size.
Thus, ADDLs and globulomers are likely to be “fibril”-
type whereas Aβ*56 is probably “prefibrillar”. As a corol-
lary to the ability of different sized aggregates to adopt
similar conformations, the same sized Aβ aggregates may
have different sub-populations of different conformers.
Evidence suggestive of a relatively “size-independent”

role for an N-terminal ß strand conformation in the syn-
aptic plasticity disrupting effects of synthetic Aß oligo-
mers and protofibrils has been reported [79]. Thus,
synthetic Aß1-40, containing oligomers and protofibrils
in the presence of a ß-sheet breaker peptide correspond-
ing to residues 4-10 of Aß, designed to reduce the rela-
tive amount of N-terminal ß strand conformation, failed
to inhibit LTP. In contrast, synthetic Aß1-40 containing
a point mutation (P4F) that promoted the formation of
protofibrils, including those with an N-terminal ß-strand
conformation, inhibited LTP in vitro with a similar po-
tency to an oligomer preparation of wild type Aß1-40
with a similar ß-strand conformation.
Like Aβ, many other amyloidogenic proteins form

aqueous soluble oligomers that are neurotoxic [2,80]. In-
triguingly, many of these neurotoxic oligomers
adopt similar conformations to Aβ recognized by
conformation-selectivez antibodies [78,81,82]. The



Figure 4 The aggregation-prone prion protein fragment
PrP106-126 inhibits LTP in vivo. Animals were injected with either
vehicle (open circles) or PrP106-126 (96 ng, closed circles) by i.c.v.
injection (asterisk) 10 min before the HFS (arrow) in the CA1 area of
the anaesthetized rat hippocampus. Values are the mean± SEM
baseline fEPSP (n = 10 per group).
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conformations adopted are relatively independent of
their primary amino acid sequence, as is the case for
fibrils [83]. For example, the antibody A11, originally
generated against Aβ oligomers, recognizes a common
conformation adopted by oligomers of many peptides, in-
cluding α−synuclein and an amyloidogenic fragment of
PrPC, PrP106-126 [84,85]. Whether or not conform-
ational epitopes on Aβ and other peptide aggregates de-
termine their ability to selectively bind to specific
synaptic sites and thereby disrupt memory mechanisms
has yet to be resolved but there is growing suggestive evi-
dence consistent with the hypothesis, as outlined below.
Soluble oligomers of tau, the main protein deposited

intracellularly as insoluble fibrils in AD and fronto-
temporal dementia, can rapidly impair object recogni-
tion memory and reduce levels of synaptic vesicle-
associated proteins when applied intrahippocampally
in vivo [86]. In contrast, monomers and fibrils of tau
appeared inactive under the same acute treatment
protocol.
Insoluble aggregates of α−synuclein are the main con-

stituent of intracellular inclusions, Lewy bodies, in the
brains of patients with Parkinson’s disease and related
dementias, but soluble oligomers are released extracellu-
larly and are neurotoxic [87]. Intriguingly, low nanomolar
concentrations of large α−synuclein oligomers can rapidly
trigger a selective increase in AMPA receptor-mediated
synaptic transmission in autaptic neuronal cultures [88].
In contrast, other oligomers of α−synuclein were reported
to inhibit LTP without affecting baseline transmission,
and to impair learning an avoidance task [89].
The prion peptide fragment PrP106-126 is used to

model the neurotoxic, rather than the infective, aspects
of prion-mediated transmissible spongiform encephalop-
athies (TSEs) [90-95]. In prion diseases synaptic mecha-
nisms are often disrupted at a relatively early stage [96].
Intriguingly, i.c.vinjection of PrP106-126 inhibits LTP of
synaptic transmission in the CA1 area of the hippocam-
pus in vivo (Cullen et al., unpublished observations)
(Figure 4).
Another amyloidogenic peptide, ADan, is found

deposited in the brains of patients with familial Danish
dementia, a rare autosomal dominant form of cognitive
impairment with AD-like neuropathology. The N-
terminally truncated pyroglutamate form of ADan was
found to be especially prone to aggregate into large oli-
gomers and appeared to be more potent than unmodi-
fied ADan at inhibiting LTP in vitro [45].
In view of the shared ability of conformational anti-

bodies to recognize these aggregates and their shared
ability to inhibit LTP it is tempting to speculate that a
common conformation is critical for the synaptic plasti-
city and hence memory disrupting actions of these very
different peptides. In line with this and similar to the
situation with regards the role of Aβ aggregate size, fu-
ture studies should attempt to resolve which, if any, spe-
cific conformation of soluble Aβ assemblies is more
disruptive to synapses and memory.

Cellular prion protein and Aβ-mediated disruption
of synaptic plasticity and learning
Given the likely key pathogenic role of a partially
protease-resistant misfolded form of PrPC (PrPSc), and
the critical requirement for PrPC, in transmissible
spongiform encephalopathies [8,97], the relationship and
commonalities between prion-mediated neurodegenera-
tive diseases and AD have become a major focus of re-
search [98-104].
Recently synthetic Aβ oligomer-mediated inhibition of

LTP at hippocampal synapses in vitro was reported to be
dependent on PrPC [105] with Aβ oligomers, but not
monomers or fibrils, potently and selectively binding
specific regions of PrPC, especially in the vicinity of
amino acids 95-105 [105-107]. Antibodies that bind
PrPC within the region of 93-109 [105] or 93-102 [107]
prevented the inhibition of hippocampal LTP by syn-
thetic Aβ1-42 oligomers in vitro. Consistent with these
reports, the in vivo synaptic plasticity disrupting actions
of AD brain extracts containing water soluble Aβ were
dependent on PrPC [67]. Thus, the disruptive effect of
Aβ was abrogated by D13, an antigen recognizing anti-
body fragment (Fab) that binds selectively to PrP96-104

C.
It is likely that these antibodies and related agents are
directly obstructing the binding of Aβ oligomers to PrPC.
In addition, an antibody to the alpha helix of PrPC also
prevented the inhibition of LTP by AD brain Aβ
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oligomers both in vitro and in vivo [107] whereas a Fab
directed to the C-terminus of PrPC appeared to be in-
active [67]. Since the alpha helix of PrPC does not overlap
with the putative binding site of Aβ oligomers, one pos-
sible explanation for these findings is that the antibody to
the alpha helix is interfering with PrP:PrP contact. Inter-
estingly, direct intra-hippocampal injection of bivalent
D13 antibodies, but not monovalent D13 Fabs, can cause
delayed apoptotic neurodegeneration in mice [108], but
see [109], indicating that abnormal cross-linking of PrPC

in the 96-106 region by oligomers may contribute to their
damaging effects. Indeed, cross-linking of PrPC has been
associated with synaptic damage caused by cell-derived
low-n oligomers of Aβ in cultured neurons [110]. Such
cross-linking Aβ oligomers may prevent PrP-dependent
inactivation of N-methyl-d-aspartate (NMDA) receptor-
mediated currents leading to abnormally enhanced
NMDA receptor-mediated glutamatergic transmission
[111]. Furthermore, cross-linking of other adjacent mem-
brane proteins, in particular metabotropic glutamate re-
ceptor 5, may go hand-in-hand with this process in
mediating Aβ oligomer-induced synaptotoxicity [112].
In apparent direct contradiction to the findings of

Lauren et al. and Freir et al. [67,105,107], Kessels et al.
[113] reported that Aβ1-42 oligomers impaired LTP in
hippocampal slices from transgenic mice lacking PrPC.
Moreover, in APP transgenic mice a deficit in LTP was
similar in the presence or absence of PrPC [114]. Differ-
ences in the Aβ oligomer concentration/assembly are
likely to explain these apparently contradictory findings
[107]. In the Kessels et al. study [113], in contrast to
most other reports on acute effects of Aβ oligomers on
synaptic plasticity, the inhibition of LTP was accompan-
ied by a marked rapid reduction in baseline synaptic
transmission. This indicates that concentrations of cer-
tain Aβ oligomer-containing preparations sufficient to
rapidly reduce baseline transmission can bypass a re-
quirement for PrPC to disrupt synaptic function.
At the behavioural level, there is also strong evidence

that Aβ-mediated memory impairment is PrPC-
dependent [115,116]. However, an apparent acute dis-
ruption of object recognition memory caused by Aβ1-42
was not prevented in mice lacking PrPC [117]. Moreover,
Cissé et al [118] in a recent paper observed the same
cognitive deficits in APP transgenic mice in the presence
or absence of PrPC. These authors provided strong evi-
dence, instead, that impairments of synaptic plasticity
and memory were due to a direct interaction of Aβ oli-
gomers with the Ephrin B2 receptor EphB2 [119]. It will
be important to determine if the fact that different APP
transgenic mice at different ages express different poten-
tially synaptotoxic Aβ assemblies [18,120] can help ex-
plain this controversy.
Conclusion
The commonalities and differences between amyloido-
genic proteins in different neurodegenerative diseases
are of great theoretical and practical interest. The
ability of certain assemblies of these proteins to rap-
idly disrupt synaptic plasticity and memory mechan-
isms indicates that there may be shared mechanisms
across diseases. An obvious limitation of the acute ap-
plication approach is that although it is now feasible
to apply relatively homogenous protein assemblies, it
is not clear how these relatively labile preparations be-
have structurally throughout the full duration of the
experiments and how this may depend on the existing
milieu of endogenous amyloidogenic proteins which is
known to depend on the ongoing neuronal activity
amongst many factors [100,121]. In the light of the
chronic nature of these diseases this may prove a dif-
ficult but important question to address. Furthermore,
the question remains as to how well exogenously ap-
plied proteins, especially synthetic aggregates, in
rodents, mimic the actions and effects of endogen-
ously generated proteins in situ in the brains of
patients. To date, the evidence for the involvement of
different sizes of aggregates and different cellular tar-
gets in these models is compelling. If the same con-
clusion applies to patients, perhaps with different
assemblies playing a leading role at different stages of
disease, it probably will be necessary to take this di-
versity into account when developing new diagnostic
and therapeutic approaches. On the other hand, if
common conformations of different proteins are
pathophysiologically relevant, selectively neutralizing
them [51,122], or changing their aggregation kinetics
such that monomers are stabilized [54] or even by ac-
celerating their conversion to fibrillar material [123],
may have utility in a wide spectrum of neurodegenera-
tive disorders.
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