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Abstract

Background: Trigeminal neuropathic pain attacks can be excruciating for patients, even after being lightly touched.
Although there are rodent trigeminal nerve research models to study orofacial pain, few models have been applied
to studies in mice. A mouse trigeminal inflammatory compression (TIC) model is introduced here which successfully
and reliably promotes vibrissal whisker pad hypersensitivity.

Results: The chronic orofacial neuropathic pain model is induced after surgical placement of chromic gut suture in
the infraorbital nerve fissure in the maxillary bone. Slight compression and chemical effects of the chromic gut
suture on the portion of the infraorbital nerve contacted cause mild nerve trauma. Nerve edema is observed in the
contacting infraorbital nerve bundle as well as macrophage infiltration in the trigeminal ganglia. Centrally in the
spinal trigeminal nucleus, increased immunoreactivity for an activated microglial marker is evident (OX42,
postoperative day 70). Mechanical thresholds of the affected whisker pad are significantly decreased on day 3 after
chromic gut suture placement, persisting at least 10 weeks. The mechanical allodynia is reversed by suppression of
microglial activation. Cold allodynia was detected at 4 weeks.

Conclusions: A simple, effective, and reproducible chronic mouse model mimicking clinical orofacial neuropathic
pain (Type 2) is induced by placing chromic gut suture between the infraorbital nerve and the maxillary bone. The
method produces mild inflammatory compression with significant continuous mechanical allodynia persisting at
least 10 weeks and cold allodynia measureable at 4 weeks.

Keywords: Orofacial neuropathic pain, Infraorbital nerve, Inflammation, Nerve compression, Chromic gut suture,
Mechanical allodynia, Trigeminal ganglia, Trigeminal nucleus, Mice, Hypersensitivy, Tic douloureux
Background
Chronic orofacial pain regardless of the origin along the
trigeminal nerve is particularly debilitating and often re-
fractory to treatment. While the cause of trigeminal
neuropathic pain is often unknown, nerve trauma, com-
pression and/or demyelination are the most probable
causes [1]. Using two loose chromic gut suture ligatures
applied to the infraorbital branch of the trigeminal nerve
to promote orofacial hypersensitivity, Vos et al. [2] first
adapted the widely used method referred to as the
chronic constriction injury (CCI) model by Bennett and
Xie [3] which is typically applied to the sciatic nerve in
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rats. Since that time several models have been developed
for rodents using the inferior alveolar, mental, or the
infraorbital as target nerves for injury models in orofa-
cial pain studies. However, these nerves and their whis-
ker pad receptive field testing areas are of much smaller
size in mice compared to rats. Unlike the nerve constric-
tion surgery in rats, the small operating space and abun-
dant blood supply in the facial area make the mouse
infraorbital nerve injury model particularly challenging.
Thus, effective mouse models of chronic orofacial neuro-
pathic pain are limited. The method reported here pro-
vides a stable orofacial neuropathic pain model which
better mimics clinical chronic orofacial neuropathic pain.
Several other nerve injury methods have been applied

to the infraorbital nerve in mice. While a constrictive
nerve injury is reported for mice by Luiz et al. [4],
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ligations are formed with more pliable silk suture rather
than chromic gut suture. In this model the appearance
of thermal hypersensitivity occurs 3 weeks post-surgery.
Partial (one third to one half ) infraorbital nerve tight
ligation with silk suture provides mechanical allodynia
that does not recover in 25 days while face grooming
diminishes within 7 days [5]. Similar functional outcome
is reported with partial transection of the infraorbital
nerve in another study [6]. In another previous report,
sensation impairment persists more than 10 weeks after
tight ligation of the mental nerve in mice, however, the
behavioral test describes grabbing the mice from the
back to take pain threshold measurements in this un-
natural posture [7].
Ligating the infraorbital nerve with chromic gut

sutures in rats produces mechanical allodynia in re-
sponse to von Frey filament stimulus and facial groom-
ing that persists over three months as described by Vos
et al. [2], compared to the one month duration of the
hyperalgesia with use of silk ligature in mice [4]. We
have developed a mouse model of chronic orofacial
neuropathic pain using chromic gut suture to inflame
the infraorbital nerve. The method is adapted from that
described by Maves et al. [8], who aligned different
lengths of chromic gut suture along the sciatic nerve in
rats and found “dose-dependent” hyperalgesia and allo-
dynia develop. To induce the TIC model described here,
chromic gut suture is placed beneath the infraorbital
nerve in the infraorbital fissure of the maxillary bone.
Blood circulation through the superficial epineurial vas-
culature is preserved, but the suture causes mild nerve
compression. The chromic salts and pyrogallol released
from chromic gut suture cause a change in the chemical
milieu locally on one side of the nerve. The partial dam-
age to the nerve and inflammation initiates mechanical
allodynia that is evident in the mouse whisker pad
throughout a 10 week experimental time course and
cold allodynia at a 4 week time point tested. Data are
also provided documenting reversal of the mechanical
allodynia with several drugs that have been shown to ef-
fectively alleviate peripheral nerve injury induced neuro-
pathic pain [9-11], including microglial activation
inhibitor, minocycline; P2X7 antagonist, A438079; and
p38 inhibitor, SB203580. The simplified TIC model pro-
duced by surgical insertion of a piece of chromic gut
suture beneath the infraorbital nerve creates a better
outcome and a more functionally relevant trigeminal
neuropathic pain model that is validated for mice in
these studies.

Results and discussion
Infraorbital nerve gross anatomy and histology
Anatomical, histological and behavioral confirmation
was sought that the chromic gut suture placed between
the infraorbital nerve and the maxillary bone was the
source of whisker pad hypersensitivity, and that mice
in the sham group did not develop hypersensitivity
after only surgical exposure of the infraorbital nerve
(Figure 1A-D). Detailed description of the surgical
method is provided in the Methods. At the end of
study (week 10 after TIC nerve trauma), the infraorbi-
tal nerve was prepared for macro and microphoto-
graphic documentation. An infraorbital nerve with the
chromic gut suture still adhered is shown in Figure 1D.
The photo indicates that the chromic gut suture
remains through this time frame maintaining the
chemical-toxic stimulation of the infraorbital nerve
and had not been resorbed. Careful handling of the
nerve during paraffin embedding maintained the orien-
tation of the infraorbital nerve and adjacent chromic
gut suture in the cross sections. Sections were stained
with hematoxylin/eosin (H&E) for histological analysis
and for immunohistochemical localization of anti-
CD68 antibody to detect inflammation (Figure 1E-H).
Microscopy detected no significant gross anatomical
damage to the infraorbital nerves. H&E staining
revealed nerve edema at the chromic gut suture con-
tact site evidenced by enlarged spaces between the
axons (Figure 1E, F). The nerves from the sham group
were normal and had minimal space between axons
and fascicles. The CD68 immunoreactivity in the nerve
trunk, a marker for activated macrophages, indicated a
significant accumulation of immune cell infiltration at
the site of chromic gut suture attachment 10 weeks
after surgery (Figure 1G, H).

Mechanical allodynia after TIC nerve trauma involvement
of the infraorbital branch
Alteration in responses to sensory stimulation was deter-
mined on the whisker pad, the receptive field for the
infraorbital nerve (Figure 1B). Von Frey filaments were
applied to the whisker pad on both ipsilateral and
contralateral sides to detect mechanical thresholds on
day 3 and 7 in the first week and once per week for
10 weeks. Two mouse strains were tested to determine
the validity of this method (Figure 2A). The TIC model
mice had detectable mechanical allodynia on the ipsi-
lateral whisker pad 3 days after the surgery. The statis-
tically significant decrease in mechanical threshold
compared with the sham group (n = 11 in B6129SF2/J
and 5 in BALB/c), persisted more than 10 weeks (0.23 ±
0.10g vs. 3.15 ± 1.37g in B6129SF2/J, n = 11, p < 0.001 and
0.37 ± 0.16g vs. 3.47 ± 0.00g in BALB/c, n = 5, p < 0.001).
This demonstrates that chromic gut suture causes chronic
trigeminal neuropathic pain related behavior continuous
for over 10 weeks in mice which has in fact continued
through week 14 in another preliminary study (not
shown).
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Figure 1 Chromic gut suture placement and histological evidence of injury at the site of TIC. (A) Schematic illustration of the chromic gut
suture placement between the infraorbital nerve and the maxillary bone. (B) During behavioral testing mice are held in a pair of cotton insulated
lab gloves by one experimenter and another experimenter probes the mouse whisker pad with the calibrated von Frey filaments to determine
the mechanical threshold. (C) A photomicroscopic image taken during surgery shows the anatomical relationship of the 2 mm segment of
chromic gut suture inserted between the infraorbital nerve and the maxillary bone in the lower orbital cavity. (D) A photomicrograph showing
the chromic gut suture adhered onto the infraorbital nerve as dissected at the end of the experimental time course (10 weeks). (E) H&E
histological staining of a normal axon bundle from an animal in the sham group illustrating normal morphology with minimal spaces between
axons and intact axonal myelin sheaths. (F) The histology of the infraorbital nerve at the site adjacent to the chromic gut suture indicates there
was no overt damage to the nerve axons. The spaces between axons are enlarged indicating edema. The axonal myelin sheaths were intact.
(G) Immunofluorescence for activated macrophage marker, CD68, was not detected in the infraorbital nerves from the sham group mice.
(H) CD68 immunoreactive was evident throughout the axonal fascicles adjacent to the chromic gut suture indicating inflammatory infiltration.
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Cold allodynia after TIC nerve trauma
At 4 weeks after induction of TIC, cold-evoked response
was assessed with the acetone test. Following topical ad-
ministration of 20 μl of 90% acetone onto the ipsiateral
side whisker pad skin, mice exhibited an immediate
grooming behavior focused to the site of application of
the cold stimulus (Figure 2B). The acetone produced an
allodynia-like response evidenced by a significant increase
in the duration of the rubbing/scratching behavior
(44.55 ± 6.5s, n = 4) in mice with TIC nerve injury com-
pared to the naïve control group (23.76 ± 8.6 s, n = 8,
p < 0.05). A subsequent test at 10 weeks revealed no
difference between groups.

Detection of neuronal injury or microglial activation in
the trigeminal ganglia and the spinal trigeminal nucleus
Trigeminal ganglia (TG) neurons were stained with the
neuronal injury marker, ATF3 a member of the ATF/
CREB family of transcription factors, to determine the
A  Mechanical Allodynia (von Frey fila

Figure 2 Lowered mechanical threshold of whisker pad after inductio
pad with von Frey filaments before and after infraorbital nerve traumatic co
subsequent 9 weeks. The data presented is the 50% mechanical threshold
threshold 3 days after surgical placement of chromic gut suture compared
(one-way ANOVA, ***p < 0.001). The continuous mechanical allodynia persi
whisker pad elicits a cold allodynia-like response (4 wk). The mice with TIC
the control mice. *p < 0.05.
extent of their injury stress response (Figure 3A-C). In
week 10 after chromic gut suture placement, there was
moderate increase in ATF3 expression in the TG neurons
although the increase did not reach statistical significance
(61.33 ± 11.26 vs. 25.67 ± 16.76, n = 3). ATF3 immunoreac-
tivity was expressed in the nuclei of the TG neurons. There
was minimal ATF3 immuno-positive cell staining of the
TG in the group receiving sham surgery and in the contra-
lateral TG of the group with infraorbital nerve injury.
Medullary brainstem sections were stained with anti-

OX42 antibody to identify activated microglia in the
spinal trigeminal nucleus (Figure 3D-F). A statistically
significant increase in OX42 immunoreactivity was iden-
tified in non-neuronal structures (40.67 ± 11.29 vs. 7 ±
5.19, n = 3, p < 0.05) at the end of experiment. There
were a minimal number of cells expressing OX42 in the
trigeminal nucleus of the sham operated group either on
the ipsilateral or contralateral side, or on the contralat-
eral side of the group with the TIC model.
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Figure 3 Neuronal injury marker ATF3 in trigeminal ganglia neurons and microglial activation marker OX42 in spinal trigeminal
nucleus. (A) ATF3 immunoreactivity in trigeminal ganglia neurons trended toward an increase in the primary afferent nerve neurons innervating
the whisker pad of mice in the nerve trauma group. Some ATF3 was also observed in the trigeminal ganglia of the sham group. (B) Histogram
showing ATF3 immunofluorescence increases moderately in week 10 after TIC nerve trauma. (C) Histogram showing cells in trigeminal ganglia
positively stained for ATF3. There was an increase in ATF3 after infraorbital nerve injury but the increase was not significant. (D) OX42
immunohistochemistry in the spinal trigeminal nucleus identified only background levels of staining in the sham group. (E) Microglial activation
was evident in the spinal trigeminal nucleus after infraorbital nerve trauma at the end of the 10 week experimental time course. (F) Bar graph
showing the statistically significant increase in OX42 positive cells in the trigeminal nucleus after infraorbital TIC nerve trauma. *p < 0.05.
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Reversal of mechanical allodynia
Reversal of mechanical allodynia was tested using
pharmacological drugs which have been shown to be ef-
fective of alleviating nerve injury induced pain. Micro-
glial activation inhibitor, minocycline (30 mg/kg), P2X7
antagonist, A438079 (10 mg/kg) and p38 inhibitor,
SB203580 (50 μg/kg) were injected intraperitoneally in
the mice of the injured and the sham groups in week 8,
9 and 10 after surgery respectively. Mechanical threshold
in both sides of the whisker pads was tested before and
at 4 time points within the subsequent 6 hours (30 min,
1 h, 3 h and 6 h) after injection of A438079 and
SB203580 and at 1 hour after minocycline injection.
Minocycline
Mechanical allodynia had been confirmed before the
drug administration (Figure 4A). Minocycline alleviated
mechanical allodynia in mice with TIC nerve trauma
within 1 hour. The minocycline reversal effect reached
peak at 0.5 h (2.74 ± 1.38 g vs. 0.26 ± 0.04 g, p < 0.001,
n = 6) and the effect was diminished at 1 h. There was
no threshold change on contralateral whisker pad after
minocycline administration.

P2X7 antagonist, A438079
The inhibitory effect of A438079 on mechanical allodynia
was evident at 0.5 h and reached a peak at 1 h (1.65 ± 0.89 g
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Figure 4 (A) Alleviation of mechanical allodynia by microglial
activation inhibitor, minocycline. Mechanical threshold was tested
before and after intraperitoneal (i.p.) injection of minocycline. The
mechanical threshold was increased by minocycline (30 mg/kg, i.p.)
30 min after administration and the effect was diminished within
1 hour. ***p < 0.001. (B) P2X7 antagonist, A438079 eliminated
mechanical allodynia caused by TIC nerve trauma. Whisker pad
mechanical threshold was tested before and after intraperitoneal
injection of A438079. The mechanical allodynia was reduced by
A438029 (10 mg/kg, i.p.) as early as 30 min after injection. The
analgesic effect reached peak at 1h and diminished at 3 h.
**p < 0.01, ***p < 0.001. (C) P38 inhibitor, SB203580 reversed the TIC
nerve trauma induced mechanical allodynia. Mechanical threshold in
the whisker pad was tested before and after intraperitoneal injection
of SB203580. The mechanical allodynia was reduced by SB203580
(50 μg/kg, i.p.) starting at 30 min. The maximal analgesic effect
persisted for 3 hours. *p < 0.05, **p < 0.01.
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and 2.77 ± 0.73 vs. 0.23 ± 0.03g, p < 0.01 and p < 0.001,
n = 6) (Figure 4B). Although the mechanical threshold was
still elevated at 3 h, there was no statistically significant dif-
ference at this time point. The mechanical threshold had
returned to the pre-drug level at 6 h. A438079 had no effect
on the mechanical threshold on the contralateral side.

p38 inhibitor SB203580
Mechanical threshold of the affected whisker pad
increased rapidly after SB203580 administration and the
effect reached a peak at 0.5 h (1.91 ± 1.05 g vs. 0.27 ±
0.07 g, p < 0.01, n = 6) (Figure 4C). The elevation of
mechanical threshold plateau in whisker pad persisted
3 hours (1.97 ± 1.05 g p < 0. 01 at 1 h and 1.86 ± 0.82 g,
p < 0.05 at 3 h, n = 6). The effect diminished at 6 h. The
SB203580 did not affect mechanical threshold of the
contralateral whisker pad.

Continuous pain related behaviors induced in the mouse
TIC model
Many methods have been used to assess dysfunctional
responses related to orofacial pain after nerve injury, in-
cluding spontaneous pain behaviors and evoked mech-
anical and thermal stimulation. Among the orofacial
neuropathic pain models described for mice, most have
focused on the infraorbital nerve with the exception of
one study using mental nerve ligation. Although the
mental nerve tight ligation model was reportedly more
relevant to clinical sensory impairments, the threshold
for mechanical touch is increased rather than decreased,
which is opposite of the TIC model and reports given by
most clinical orofacial pain patients [7]. Other method-
ologies have been adapted to partially damage the infra-
orbital nerve to produce mechanical allodynia on the
mouse whisker pad. The 7-0 silk suture tight ligation of
half to one third of the infraorbital nerve approached sur-
gically through the orbital cavity produces mechanical
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allodynia lasting as long as 4 weeks [5]. While the partial
ligation and partial transection of the infraorbital nerve
introduces increased facial grooming and mechanical allo-
dynia, loose ligation of the infraorbital nerve with two 4-0
silk ligatures also induces thermal hyperalgesia in mice
[4,6,12].
We report here a novel chronic orofacial neuropathic

pain model inducing continuous pain related mechanical
allodynia responses in mice. The method has several
improvements over other previously published models.
Mechanical allodynia is evident on the whisker pad in
100% of the mice 3 days after surgery and persists for at
least 10 weeks. Cold allodynia was evident at a timepoint
4 weeks after induction of the TIC model. Given the dif-
ficulties in performing orofacial surgery in mice due to
their size, the narrow margin between effective and
lethal doses of anesthesia, and the potential for excessive
bleeding from the orbital cavity, the method described
for placement of chromic gut suture between the infra-
orbital nerve and maxillary bone is a simpler, rapid, and
more efficient procedure for reliable induction of a
chronic, continuous orofacial neuropathic pain model in
mice.
With our modified behavioral testing method, we are

able to detect the chronic orofacial nociception changes
reliably in the mice through 10–14 weeks. The holding
strategy is critical for successful behavioral testing in
mice which are more difficult to manage than rats. Gently
restraining the mice between two hands with insulating
cotton gloves provides a more comfortable habituation
and testing environment, as well as minimizes stress for
the mice. This method generally provides successful
acquisition of the data and appears to be better than other
reported methods for testing the orofacial area which put
mice in abnormal and stressful positions, including either
pulling the mouse’s tail or grasping the mouse by the back
[7,13]. The mechanical allodynia is produced in two
mouse strains indicating that the model has general
applicability.

Minimal injuries at the affected infraorbital nerve site
As shown, chromic gut suture remains along the infraor-
bital nerve through the entire experimental time course.
There is a mild compression of the nerve caused by the
placement of the 2 mm chromic gut suture material be-
tween the maxillary bone and the infraorbital nerve. No
obvious nerve damage was noted with H&E staining.
Compared to the histological appearance of normal
nerve bundles, enlarged spaces were evident between
axons at the site where the chromic gut suture was
adhered, likely caused by the edema and accompanying
inflammatory cell infiltration. Chemical nerve injury
with other methods may likewise be good regimes as tri-
geminal pain models. For example, when CFA oxycel
was applied to the surface of the infraorbital nerve facial
grooming is induced indicative of on-going nociception
caused by the edema at the affected nerve site [14]. In
another inflammatory model, injection of coral snake
venom into the infraorbital nerve produced persistent
ipsilateral mechanical allodynia for 60 days [15]. Many
models of inflammation that induce nerve injury have
been applied to other nerves. Sciatic nerve immune cell
accumulation at the site of CFA soaked gauze was
shown by immunofluorescence of CD11b (OX42), a
marker for activated macrophages. Thermal hyperalgesia
and mechanical allodynia were both noted with rat hind-
paw testing [16]. Our histology results showed that there
is nerve inflammation at the site of the chromic gut su-
ture placement. Along with the edema in the axon bun-
dle, CD68, another marker for macrophages or microglia
was positively stained in the spaces among the axons on
the serial infraorbital nerve sections. Maves et al. [8]
tested the contribution of the chemical toxicity pro-
duced by the chromic gut suture on sensory nerve dys-
function after placing different suture materials adjacent
to the sciatic nerve. Immune-mediated response, axonal
compression and injury induced by nerve ligation have
also been confirmed by other researchers [17,18]. Con-
striction of sciatic nerve with chromic gut suture model
has been widely used since 1988 [3]. This nerve injury is
reportedly due to both the constricted epineurial vascu-
lature and the response to the chromic gut suture. In
our previous study using chromic gut suture ligation of
the infraorbital nerve in rats [19], a statistically signifi-
cant decrease in axonal numbers compared to controls
was evident.

Inflammatory immunoreactivity in trigeminal ganglia
neurons and spinal trigeminal nucleus
The present results indicate that the chromic gut suture
caused partial nerve compression and the toxic chemicals
released locally produced irritation and mild inflammatory
response in our mouse model sufficient to produce con-
tinuous mechanical allodynia for at least 10 weeks. ATF3
is significantly up-regulated for several weeks in the
affected TG neurons, appearing as early as day 3 after
nerve injury in both rats and mice after severely damaging
the nerve by constrictive ligation or partial tight ligation
[5,20]. A previous study in our lab found ATF3 expression
is also maintained through 10 weeks in the affected TG
neurons after constrictive infraorbital injury in rats [19].
Our findings are similar to observations by Tsuzuki et al.
[21] who found that ATF3 can be expressed in the TG
neurons at least 4 weeks after infraorbital nerve transec-
tion. Mechanical allodynia induced in our mouse model is
a result of central sensitization caused by the persistent
immune reaction and sensory dysfunction created by the
physical compression of the infraorbital nerve.
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We further investigated whether infraorbital nerve
compression induced by chromic gut suture would trig-
ger glial activation in the spinal trigeminal nucleus as
widely reported by other types of neuropathic pain.
Microglial activation indicated by up-regulation of OX-
42 is commonly used as a biomarker for detection of
neuropathic injury in either the spinal cord or the spinal
trigeminal nucleus [22-24]. Central microglial response
can be activated by either neuronal injury or peripheral
nerve inflammation [25]. The increased OX42 positive
immunoreactivity evident in the spinal trigeminal nu-
cleus at 10 weeks indicates chronic nerve inflammation
and microglial activation. The spinal trigeminal nucleus
is the site of synaptic contact between the trigeminal
nerve endings and the second order neurons in the sen-
sory transmission pathway relaying the information
about pain to higher brain centers. Long-term microglial
activation has not yet been reported in any other mouse
trigeminal neuropathic pain models. Our model com-
bines mild nerve compression and inflammation as well
as central microglial activation at the level of the second
order spinal trigeminal relay neurons providing adequate
histological evidence of dysfunctional sensory transmis-
sion. As has been suggested by others for spinally
mediated sensory disturbance, trigeminal nucleus micro-
glial activation is also a causal factor contributing to the
mechanical allodynia at the whisker pad observed after
nerve injury.

Pharmacological reduction of mechanical allodynia in the
TIC model
Minocycline, microglial activation inhibitor, systemically
administered to the mice with TIC provided an inhibi-
tory effect persisting 30 min. Although studies have
shown inhibition of microglial activation reverses mech-
anical allodynia after multiple doses of minocycline
[10,26], an acute effect was reported after ventral poster-
olateral thalamic injections for sciatic constrictive injury
[27]. It is not clear if the inhibitory effect of minocycline
in the present study is a direct effect in the trigeminal
nucleus or at other sites. P2X7 is one of the receptors
involved in oxidative stress, microglial activation, and
mediated release of inflammatory molecules from glial
cells [28,29]. The P2X7 antagonist has been shown to
alleviate thermal hyperalgesia induced by complete
Freund’s adjuvant through interleukin 1β release from
microglial cells [30]. In the mouse TIC model character-
ized here, application of A438079 had a longer anti-
hyperalgesic effect than minocycline suggesting that
specific inhibition of microglial activation could better re-
verse hypersensitization. Likewise in the pharmacological
data shown, inhibition of the MAP Kinase signaling path-
way molecule p38 diminished mechanical allodynia
induced by the TIC model. As a MAP kinase downstream
molecule, p38 is activated and also involved in microglial
activation induced by peripheral nerve injury [11,31].
The anti-allodynic effects may be due to reduced micro-
glial activation or other downstream signaling events
[32,33].

Conclusions
To summarize our results, the continuous pain related
behaviors, aberrant nerve histology and inflammatory
biomarker immunoreactivity in the spinal trigeminal
nucleus establish the TIC method as a new stable and
reliable mouse model of trigeminal inflammatory com-
pression. The model is relevant to clinical type 2 orofa-
cial chronic neuropathic pain with continuous burning
pain. It is unknown if the method reproduces the lanci-
nating bursts of nerve activity that are also a characteris-
tic of this orofacial pain condition (type I, tic doloreux),
but further study may find evidence for this with nerve
recordings. The pharmacological results provide further
evidence for the alleviation of hypersensitivity in the TIC
model with drugs that have been shown to be effective
by several others that have explored therapeutic targets
in infraorbital nerve constrictive injury or partial ligation
models [34-36].

Materials and methods
Animals
Male B6129SF2/J and BALB/c mice (The Jackson Labora-
tory), weighing 20–30 g at the beginning of the study,
were accommodated in ventilated animal housing with a
reversed 10/14 h dark/light cycle. Experiments were
carried out in accordance with the Guidelines established
by National Institute of Health (NIH) regarding the care
and use of animals for experimental procedures. Protocols
were approved by the Institutional Animal Care and Use
Committee at the University of Kentucky.

Chemicals
Microglial activation inhibitor, minocycline (Sigma, St.
Louis, MO), P2X7 antagonist, A438079 and p38 inhibi-
tor, SB203580 (Tocris, Bristol, BS11 0QL, UK) were dis-
solved in saline before injection.

Surgery
Mice were anesthetized with sodium pentobarbital (70 mg/
kg, i.p.), and all surgeries were performed in sterile condi-
tions under a surgical microscope. The hair on the top of
the head was shaved and the mouse placed in a stereotaxic
frame. Ophthalmic cream was applied to the corner of
both eyes to prevent drying damage. An anterior-posterior
15 mm skin incision was made at midline of the head. The
infraorbital muscle was gently dissected from the bone
until the orbit could be gently retracted. A piece of gel-
foam or a tiny cotton ball was packed into orbital cavity to
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minimize bleeding. The infraorbital nerve can be seen ap-
proximately 5 mm deep within the orbital cavity, lying in
the infraorbital bony fissure. The infraorbital nerve was
dissected free from the bone at its most rostral extent in
the orbital cavity, and a single 2 mm length of chromic gut
suture (6-0) was inserted between the infraorbital nerve
and the maxillary bone (Figure 1A, C). In the sham oper-
ation control group, only skin incision and muscle dissec-
tion were performed. The nerve was not touched and no
chromic gut suture was inserted. All skin incisions were
sutured with 5-0 nylon non-absorbable monofilament, and
mice were allowed to recover for three days.

Assessment of mechanical allodynia on the whisker pad
and drugs tested
Mechanical sensitivity of the whisker pad, the infraorbi-
tal nerve receptive field, was measured with a series of 8
von Frey fiber filament (0.008 g (1.65); 0.02 g (2.36);
0.07 g (2.83); 0.16 g (3.22); 0.4 g (3.61); 1.0 g (4.08); 2.0 g
(4.31); 6.0 g (4.74); Stoelting, Wood Dale, IL) by modi-
fied up-down method. Mice were handled several times
before experiments. One experimenter held the mouse
with two hands in insulating cotton gloves until the ani-
mal was calm. Animal moved freely in the holder’s
hands with its head exposed as shown in Figure 1B. Dur-
ing testing, one experimenter slightly restrains the
mouse in their hands so that another experimenter
could accurately apply the von Frey filament onto the
center of the mouse whisker pad, both ipsilateral and
contralateral to the surgery site. For consistency of
results, each filament was applied five times at intervals
of a few seconds. If head withdrawal was observed at
least three times after probing with a filament, the
mouse was considered responsive to that filament
according to the up-down method [37,38]. For this ap-
proach, whenever a positive response to the mechanical
stimulus occurred, the next weaker von Frey filament
was applied. If no positive response is evoked, the next
stronger filament was applied. Testing proceeded in this
manner until four fibers applied after the first one suc-
cessfully caused positive responses. This allowed estima-
tion of the 50% mechanical withdrawal threshold (in
gram) using a curve-fitting algorithm. The mechanical
thresholds on the whisker pads of both sides were mea-
sured on day 3 and 7 in the first week and then once a
week for 10 weeks after surgery. To test effects of drugs
on the behavioral changes, mechanical allodynia was
confirmed in the mice after induction of TIC nerve
trauma in the late weeks of experimental period. Mino-
cycline, A438079 and SB203580 were each injected into
mice intraperitoneally. The behavioral changes were
tested at 0.5, 1, 3 and 6 h after drug administration ex-
cept minocycline which had a 1 h testing duration. To
conserve animals, mice were tested with all drugs but
with only one drug per week allowing recovery time be-
fore another drug was tested.

Assessment of cold allodynia on the whisker pad
Mice (C57Bl/6) were acclimated in the see-through plas-
tic observation chamber (28 × 17.5 × 12.5 cm) with 1
mirrored side in an isolated room with constant “white
noise” for ten minutes. After the acclimation period,
20 μl of 90% acetone was applied to both the control
and mice with TIC on the ipsilateral side of the whisker
pad with a customized 25-gauge needle (blunt and slightly
bent) attached to a 50 μl microsyringe (Hamilton, Reno,
NV). Special care was taken to avoid acetone leakage near
the ocular surface or the nose [39]. A digital camcorder
located 0.5 m from the chamber with an unobstructed
view was used to record animal spontaneous nocifensive
behavior for 5 minutes. The camcorder was linked to a
computer recording program for offline data analysis
(Logitech Image Studio; Logitech, Fremont, CA). The
chamber was washed with a detergent/disinfectant and
dried between animals. The nocifensive behavior evalu-
ated in this study was asymmetric orofacial grooming, i.e.
rubbing and scratching focused on the whisker pad and
executed with the ipsilateral forepaw. The videos were
analyzed and only the first two minutes of behavior after
acetone administration were recorded for duration of rub-
bing/scratching events.

Morphological study methods
Aldehyde fixation
At the end of the study (week 10 after nerve trauma),
mice were anesthetized with isoflurane and perfused
transcardially with heparinized saline followed by 4%
ice-cold paraformaldehyde in 0.1 M phosphate buffer so-
lution (PB, pH 7.4).

Paraffin embedding
Infraorbital nerves were dissected out and placed in
the same fixative solution at 4°C overnight. Samples
were switched to 70% ethanol, photographed, dehy-
drated through graded ethanol, and embedded in par-
affin. Infraorbital nerve tissue sections were cut
(5 μm), mounted onto glass slides (Super Frost Plus,
VWR, Radnor, PA), deparaffinized (Citrisolv, Fisher),
rehydrated with graded ethanol, and rinsed in tap
water.

Hematoxylin and Eosin (H&E) staining
Hydrated slides were immersed in 0.1% hematoxylin for
1–3 min, washed in tap water, then immersed in 0.1%
eosin for 1 min, and dehydrated through graded ethanol.
Finally sections were coverslipped with Permount
(Fisher, Pittsburgh, PA).
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Immunofluorescent staining
The medulla and the TG were dissected after fixative perfu-
sion and post fixed for 4 hours. The tissues were switched
to 30% sucrose in PB for 18–24 hours and embedded into
O.C.T. compound (Tissue-Tek, Sakura, Torrance, CA). The
tissue blocks were cryosectioned (10 μm) and mounted
onto Super Plus glass slides. The nerve and TG as well as
the medullary brainstem sections containing the spinal tri-
geminal nuclei were washed with 0.1 M phosphate buffered
saline (PBS, pH7.4) and blocked with 3% normal goat
serum (30 min, RT). Sections were incubated overnight at
room temperature with goat anti-CD68 (1:100); mouse
anti-OX42 (1:1000, Abcam, Cambridge, MA), or rabbit
anti-activating transcription factor 3 (ATF3) (1:200, Santa
Cruz, Santa Cruz, CA) antibodies for immunolocalization
of biomarkers for monocyte/macrophage invasion or
injured nerves, respectively. Subsequently, sections were
incubated with secondary antibodies (Alexa Fluor 488 don-
key anti-goat; Alexa Fluor 594 goat anti-rabbit and mouse
(1:1000, 1 h, Invitrogen, Grand Island, NY). Sections were
coverslipped with anti-fade, glycerol based mounting media
with/without DAPI (Vector Laboratories, Burlingame, CA)
and visualized using a Nikon E1000 microscope (Nikon
Instruments, Inc., Melville, NY) equipped with MetaVue
and Act-1 Programs.

Image analysis
Five images from each animal were digitally captured
was analyzed using the Metamoph off line analysis pro-
gram. Mean fluorescent intensities in different experi-
mental groups were plotted and compared.

Statistical analysis
The Prism 4 statistical program was used for data ana-
lysis (Graph Pad Software, Inc., La Jolla, CA). All data
were expressed as mean ± SD. The weekly behavioral
changes after nerve injury among the four groups for
the ipsilateral and contralateral sides (10 weeks) were
analyzed by one-way ANOVA followed by Tukey's Mul-
tiple Comparison Post hoc testing. A p ≤ 0.05 was con-
sidered significant. Histological analyses were done using
Student’s t-test with p < 0.05 considered significant.
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