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Ca**/Calmodulin-dependent protein Kinase |l
interacts with group | Metabotropic Glutamate
and facilitates Receptor Endocytosis and ERK1/2
signaling: role of 3-Amyloid
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Abstract

Background: Agonist stimulation of Group | metabotropic glutamate receptors (mGIuRs) initiates their coupling to
the heterotrimeric G protein, Gag,y, resulting in the activation of phospholipase C, the release of Ca”" from intracellular
stores and the subsequent activation of protein kinase C. However, it is now recognized that mGluR5a also functions as
a receptor for cellular prion protein (PrP%) and B-amyloid peptide (AR42) oligomers to facilitate intracellular signaling via
the resulting protein complex. Intracellular mGluR5a signaling is also regulated by its association with a wide variety of
intracellular regulation proteins.

Results: In the present study, we utilized mass spectroscopy to identify calmodulin kinase lla (CaMKlla) as a protein that
interacts with the second intracellular loop domain of mGIuR5. We show that CaMKlla interacts with both mGluR1a and
mGluR5a in an agonist-independent manner and is co-immunoprecipitated with mGluR5a from hippocampal mouse
brain. CaMKlla positively regulates both mGluR1a and mGluR5a endocytosis, but selectively attenuates mGluR5a but not
mGluRTa-stimulated ERK1/2 phosphorylation in a kinase activity-dependent manner. We also find that AB42 oligomers
stimulate the association of CaMKlla with mGluR5a and activate ERK1/2 in an mGluR5a-dependent manner. However,
A[342 oligomer-stimulated ERK1/2 phosphorylation is not regulated by mGluR5a/CaMKlla interactions suggesting that
agonist and AB42 oligomers stabilize distinct mGluR5a activation states that are differentially regulated by CaMKlla. The
expression of both mGIuR5a and PrP© together, but not alone resulted in the agonist-stimulated subcellular distribution
of CaMKlla into cytoplasmic puncta.

Conclusions: Taken together these results indicate that CaMKlla selectively regulates mGluR1a and mGluR5a ERK1/2
signaling. As mGIuR5 and CaMKlla are involved in learning and memory and AR and mGIuR5 are implicated in Alzheimer’s
disease, results of these studies could provide insight into potential pharmacological targets for treatment of Alzheimer’s
disease.
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Introduction

G protein-coupled receptors (GPCRs) comprise the lar-
gest family of transmembrane receptors and function to
transduce extracellular signals into intracellular re-
sponses [1,2]. GPCRs are composed of seven transmem-
brane domains that can be activated by a variety of
stimuli including photons, odorants, hormones, amino
acids, peptides and neurotransmitters [2]. Glutamate, the
major excitatory neurotransmitter in the central nervous
system, signals via the activation of both metabotropic
GPCRs and ionotropic receptors [3-6]. There are eight dif-
ferent GPCRs that respond to glutamate and mediate the
metabotropic glutamate receptor signaling in the brain
[5-7]. These receptors are classified into three subgroups
based on sequence similarity and G protein coupling speci-
ficity. Group I metabotropic glutamate receptors, (mGIluR1
and mGIuR5), regulate excitatory synaptic signaling re-
sponse via their coupling to the heterotrimeric G protein,
Gatg/11, which upon activation stimulates the activity of the
enzyme phospholipase C to generate the production of
two second messengers, diacylglycerol and inositol 1, 4, 5
trisphosphate. Inositol 1, 4, 5 trisphosphate acts as a ligand
that binds to inositol phosphate receptors localized to the
endoplasmic reticular membrane to release intracellular
Ca®" stores, in turn Ca>* functions in combination with di-
acylglycerol to activate protein kinase C [3].

Group I mGluRs serve as molecular scaffold proteins
to regulate both extracellular and intracellular signaling
complexes. Specifically, mGluR5 functions as a receptor
to mediate intracellular Ca®* signaling and extracellular-
regulated protein kinase (ERK1/2) activation by cellular
prion protein (PrP) and p42-amyloid (AP42) oligomers
[8,9]. PrP® can physically associate with mGluR5, and
binding of AP to PrP¢ generates mGluR5-mediated in-
creases in intracellular Ca®* concentrations in neurons
[9]. Negative allosteric modulators of mGIluR5 weaken the
interaction of PrP® with mGIuR5, while positive allosteric
modulators increase this interaction. Silent allosteric mod-
ulators of mGIluR5 disrupt AP induced interactions of
mGIuR5 with PrP° [10], confirming the physical inter-
action of these proteins and suggesting a mechanism by
which PrP¢ and AP can regulate mGIuR5 signaling. It is
now recognized that mGIuR5 activation by both PrP® and
ApB42 oligomers also plays an important role in the patho-
physiology associated with Alzheimer’s disease (AD)
[9,11]. Consistent with this concept, mGluR5 selective
antagonists improve the cognitive deficits observed in
AD mouse models and the genetic deletion of mGIluR5
results in a reduction in both soluble AB42 oligomers
and B-amyloid plaques and results in the amelioration of
cognitive dysfunction observed in APPswePSIAE9 AD
transgenic mice [11].

Group I mGluRs, in addition to their coupling to Gog/1;
heterotrimeric G proteins, also interact with and scaffold a
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variety of intracellular signaling proteins that play a pivotal
role in regulating mGluR1/5 signaling, endocytosis, sub-
cellular localization and synaptic activity [3,12]. These pro-
teins include, but are not limited to, Homer, calmodulin,
SIAH-1a, B-arrestinl, casein kinase 1, protein phosphatase
2a, phospholipase D2, RalA, Pyk2, and Fyn [9,13-22]. B-
Arrestinl has been shown to be involved in mGluR1-
mediated ERK1/2 phosphorylation, as have Pyk2, PKC and
Src [22,23]. Phospholipase D2 and RalA regulate the con-
stitutive endocytosis of Group I mGluRs, as well as a
number of other GPCRs [17,24,25]. In addition, Homer
interactions with Group I mGluRs regulates their G pro-
tein signaling, coupling to the activation of ERK1/2 and
plays a role in Group I mGluR-mediated regulation of
synaptic activity [26-28]. Both mGluRla and mGluR5a
encode a protein phosphatase 1y binding motif and pro-
tein phosphatase 2A has been implicated in N-methyl-D-
aspartate (NMDA) receptor-stimulated increases in
mGluR5 activity by promoting the dephosphorylation of
desensitized receptors [21,29].

Emerging studies reveal that Ca**/calmodulin-dependent
protein kinase Ila (CaMKIla) can also regulate several
GPCRs. CaMKIla has been shown to regulate behavioral
responses to cocaine by regulating the D3 dopamine recep-
tor by binding to third intracellular loop of the receptor
to mediate its desensitization [30]. CaMKIla-dependent
desensitization has also been reported for the D1/D2 het-
erodimer [31] and the Histamine H1 receptor [32]. In con-
trast, CaMKII« binding to the second intracellular loops of
D1/D2 receptor heteromers increases signaling [33]. More-
over, antagonism of CaMKIla activity has been shown to
reduce mGluR1 internalization [34,35]. CaMKIIa has been
shown to play a direct role in regulating the desensitization
of mGluR1a inositol 1, 4, 5 trisphosphate signaling by
physically interacting with the C-terminal tail of the recep-
tor [36]. Recently, CaMKIIa has also been shown to inter-
act with the proximal C-terminal tail of mGIuR5 in vitro
[37]. In rat striatal neurons, inactive CaMKIIa binds con-
stitutively to mGIuR5 and mGluR5- mediated Ca2+ re-
lease results in the dissociation of C-tail bound CaMKIlx
and recruitment to the NMDA receptor where it can
phosphorylate the GluN2B subunit [37].

In the present study, we utilized a cell permeant Tat
peptide from HIV [38] coupled to a peptide encoding the
second intracellular loop (IL2) of mGIuR1/5 followed by a
FLAG epitope tag to perform a proteomic screen to iden-
tify neuronal proteins that interact with Group I mGluRs.
As a consequence, we have identified a series of known
Group I-interacting proteins including: protein phosphat-
ase ly, protein phosphatase 2A and Gag; in the prote-
omic screen, as well as CaMKIlq, 3, §, and y as novel
proteins that interact with IL2 of mGluR1/5. We find that
CaMKIla positively regulates the endocytosis of both
mGluRla and mGluR5a, but has differential effects on



Raka et al. Molecular Brain (2015) 8:21

mGIuR1/5-stimulated ERK1/2 phosphorylation. Further-
more, AP42 oligomers stimulate mGluR5-mediated ERK1/2
phosphorylation and CaMKIla association with mGIluR5,
but CaMKIla does not regulate AB42 oligomer-stimulated
ERK1/2 phosphorylation. In addition, mGluR5a and PrP¢
expression results in the subcellular redistribution of CaM-
KIla. Taken together our observations indicate that CaM-
KII regulates agonist-stimulated Group I mGIuR signaling,
but not AB42 oligomer-mediated signaling via mGluR5a.

Results

Identification of novel Group I-interacting proteins by
mass spectroscopy

In order to identify potentially novel mGluR1/5 IL2
interacting proteins, we performed a proteomic screen
using a Tat-tagged mGluR1/5 IL2 peptide conjugated to
a FL-epitope tag to screen by mass spectroscopy pro-
teins in neurons that may bind to mGIuR1/5. To do this,
a mixed culture of 10" cortical and striatal neurons was
incubated with the mGIuR1/5 Tat peptide (70 uM final
concentration) for 2 hours. We found that a number of
novel and known interacting proteins were identified
(Table 1). The known mGIluR1/5 interacting proteins in-
clude Gag/11, protein phosphatase 1y catalytic subunit, and
the regulatory subunit of protein phosphatase 2A [19,21].
Amongst the novel mGIuR1/5 IL2-interacting proteins
identified were CaMKIla, B, §, and y. As CaMKII antag-
onism was previously reported to antagonize mGluR1a
internalization [34], we examined whether CaMKIla
interacted with mGluR1a and mGluR5a to regulate either
their signaling or endocytosis.

Co-immunoprecipitation of CaMKlla with mGluR1a and
mGluR5a

To validate the potential interaction of CaMKIla with
Group I mGluRs, HEK 293 cells were transfected with ei-
ther FL-epitope-tagged mGluR1la or mGluR5a along with
either GFP or GFP-CaMKIla. We found that GFP-
CaMKlIla was co-immunoprecipitated with both FL-
mGluRla and FL-mGluR5a in an agonist-independent
manner (Figures 1A and B). The co-immunoprecipitation
of GFP-CaMKIla with FL-mGluRla was not dependent
upon CaMKIl« catalytic activity, as the pretreatment of
HEK 293 cells with 5 uM KN-93 did not affect the extent
of GFP-CaMKIlua co-immunoprecipitated with the recep-
tor (Figure 1C). Endogenous CaMKIIa could be selectively
co-immunoprecipitated with endogenous mGluR5a using
a rabbit polyclonal mGluR5a antibody, but not Rab11 anti-
body, from hippocampal mouse brain lysates (Figure 1D).

Purified mGIuR1/5 IL2 loop GST-fusion proteins interact
GFP-CaMKlla

CaMKIla interactions with the mGluR1/5 IL2 were
identified by mass spectroscopy following the incubation
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Table 1 Proteins co-precipitated with Tat-mGluR1/5-IL2-FLAG
peptide from mouse neuronal cultures

Gene ID Protein names Unique Total % Coverage
peptides peptides

12934 Dihydropyrimidinase-like 2 23 120 53

65254 Dihydropyrimidinase-like 5 11 77 299

15481 Heat shock protein 8 15 32 289

51792 a-subunit of regulatory 8 17 216
subunit A, PP2A

12323 Ca’*/Calmodulin Kinase I3 6 41 216

26413 Mitogen-activated 4 7 19
protein kinase |

12332 Ca’*/Calmodulin Kinase lla 6 16 18.8

12325  Ca’*/Calmodulin Kinase lly 5 30 176

217342 Ubiquitin-conjugating 16 42 172
enzyme E20

22240 Dihydropyrimidinase-like 3 7 16 17.2

233726 Importin 7 16 42 17.0

12995  Casein Kinase 2 al 4 8 156
polypeptide

108058  Ca’*/Calmodulin Kinase 115 4 27 153

69654  Dynactin 2 4 9 139

12331 Adeylate cyclase-associated 3 7 124
protein 1

19047  Protein phosphatase 1y 2 6 96
catalytic subunit

13628  Eukaryotic elongation 4 8 82
factor 1 alpha 1

16565 Kinesin family member 21B 5 8 6.2

13191 Dynactin 1 5 6 6.2

14682  Guanine nucleotide 1 2 53
binding protein aq
polypeptide

13175  Doublecortin-like kinase 1 3 5 52

67300  Clathrin heavy chain 5 6 4.1

8120 Adaptor-related protein 3 6 32
complex 3, beta 2
subunit

69116 Ubiquitin protein ligase E3 7 1 28
component N-recognin 4

22215  Homologous to the E6-AP 7 9 22
(UBE3A)

of neurons with a cell permeant mGIluR1/5 IL2 peptide.
To confirm this interaction we purified GST and GST-
IL2 from bacteria and assessed the ability of these con-
structs to co-precipitate either GFP-CaMKIla or GRK2
(positive control) from HEK 293 cell lysates [39]. We
found that GST-IL2 effectively co-precipitated both
GFP-CaMKlIla and GRK2 (Figure 2A). We then utilized
a series of GST-mGluR1/5 IL2 alanine scanning mutants
that we previously employed to identify IL2 residues re-
quired for GRK2 binding in an attempt to further
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Figure 1 Co-immunoprecipitation of GFP-CaMKlla with FLAG-mGluR1a and FLAG-mGIluR5a. Representative immunoblot showing GFP-CaMKlla
co-immunoprecipitation with either A) FL-mGIuR1a or B) FL-mGluR5a from HEK 293 cells transiently transfected as labeled with 3 pg of pcDNA3.1 of either
FL-mGluR1a or FL-mGluR5a along with either 0.5 g of plasmid cDNA encoding either pEGFP or GFP-CaMKlla and treated with 50 uM quisqualate for the
times indicated in the Figure. Bar graphs show the quantitative densitometric analysis of GFP-CaMKlla co-immunoprecipitated with either FL-mGluR1a
or FL-mGluR5a. The data represents the mean + SD of 6 independent experiments. C) Representative immunoblot showing GFP-CaMKlla co-immunoprecipitation
with FLAG-mGIuR5a in HEK 293 cells treated with or without 5 uM KN-93 that were transiently transfected with 2 pg of FL-mGIuR5 along with 0.5 ug
of GFP-CaMKilla. Bar graphs show the quantitative densitometric analysis of GFP-CaMKlla co-immunoprecipitated with FL-mGluR5a in the absence and
following pretreatment with 5 uM KN-93 for 1 h. The data represents the mean + SD of 6 independent experiments. D) Shown is a representative
immunoblot of endogenous CaMKIl co-immunoprecipitated with endogenous mGIuR5. 1 mg of adult CD-1 mouse hippocampal tissue lysate was
incubated with protein G sepharose beads and either polyclonal rabbit anti-Rab11 or anti-mGIuR5 antibody. Shown is a representative immunoblot

from 4 independent experiments.

delineate specific mGluR1/5 IL2 residues required for
GFP-CaMKIla (Figure 2B) [39]. However, we were unable
to discern discrete IL2 residues required for GFP-
CaMKlIla binding (Figure 2B). Moreover, FL-mGluR1b,
that lacks an extended carboxyl-terminal tail and two
mGluR1b mutants defective in GRK2 binding (K691A and
K692A), was still effectively able to co-immunoprecipitate
GFP-CaMKIla (Figure 2C). Thus, although CaMKIla in-
teracts with the IL2 of mGluR1/5, there appeared to be no
specific IL2 residues that are essential for CaMKIlx
binding.

CaMKIla contributes to agonist-stimulated endocytosis of
both mGluR1a and mGIuR5

It has previously been reported that the antagonism of
CaMKII activity can negatively regulate the internalization
of mGluRla and its alternatively spliced variants [34].
Therefore, we examined whether the overexpression of

CaMKIIa would increase the agonist-stimulated endocyto-
sis of either FL-mGluR1a or FL-mGluR5a. We found that
the over-expression of GFP-CaMKIla promoted the
agonist-stimulated endocytosis of both FL-mGluRla and
FL-mGluR5a (Figures 3A and B). In agreement with the
previous work of Mundell et al., 2002, the CaMKII antag-
onist KN-93 blocked the CaMKIla-dependent increase of
FL-mGluR1a endocytosis in GFP-CaMKIla over-expressing
cells [34] (Figure 3A). Thus, it appears that CaMKIla con-
tributes to the endocytosis of mGluR1a in a kinase activity-
dependent manner.

Effect of CaMKlla over-expression on mGluR1a/5a-stimulated
ERK1/2 activation

Group I mGluRs couple to the activation of ERK1/2
phosphorylation via a number of different mechanisms,
that include Gay1,-mediated activation of Ca®" signaling
leading to the activation of both protein kinase C and
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Figure 2 Purified GST-fusion proteins encoding the mGIluR1/5 IL2 loop domain interact with GFP-CaMKlla. A) Shown is a representative
immunoblot showing the co-immunoprecipitation of G protein-coupled receptor kinase 2 and GFP-CaMKlla with a GST mGIuR1/5 IL2 domain fusion
protein. 1 pug of GST protein was incubated with 500 ug of HEK293 cell lysates over-expressing either GRK2 or GFP-CaMKlla. The immunoblots
are representative of 3 independent experiments. B) Upper panel, shows the schematic representation of GST-IL2 fusion protein alanine scanning
mutants previously used to identify the IL2 residues required for GRK2 binding to Group | mGluRs [39]. Middle panel shows a representative
immunoblot showing the co-immunoprecipitation of GFP-CaMKlla with the GST-IL2 fusion protein alanine scanning mutants and the expression of
the GST fusions. Lower panel shows the densitometric analysis of the relative co-immunoprecipitation of GFP-CaMKlla with the GST-IL2 fusion protein
alanine scanning mutants compared to the wild-type IL2 GST fusion protein. The data represents the mean + SD of 3 independent experiments. C)
Representative immunoblots showing GFP-CaMKlla co-immunoprecipitated FL-mGIuR1b and FL-mGIuR1b mutants (K691A and K692A) that do not bind
GRK2. Also shown are FL-mGluR1a immunoprecipitates and GFP-CaMKlla expression in cell lysates. Bar graph shows the relative co-immunoprecipitation of
GFP-CaMKlla with the FL-mGIuR1b and FL-mGIuRTb mutants (K691A and K692A). Data shown represents the means + SD of three independent experiments.

Src, as well as their interaction with both Pyk2 and Homer
[22,40]. Therefore, we examined whether over-expression
of either CaMKIla or an autophosphorylation incompe-
tent CaMKIIa-T286A mutant altered either FL-mGluR1a-
or FL-mGluR5a-stimulated ERK1/2 phosphorylation. We
found that neither GFP-CaMKIla nor CaMKIIa-T286A
over-expression affected FL-mGluR1a-stimulated ERK1/2
phosphorylation in response to 50 uM quisqualate stimu-
lation for either 5 or 10 min (Figure 4A). In contrast,
CaMKIla over-expression significantly attenuated FL-
mGluR5a stimulated ERK1/2 phosphorylation in response
to 5 and 10 min treatment with 50 pM quisqualate,
whereas the expression of CaMKIIa-T286A mutant had
no effect on quisqualate stimulated ERK1/2 phosphoryl-
ation in FL-mGluR5a expressing cells (Figure 4B).

Effect of AB42 oligomer treatment on mGluR5a CaMKlla
interactions and ERK1/2 signaling

AB42 oligomers were recently shown to signal via
mGluR5a [9]. Therefore, we examined whether Ap42

oligomer-stimulated activation of mGluR5a would alter the
agonist-stimulated association of GFP-CaMKIla with FL-
mGluR5a. We found that 200 nM AB42 oligomer treat-
ment of HEK 293 cells transfected with FL-mGluR5a and
GFP-CaMKIla resulted in a significant time-dependent
increase in GFP-CaMKIla co-immunoprecipitated with
FL-mGluR5a (Figure 5), a response we did not observe in
response to receptor agonist stimulation (Figures 1A and
B). Given that CaMKIlx negatively regulated agonist-
stimulated mGluR5a-dependent ERK1/2 phosphorylation,
we examined whether AP42 oligomer treatment of
mGluR5a resulted in ERK1/2 phosphorylation and whether
this activation was regulated by CaMKII« interactions. We
found that treatment of FL-mGluR5a expressing cells with
200 nM Ap42 oligomers stimulated a significant increase
in ERK1/2 phosphorylation, but that Ap42 oligomer-
stimulated ERK1/2 phosphorylation via the activation of
FL-mGluR5a was not affected by CaMKIl« overexpression
(Figure 6A). Similar to quisqualate-stimulated mGluR5a
activation of ERK1/2 phosphorylation, AB42 oligomer-
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stimulated ERK1/2 phosphorylation could be antagonized
by the pretreatment of HEK 293 cells with 1 mM of the
PKC inhibitor Bisindolymaleimide I (Bis I) (Figure 6B).
Thus, AP42 oligomers could stimulate ERK1/2 phosphor-
ylation in an mGluR5a- and PKC-dependent manner that
was not regulated by CaMKIla, despite the fact that Ap42
oligomers increased CaMKIIa association with mGluR5a.

Effect of PrP© overexpression on the subcellular
distribution of CaMKlla

AB42 oligomers were previously shown to interact with
PrP¢ with high-affinity and this complex was recently
shown to utilize mGluR5a as a scaffold to facilitate Ap42
oligomer-dependent intracellular signaling [9,41,42].
Moreover, AB42 oligomers were shown to stimulate the
subcellular redistribution of CaMKII resulting in im-
paired a-amino-3-hydroxy-5-methyl-4-isoxazolepropio-
nic acid (AMPA) receptor trafficking [43]. Therefore, we
assessed whether the co-expression of mGluR5a and
PrP¢ would alter the subcellular localization of GFP-
CaMKIla in HEK 293 cells. The expression of mGluR5a

and PrP€ did not alter the subcellular distribution of GFP
in HEK 293 cells (Figure 7A). In addition, 30 uM quisqua-
late treatment did not affect the diffuse cytosolic distribu-
tion of GFP-CaMKIlax when it was expressed alone in
HEK 293 cells (Figure 7B). Co-expression of either
mGluR5a or PrP© alone with GFP-CaMKII« did not alter
the subcellular localization of GFP-CaMKIl« in response
to 30 uM quisqualate treatment (Figures 7C and D). How-
ever, co-expression of both mGluR5a and PrP€ along with
GFP-CaMKIla resulted in the subcellular redistribution of
GFP-CaMKIla in intracellular cytoplasmic puncta in 13%
of transfected HEK 293 cells following 30 pM quisqualate
treatment (Figures 7E and F). Thus, mGluR5a and PrP©
were both required for agonist-stimulated alterations in
the subcellular localization of GFP-CaMKIIa.

Discussion

In the present study, we screened for novel proteins that
may interact with the IL2 domain of mGluRl and
mGluR5. In doing so, we identified a number of func-
tionally interesting putative Group I mGluR-interacting
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Figure 4 Effect of CaMKlla overexpression on mGluR1a- and mGluR5a- -stimulated ERK1/2 phosphorylation. A) Shown are representative
immunobilots for FL-mGluR1a expression, p-ERK1/2 activity and total-ERK1/2 expression in HEK 293 cells transiently transfected with 3 ug of pcDNA3.1
encoding FLAG-mGluR1a along with 0.5 pg of plasmid cDNA encoding either GFP, GFP-CaMKlla or GFP-CaMKlla-T286A in response to 50 pM quisqualate
treatment for 0, 5 and 10 min. Bar graph shows the densitometric analysis of ERK1/2 phosphorylation normalized to both basal and total ERK1/2 protein
expression. Data represents the mean + SD of five independent experiments. *P < 0.05 versus GFP transfected control cells. B) Shown are representative
immunoblots for, FL-mGIuR5a expression, p-ERK1/2 activity and total-ERK1/2 expression in HEK 293 cells transiently transfected with 3 pg of pcDNA3.1
encoding, FL-mGluR5a along with 0.5 ug of plasmid cDNA encoding either GFP, GFP-CaMKlla or GFP-CaMKlla-T286A in response to 50 uM quisqualate
treatment for 0, 5 and 10 min. Bar graph shows the densitometric analysis of ERK1/2 phosphorylation normalized to both basal total ERK1/2 protein
expression. Data represents the mean + SD of five independent experiments. *P < 0.05 versus GFP transfected control cells.

substrates, several of which were previously described as
Group I mGluR-interacting proteins [19,21]. Specifically,
we found that Gog,q1, the catalytic subunit of protein
phosphatase 1y and the regulatory subunit of protein
phosphatase 2A, known mGluR5-interacting proteins,
associate with the mGluR1/5 IL2 domain. Here, we show
that CaMKlla also interacted with the mGluR1/5 IL2
domain, in addition to its reported interaction with the
mGluR1a and mGluR5a carboxyl-terminal tail [36,37].
CaMKIl« is known to both interact with and contrib-
ute to the desensitization of ionotropic glutamate recep-
tors, as well as Gog/11-coupled dopamine D1 and D3
receptors [30,31,44]. CaMKlla is reported to interact
with mGluRla via its association with the mGluRla
carboxyl-terminal tail in a Ca®*-dependent manner and
contributes to the subsequent attenuation of endogenous
mGluR1a signaling in striatal neurons [36]. CaMKIla has
also been shown to interact with the carboxyl-terminal tail
of mGluRb5a in rat striatal neurons in a calcium dependent
manner [37]. These two proteins dissociate upon activa-
tion of mGIuR5 calcium and CaMKII subsequently binds
to and phosphorylates the adjacent GIuN2B subunit of the

NMDA receptor, suggesting a mechanism by which
mGluR5/CaMKIl« interactions could potentially mediate
long-term potentiation [37]. We find here that CaMKIlx
can be co-immunoprecipitated with both mGIluR1a and
mGluR5a in an agonist-independent manner and that it
interacts with a GST-fusion protein encoding IL2 of
mGluR1/5. This indicates that both the IL2 and carboxyl-
terminal tail domains play a role in regulating CaMKIla
interactions with Group I mGluRs. The interaction of
CaMKIIa with mGluR1a is reported to phosphorylate and
desensitize agonist-stimulated mGluR1a signaling in striatal
neurons and CaMKII activity is suggested to regulate G
protein-coupled receptor kinase 2 (GRK2)-mediated
desensitization of mGluR1a [35,36]. However, we previously
found that DHPG-stimulated inositol phosphate signaling
in mouse striatal neurons is mediated predominantly by
mGluR5a [45]. Thus, either rat striatal neurons express
mGluR1a at different levels than those found in mice or the
interaction of CaMKII with mGluR5a in rat striatal neurons
may also contribute the regulation of mGluR5a in these
cultures. This desensitization may also involve CaMKII-
mediated regulation of GRK2-dependent Group I mGIuR
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Figure 5 AB42 oligomers increase CaMKlla co-immunoprecipitation
with mGIuR5a. A) HEK 293 cells were transiently transfected with

2 ug of pcDNA3.1 encoding FLAG-mGIluR5a and 0.5 ug of plasmid
cDNA encoding GFP-CaMKlla. HEK 293 cells were treated with 200
nM of AR42 oligomer for 0, 2, 5, 15 and 30 min. B) The bar graph
shows the densitometric analysis of the relative co-immunoprecipitation
of GFP-CaMKlla with FL-mGluR5a following AB42 oligomer treatment
normalized to total mGIuR5a protein expression. Data represents the
mean + SD of 5 independent experiments. *p < 0.05 versus untreated cells.

desensitization, as endogenous GRK2 expression is essential
for regulating mGIuR5 signaling in mouse striatal neurons
and both CaMKII and GRK2 bind to the mGluR1/5 IL2
domain [35,39,45].

Previous studies have demonstrated that many regulatory
proteins interact with both the IL2 and carboxyl-terminal
tail domains of mGluR1/5, including heterotrimeric G pro-
tein, GRK2, phospholipase D1, RalA, Arf6 and Pyk2
[3,17,22,39]. Thus, it is not unprecedented that binding to
the intracellular face of an integral membrane protein
would involve multiple intracellular receptor domains.
However, although desirable, it is difficult, if not impos-
sible to distinguish the relative importance of CaMKIla
interactions with the IL2 or carboxyl-terminal tail do-
mains of mGluR1/5. Furthermore, previous studies iden-
tified interactions between the IL3 of the D3 dopamine
receptor and CaMKII and the carboxyl-terminal tail of
mGluR1a and CaMKI], indicating that both loop and tail
domains of GPCRs may contribute to CaMKII interac-
tions [27,30]. However, both of these studies failed to
examine whether other intracellular domains of the re-
ceptor could also interact with CaMKII and rather only
examined in vitro interactions with GST fusion proteins,
which may have led to the potential misconception that
CaMKII binds to a single discrete domain in both
receptors.
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We show that CaMKIla overexpression increases the
agonist-stimulated internalization of both mGluRla and
mGluR5a and that this is dependent upon the catalytic ac-
tivity of the enzyme as KN-93 treatment blocked
CaMKIlIa-dependent enhancement of mGluR1a endocyto-
sis. These results are similar to those previously reported
for the GABAg receptor, another Class C receptor [46].
The antagonism of CaMKIla also reduces both the heter-
ologous and agonist-stimulated internalization of mGluR1a
and its alternative splice variants [34,35]. Interestingly, the
agonist-stimulated internalization of mGluR1a appears to
be impaired by its extended carboxyl-terminal tail, as the
mGluR1b and mGluRlc splice variants exhibit enhanced
internalization, which is effectively blocked by KN-93 [34].
In contrast, both we and Mundell and colleagues (2002)
find that internalization of mGluR1a in the absence of
CaMKIIa overexpression in HEK 293 cells is not effect-
ively blocked by KN-93 treatment. Thus, although the
C-terminus of mGluR1a contains the consensus site for
CaMKIIa phosphorylation, the extended C-terminus
may impede interactions with IL2, which we find is also
involved in the interaction of CaMKIla with the recep-
tor. This impediment may be overcome in neurons
where CaMKIla is an abundantly expressed protein.

We find that the overexpression of CaMKIla differen-
tially effects the regulation of ERK1/2 phosphorylation in
response to the activation of both mGluR1a and mGluR5a.
Specifically, mGluR1a-stimulated ERK1/2 phosphorylation
is unaffected by the overexpression of wild-type CaMKIla.
In contrast, over-expression of wild-type CaMKIla results
in the attenuation of ERK1/2 phosphorylation in response
to agonist stimulation of mGluR5a. Consistent with these
observations, CaMKII is known to affect DHPG-mediated
ERK1/2 phosphorylation in striatal neurons [47]. Specific-
ally, the treatment of striatal neurons with the CAMKII in-
hibitor, KN-62, resulted in attenuation of DHPG-induced
ERK1/2 phosphorylation in the rat striatum [47]. We also
find that the attenuation of mGluR5a-mediated ERK1/2
phosphorylation by CaMKIla is dependent upon CaMKIla
activity, as the overexpression of the autophosphorylation-
incompetent CaMKIIa-T286A mutant did not alter
mGluR5a-stimulated ERK1/2 phosphorylation. CaMKIla
has been previously shown to phosphorylate the carboxyl-
terminal tail at a CaMKII consensus sequence R/K-x-x-S/
T (Thr871) localized within the carboxyl-terminal tail of
mGluR1la [36]. This consensus site is also conserved
within the carboxyl-terminal tail of mGluR5a (Ser860).
mGluR1a also contains three additional putative consen-
sus sites for CaMKII phosphorylation and is phosphory-
lated at a secondary site by CaMKII at Thr945, which is
not conserved in mGluR5a [36]. The mGluR5a carboxyl-
terminal tail encodes an additional seven putative CaMKII
phosphorylation consensus sequences that are not con-
served in mGluRla (Ser853, Ser879, Ser871, Ser984,
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Figure 6 AB42 oligomers stimulate ERK1/2 phosphorylation in an mGluR5a and PKC dependent manner that is independent of CaMKlla
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Ser1016, Thr1156 and Thr1165). Thus, the differential
phosphorylation-dependent regulation of mGluRla- and
mGluR5a-mediated ERK1/2 phosphorylation may be the
consequence of mGluR5a phosphorylation at sites not
present in the mGluR1a C-terminal tail.

We and others show that CaMKII can be co-
immunoprecipitated with full length mGluR1la/5a and
GST fusion proteins encoding the IL2 and carboxyl-
terminal tail domains of mGluRla/5a. However, this
does not necessarily indicate that CaMKII forms a stable
complex with the receptors required to phosphorylate
and desensitize the receptors or regulate their endocyto-
sis and activation of ERK1/2 phosphorylation [27]. It is
entirely possible that CaMKII is activated in response to
Group I mGluR-stimulated Ca®" release downstream of
G protein activation as opposed to forming a constitu-
tive component of the mGluR1la/5a signaling complex.
Nevertheless, regardless of whether the regulation of
Group I mGluR desensitization, endocytosis and ERK1/2
phosphorylation requires a stable physical interaction
with the receptor, transient receptor interactions and/or

the phosphorylation of downstream regulatory proteins,
CaMKII clearly plays an important role in regulating
Group I mGluR activity.

Recently, it has been reported that mGluR5a functions
as the co-receptor for PrP“ and functions as a scaffold/co-
receptor for both PrPS- and AP42 oligomer-mediated
intracellular signaling [42,48]. AB42 oligomer binding to
mGluR5 stimulates the clustering of mGIluR5 and in-
creases Ca”* signaling [48]. We find here that AB42 oligo-
mer treatment of HEK 293 cells increases the association
of CaMKIla with mGluR5a and activates mGluR5a-
dependent ERK1/2 signaling to an extent that is similar to
agonist stimulation. Despite the fact that Ap42 oligomer
treatment leads to increased CaMKIla association with
mGluR5a, unlike what we observe for agonist-stimulated
ERK1/2 phosphorylation, CaMKIla interactions do not
antagonize Af42-stimulated ERK1/2 phosphorylation.
Nevertheless, both agonist- and AB42- stimulated ERK1/2
phosphorylation are protein kinase C-dependent suggest-
ing a role for Ca®* signaling. Thus, although both
mGluR5a agonists activate ERK1/2 phosphorylation via a
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Figure 7 Effect of mGluR5a and PrPC expression of GFP-CaMKIla subcellular localization following agonist stimulation. HEK 293 cells
were transiently transfected with different combinations of GFP-CaMKlla (0.5 pg), FLAG-mGIuR5a (2 ug), PP (2 ug) or empty pEGFP (2 ug)
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and E) GFP-CaMKilla along with both FL-mGluR5a and PrPC. All transfections were treated with 30 uM quisqualate for 20 min. F) Quantification of
the number of cells exhibiting GFP-CaMKlla puncta, number of cells imaged is shown in brackets. Data is representative 4 different experiments.

convergent downstream mediator, quisqualate and Ap42
stabilize mGIuR5a activation states that appear to be dif-
ferentially regulated by CaMKIIa.

AB42 oligomers have previously been demonstrated to
activate both p38 MAPK and ERK1/2 via their association
with the a7 nicotinic acetylcholine receptor [49]. Further-
more, AP42 oligomer-mediated activation of the [3,-adren-
ergic receptor results in the [-arrestin-dependent activation
of ERK1/2 and genetic deletion of the (,-adrenergic re-
ceptor ameliorates the pathophysiological deficits associ-
ated with the APPswe/PSIAE9 mouse model of AD [50].
In addition, AP42 oligomers induce alterations in the sub-
cellular localization of CaMKII« leading to altered AMPA
receptor trafficking [44]. We find that the co-expression
of both PrP%, an AB42 oligomer binding partner and
mGluR5a, the co-receptor for both AB42 oligomers and
PrP€ [9], results in the redistribution of GFP-CaMKII«
into intracellular cytoplasmic puncta. The mechanisms

regulating CaMKII clustering in HEK 293 cells and neu-
rons is mediated by similar mechanisms [51]. Thus, this
observed change in CaMKIla distribution in neurons
leading to altered AMPA receptor localization in response
to APB42 oligomer treatment of neurons may involve the
association of AB42 oligomers and PrP< with mGluR5a.

Conclusions

In summary, we confirm that mGluR5a acts as a binding
partner for CaMKIla and demonstrate that in addition to
associating with the mGluR5a C-terminal tail, CaMKIl« in-
teracts with the IL2 domain of mGluR5a and mGluRla
[36]. Moreover, we find that CaMKIla overexpression facili-
tates the endocytosis of both mGluR1la and mGluR5a in a
manner that is dependent upon the catalytic activity of the
enzyme. In contrast, CaMKIla selectively regulates agonist-
stimulated mGluR5a-mediated ERK1/2 phosphorylation,
but not AB42 oligomer-mediated ERK1/2 phosphorylation.
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Moreover, CaMKIl« subcellular localization is altered by
mGluR5a and PrP“ expression. Taken together these
data suggest that not only does CaMKIla regulate
mGluR5a activity, but that AB42 oligomer signaling via
its association with mGluR5a and PrP“ may contribute
to pathophysiological alterations in mGluR5a cell signal-
ing associated CaMKIIa.

Materials and methods

Materials

Adult CD-1 mice were from Charles River (Wilmington,
MA). Human Embryonic Kidney (HEK293) Cells were
from American Type Culture Collection (Manassas, VA).
Cell culture reagents were from Invitrogen (Burlington,
ON): Minimal Essential Media (MEM), Dulbecco’s
Modified Eagle Medium (DMEM), Fetal Bovine Serum
(FBS) and 0.25% Trypsin-EDTA. OmniPur Bovine Serum
Albumin (BSA) was from VWR (Mississauga, ON). L-
quisqualic acid (quisqualate) and KN-93 were from
Tocris Bioscience (Minneapolis, MN). Biotinylation re-
agents EZ-Link Sulfo-NHS-SS-Biotin and NeutrAvidin
Agarose Resin, as well as Pierce ECL Western Blotting
Substrate and SuperSignal West Dura Chemiluminescent
Substrate were purchased from Thermo Scientific
(Rockford, IL). Myo-[BH] Inositol was purchased from
Perkin Elmer (Waltham, MA). Protein G Sepharose
beads were from GE Healthcare (Oakville, ON). ANTI-
FLAG M2 Affinity Gel was purchased from Sigma-
Aldrich (St. Louis, MO). A DC Protein Assay Kit was
purchased from BioRad Laboratories (Mississauga, ON).
Kodak X-Omat Blue Film was from Fisher Scientific
(Ottawa, ON). AP42 peptide was purchased from
American Peptide (Vista, CA, USA). Bisindolymaleimide I
(Bis-1) hydrochloride was purchased from Calbiochem
(San Diego CA, USA). CaMKII (pan), CaMKIla, Phospho-
p44/42 MAPK, p44/42 MAPK were purchased from Cell
Signaling Technology (Danvers, MA). Rabbit mGluRla
and mGluR5a antibodies were purchased from Millipore
(Billerica, MA), GFP antibody was purchased from Invitro-
gen (Mississauga, ON) and secondary mouse and rabbit
antibodies were purchased from GE Healthcare (Oakville,
ON) and BioRad (Mississauga, ON), respectively. GFP-
CaMKIla construct was from Dr. Paul De Koninck (Laval
University, PQ).

Cell culturing and transfection

Human embryonic kidney (HEK) 293 cells were cultured
in MEM with 8% FBS. Cells were plated on 100 mm
dishes and transfected using a modified calcium phos-
phate method [52] with ¢cDNA amounts indicated in the
Figure Legends. For transfection, cDNA was diluted to
450 pL in sterile distilled water, 50 pL 2.5 M CaCl, added,
500 pL 2X HEPES-buffered saline (0.38 M NaCl, 0.05 M
HEPES, 1.5 mM Na,HPO,, pH 7.05) added drop-wise and
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mixed gently before transfection mixture was added to
cells. Cells were washed 16-20 hours post transfection
and then allowed to recover in new media before experi-
mentation. For co-immunoprecipitation, cells recovered
for 24 hours. For all other experiments, cells recovered for
6—8 hours and then were reseeded into 6-well dishes and
allowed to recover for 18 hours.

Mass spectroscopy identification of mGIluR1/5 interacting
proteins

Neuronal cultures were prepared from cortical and striatal
brain tissue from CD-1 E14.5 mouse embryo brains. Ani-
mal procedures were approved by The University of West-
ern Ontario Animal Care Committee. After dissection, the
tissue was submitted to trypsin digestion followed by cell
dissociation using a fire-polished pasteur pipette. Cells
were plated on poly-L-ornithine coated dishes in neuroba-
sal media supplemented with N2 and B27 supplements,
2 mM of glutamax, 50 pg/ml penicillin, and 50 pg/ml
streptomycin. Cells were incubated at 37°C and 5% CO2
in a humidified incubator and cultured for 12 days in vitro
(DIV) with media replenishment every 4 days as previ-
ously described [45]. Neurons (1 x 107 cells) seeded in
each of three 100 mm dishes were incubated for 60 min
with a 20 pM final concentration of a Tat-mGluR1/5-
FLAG peptide (Ac-YGRKKRRQRRRIARILAGSKKKICTR
KPRFMSDYKDDDDK-NH2) that encoded a cell per-
meant HIV Tat peptide at its amino-terminal end,
followed by the amino acid sequence corresponding to
the conserved second intracellular loop domains of
mGluR1/5 and followed by a FLAG epitope tag. Subse-
quently, neurons were washed 3 times with PBS and solu-
bilized in 1% Triton-X lysis buffer (25 mM HEPES,
pH 7.5, 300 mM NaCl, 1.5 mM MgCl,, 0.2 mM EDTA
and 1% Triton X-100) containing protease inhibitors
(1 mM AEBSF and 20 pg/mL of both leupeptin and apro-
tinin). Cellular debris was precipitated by centrifugation
at 13,000 g for 30 min at 4°C. Cellular lysates were pre-
cleared by incubation with a 20 pL volume of Protein A
agarose beads for 6 h. Lysates were then incubated with a
40 pL volume of FLAG M2 resin for 4 h and washed 3X
with Lysis buffer and 3 times with 50 mM NH4HCO;3;
pH 7.8. Subsequently, co-immunoprecipitates were eluted
with 500 mM NH,OH at pH 11 in three 100 uL volumes
and lyophilized to remove NH,OH. The samples were then
resuspended in a 100 pL volume of H,O and subjected to
a second round of lyophilization. Subsequently, samples
were resuspended in a 50 pL volume of NH,HCOj; pH 8.0
and directly digested with sequencing-grade trypsin
(Promega). The resulting peptide mixture was then ana-
lyzed by liquid chromatography-tandem mass spectrom-
etry using a LTQ-XL Linear Ion Trap Mass Spectrometer
(Thermo Scientific). The acquired tandem mass spectra
were searched against a FASTA file containing the human
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NCBI sequences using a normalized implementation of
SEQUEST running on the Sorcerer platform (Sage-N
Research). The resulting peptide identifications returned
by SEQUEST were filtered and assembled into protein
identifications using peptide and protein prophets (Institute
of Systems Biology, Seattle) as described previously [53].

Immunoblotting

HEK 293 cells were transiently transfected with various
c¢DNA constructs as described in the Figure Legends.
One day after transfection, cells were starved for 1 hour
in HBSS (1.2 mM KH,PO, 5 mM NaHCO;, 20 mM
HEPES, 11 mM Glucose, 116 mM NaCl, 4.7 mM KCl,
1.2 mM MgSO, 2.5 mM CaCl,, pH 7.4) and subse-
quently stimulated as indicated in the Figure Legends.
Cells were washed on ice with cold Phosphate-Buffered
Saline (PBS: 137 mM NaCl, 2.7 mM KCl, 4.3 mM
Na,HPO,, 1.4 mM KH,PO,, pH 7.2) and then lysed on
a rocking platform for 15 minutes at 4°C for using 0.1%
Triton-X 100 lysis buffer (0.025 M HEPES, 300 mM
NaCl, 1.5 mM MgCl,, 0.2 mM EDTA, 0.1% Triton-X)
with added protease inhibitors: 1 mM AEBSE 10 pg/ml
leupeptin, and 5 pg/ml aprotinin. Lysate was collected and
centrifuged at 15,000 RPM for 15 minutes at 4°C. 250 pg
of each lysate was incubated with FLAG (FL)-agarose
beads (50 pl bead slurry) for 1-2 hours. Beads were
washed three times with cold PBS. Samples were eluted
using 3x SDS sample buffer with 2-mercaptoethanol and
separated by SDS-PAGE and co-immunoprecipitated pro-
teins were detected by Western Blot.

Brain lysate co-immunoprecipitation

The hippocampus was removed from CD-1 Adult Mice
and placed in 0.5% Triton-X 100 lysis buffer with prote-
ase inhibitors. It was homogenized using a polytron and
solubilized for 2 hours at 4°C. Lysate was then centri-
fuged at 15,000 RPM for 15 minutes at 4°C and 1 mg of
protein was incubated with protein G-sepharose with or
without mGIluR5 antibody (Millipore, 1.5 pg) to immu-
noprecipitate mGluR5. Samples were eluted using 3x
SDS sample buffer with 2-mercaptoethanol and sepa-
rated by SDS-PAGE. Membranes were immunoblotted
for immunoprecipitated mGluR5 (Millipore, 1:1000) and
co-immunoprecipitated CaMKIla (Santa Cruz, 1:250).

GST pull down

GST-mGluR1a-IL2 and mutants were cloned into a
pGEXA4T1 vector and transformed into E.coli recombin-
ant bacteria [39]. E. coli bacteria were grown at 37°C
with shaking until ODgyq was 0.6-1.0. Cultures were
then induced with 1 mM isopropyl 1-thio-B-D-galacto-
pyranoside for 3 hours at 23°C. Cells were pelleted and
lysed in lysis buffer (500 mM NaCl, 0.5% NP-40, 50 mM
Tris pH7.6, 5 mM EDTA, 5 mM EGTA) containing
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protease inhibitors (2 mM AEBSE, 50 mg/ml aprotinin,
20 mg/ml leupeptin) and sonicated (3 times for 10 sec-
onds) at 4°C. Insoluble material was pelleted at 15000 g
for 15 minutes at 4°C. 50 pl of Glutathione-Sepharose bead
slurry was incubated overnight with 1 ml of solubilized
protein to purify GST-fusion constructs. Glutathione-
sepharose beads were then washed 3 times in PBS and
500 pg of HEK 293 cell lysates overexpressing GEP-
CaMKIla was added to the GST-fusion peptide bound to
matrix and rotated for 1 hour at 4°C. Glutathione-
sepharose beads were then washed 6 times in PBS and
eluted with 3X SDS loading buffer containing pB-
mercaptoethanol. Samples were subjected to SDS-PAGE
and membranes were immunoblotted with GFP to deter-
mine if GFP-CaMKIla was pulled down with the GST-
mGluR1a-IL2 peptides as described previously [39].

ERK activation

Twenty-four hours after transfection, cells were reseeded
into 6-well dishes. The following day, cells were starved
in DMEM overnight. On the day of experiment, cells
were starved for an additional hour in HBSS. Cells were
then stimulated at 37°C with either 50 uM quisqualate or
100 nM AB42 oligomers as indicated in the Figure Legends.
For experiments using the PKC inhibitor, 1 pM Bis-1 was
added 30 minutes prior to stimulating cells. Cells were sub-
sequently lysed in lysis buffer (25 mM HEPES, 300 mM
NaCl, 1.5 mM MgCl,, 200 uM EDTA, 0.1% Triton-X) con-
taining protease and phosphatase inhibitors (1 mM AEBSEF,
25 mg/ml aprotinin, 10 mg/ml leupeptin, 10 mM NaF,
100 pM Protein concentration was determined using a
Bradford protein assay. The lysates were mixed with SDS
loading buffer containing p-mercaptoethanol prior to gel
loading. ERK1/2 phosphorylation was determined by im-
munoblotting for phospho-ERK1/2 and total ERK1/2 and
the ratio was normalized to basal levels.

Biotinylation internalization assay

HEK293 cells were transiently transfected with receptor
(FL-mGluR1a and FL-mGluR5a) and either pEGFP (con-
trol) or GFP-CaMKIla (3 pg of receptor and 0.5 pg of
GFP constructs). Cells were serum starved for 1 hour in
HBSS for at 37°C on the morning of the experiment.
Cells were washed and incubated on ice for 20 minutes
in HBSS. Plasma membrane proteins were biotinylated
at 4°C with EZ-Link Sulfo-NHS-SS-Biotin in HBSS and
then incubated at 4°C in 100 mM glycine in HBSS for
30 minutes to quench biotinylation. Cells were then
stimulated with 50 uM quisqualate for 0, 5 and 15 mi-
nutes, which allowed the receptor to internalize.
Remaining cell surface biotin was stripped using
100 mM sodium 2-mercaptoethanesulfonate (MesNa) in
TE Buffer (150 mM NaCl, 1 mM EDTA, 20 mM Tris,
pH 8.6) with 0.2% BSA. A control without stimulation or



Raka et al. Molecular Brain (2015) 8:21

stripping was kept on ice and used to assess amount of
total cell surface receptor. Cells were lysed, biotinylated
protein pulled down with NeutrAvidin agarose resin
(50 pL bead slurry), eluted with 3x SDS sample buffer con-
taining 2-Mercaptoethanol, separated by SDS-PAGE and
immunoblotted for mGluRla and mGluR5a (Millipore,
1:1000). Internalization of the receptor at various time
points with and without GFP-CaMKIla was compared to
GFP transfected control cells. Results are expressed as per-
cent cell surface internalization. Protocol was modified
slightly for mGluR1a experiments. Following serum starv-
ing, cells were pretreated for 1 hour with or without
1.0 uM KN-93 in HBSS. For stimulation, cells were stimu-
lated with 50 uM quisqualate for 0 and 15 minutes.

AB42 oligomer preparation

Lyophilized AP42 peptides stored at -80°C were allowed to
equilibrate to room temperature prior to dilution to 1 mM
with 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). HFIP was
evaporated in a vacuum centrifuge in order to form Ap42
peptide films and films were then stored at -80°C. Prior to
use, AP42 peptide films were diluted in dimethylsulphox-
ide (DMSO) to 1 mM and sonicated for 10 minutes in a
Branson sonicator. AB42 peptides were then subsequently
diluted to 100 uM in ice-cold F-12 cell culture media
(phenol free red), vortexed immediately for 30 seconds,
and incubated at 4°C for 24 hours in order to form Ap42
oligomers.

Confocal microscopy

Confocal microscopy was performed using a Zeiss LSM-
510 laser scanning microscope equipped with a Zeiss
63X 1.4 numerical aperture oil immersion lens. Live cell
imaging was performed on HEK293 cells in 35 mm
glass-bottomed plates. mGluR5a was labeled with rabbit
anti-FLAG conjugated Zenon Alexa Fluor 647 antibody
and PrP was labeled with mouse anti-PrP“ conjugated
Zenon Alexa Fluor 555 IgG2B antibody. Visualization of
labelled proteins with GFP-CaMKIIa was performed by
triple excitation (488/543/647 nm), emission band pass
from 505-530 (GFP), long pass at 560 (Alexa Fluor 555)
and 660 (Alexa Fluor 647) filter sets. For internalization ex-
periments, mGluR5a was labelled with rabbit anti-FLAG-
conjugated Zenon Alexa Fluor 555 antibody. Visualization
of antibody-labelled receptor with GFP-CaMKIIa was per-
formed by dual excitation (488/543 nm) and emission band
pass from 505-530 (GFP) and long pass at 560 (Alexa
Fluor 555) filter sets. Receptor was stimulated with the
addition of 30 pM quisqualate (final concentration) for
20 minutes.

Statistical analysis
Immunoblots were quantified using Image Lab software.
GraphPad Prism software was used to analyze data for
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statistical significance as well as to analyze and fit dose—
response curves. Statistical significance was determined
by either an unpaired two-tailed t-test or by one-way
ANOVA followed by Tukey’s post hoc multiple compari-
son’s test.
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