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Abstract 

Non-familial Alzheimer’s disease (AD) occurring before 65 years of age is commonly referred to as early-onset Alz-
heimer’s disease (EOAD) and constitutes ~ 5–6% of all AD cases (Mendez et al. in Continuum 25:34–51, 2019). While 
EOAD exhibits the same clinicopathological changes such as amyloid plaques, neurofibrillary tangles (NFTs), brain 
atrophy, and cognitive decline (Sirkis et al. in Mol Psychiatry 27:2674–88, 2022; Caldwell et al. in Mol Brain 15:83, 2022) 
as observed in the more prevalent late-onset AD (LOAD), EOAD patients tend to have more severe cognitive deficits, 
including visuospatial, language, and executive dysfunction (Sirkis et al. in Mol Psychiatry 27:2674–88, 2022). Patient-
derived induced pluripotent stem cells (iPSCs) have been used to model and study penetrative, familial AD (FAD) 
mutations in APP, PSEN1, and PSEN2 (Valdes et al. in Research Square 1–30, 2022; Caldwell et al. in Sci Adv 6:1–16, 
2020) but have been seldom used for sporadic forms of AD that display more heterogeneous disease mechanisms. In 
this study, we sought to characterize iPSC-derived neurons from EOAD patients via RNA sequencing. A modest differ-
ence in expression profiles between EOAD patients and non-demented control (NDC) subjects resulted in a limited 
number of differentially expressed genes (DEGs). Based on this analysis, we provide evidence that iPSC-derived neu-
ron model systems, likely due to the loss of EOAD-associated epigenetic signatures arising from iPSC reprogramming, 
may not be ideal models for studying sporadic AD.
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Results and discussion
In this work, we generated induced pluripotent stem 
cell (iPSC)-derived neurons from 4 non-familial, early-
onset Alzheimer’s disease (EOAD) patients (age at onset 
(AAO) 51–56 years) and 4 non-demented control (NDC) 
subjects whose age at biopsy was 76–82  years. Samples 
were provided by the UC San Diego Alzheimer’s Disease 
Research Center (ADRC). Individual clones (n = 3) from 
all 8 subjects were transformed into iPSCs and differ-
entiated into neurons as previously described [6]. RNA 
was extracted from frozen neuron pellets (Fig.  1A). All 
4 EOAD patients displayed diffuse cerebral atrophy by 
Magnetic Resonance Imaging (MRI) and decreased cog-
nition as evidenced by either Mini-Mental State Exami-
nation (MMSE) scores less than 15 [7] or Montreal 
Cognitive Assessment (MoCA) score less than 25 [8], 
indicating a moderate to an advanced stage of EOAD 
progression (Fig. 1B). To the best of our knowledge, this 
is the first report using iPSC-derived neurons to model 
non-familial EOAD. RNA-seq was used to characterize 
gene expression dysregulation in EOAD and assess pos-
sible underlying mechanisms.

RNA isolated from EOAD and NDC neurons were of 
high quality, with RNA Integrity Numbers (RIN) rang-
ing from 7.8 to 9.8. We assessed how the neurons from 
EOAD patients clustered with respect to NDC subjects 
in multi-dimensional scaling (MDS) space following 
correction for sex, sequencing batch, and experimental 
condition. This revealed no clear clustering of NDC or 
EOAD samples but rather a slight overlap between them 
(Fig. 1C). This may not be surprising, as EOAD displays 
heterogeneity in clinical presentation [2]. Differential 
expression analysis between two conditions revealed a 
small number of differentially expressed genes (DEGs) 
(n = 14) using the same covariates in the linear design 
model (Fig.  1D). To determine whether heterogeneity 
between the EOAD patients was causing the low number 
of DEGs, we compared each EOAD relative to all con-
trol subjects. While EOAD patient #3 displayed a higher 
amount of DEGs relative to all NDC subjects (n = 323), 
all other individual EOAD patients demonstrated a simi-
lar magnitude of DEGs (Additional file 1: Fig. S3A) with 
only 2 common DEGs among them (Fig.  1E). Next, we 
sought to assess the variance within individual clones of 
the same subject, regardless of EOAD or NDC, in MDS 
space for all filtered genes; we observed sparse grouping 
within each subject (less in EOAD but more in NDC) and 
slight overlap between the two groups (Fig.  1F, left). To 
assess whether a dimension reduction approach would 
reveal a better separation of EOAD and NDC neurons, 
we performed UMAP on the normalized, filtered counts. 
Here, we observed similar clustering within replicates 
of the same EOAD samples but worse clustering for the 

NDC samples; this could suggest variable differentiation 
of clones within patient samples as well as across samples 
during the iPSCs differentiation process into neurons 
(Fig.  1F, right). Furthermore, examining heatmap and 
dendrogram clustering of the overall expression profile 
of the filtered genes (n = 21,546) demonstrates that the 
expression patterns from both EOAD and control neu-
rons did not show apparent differences,  with no distinct 
patterning observed between the two groups (Fig. 1G).

To assess the neuronal differentiation state of the 
EOAD and NDC neurons, we first focused on genes 
that regulate neuron lineage (curated from GO: Bio-
logical Process and Reactome genesets, n = 1078). MDS 
revealed a slightly greater variance within the EOAD 
and NDC conditions but no visible separation between 
the two (Fig.  1H, left). When performing UMAP analy-
sis, while  we observe a single cluster of the majority of   
EOAD patient clones, there is greater separation of NDC 
clones   within and between NDC subjects overall, sug-
gesting a variable neuron lineage state across all samples 
(Fig.  1H, right). This suggests that iPSC-derived EOAD 
neurons do not show a similar separation from healthy 
neurons as observed in familial Alzheimer’s disease 
(FAD) neurons with PSEN1, PSEN2, and APP mutations 
[4, 5].

Next, we sought to assess the expression profile of 
these neurons based on only neuron lineage genes. We 
saw a similar trend to the findings reported above: no 
noticeable  gene expression  differences  observed in key 
marker genes for both EOAD and NDC neurons (Fig. 1I, 
left). As such, gene expression differences between NDC 
and EOAD were not well captured under the conditions 
of our study. We then observed a subset of these neuron 
lineage genes that mainly regulate post-mitotic neuron 
maturation (NEFL, SOX2, UCHL1, TUBB3, MAP2, DCX, 
NEUROD1 and APOE) [9–13] (Fig. 1I, right). These genes 
were selected since they are the most common markers 
for post-mitotic neurons found in literature [9–13] and 
we observe similar expression profiling for both NDC 
and EOAD neurons.

Since neither EOAD nor NDC samples clustered 
together, we next assessed whether EOAD and NDC 
neurons have established a mature neuronal identity 
[14] or whether there may be alternative cell lineages 
in our cultures by first looking at different neural line-
age stages ranging from neural progenitors, glia, and 
neurons (immature and mature) derived from human 
post-mortem brain and patient-derived iPSC single-cell 
mean expression data [9, 12, 15–18]. When we interro-
gated marker genes specific to these major cell types via 
gene-level expression across EOAD and NDC neurons, 
we observed the highest average marker gene expression 
associated with neurons, followed by glial and progenitor 
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Fig. 1 A Non-demented controls (NDCs) and EOAD iPSCs were differentiated using dual SMAD inhibitors (first step) and basic-FGF withdrawal 
(second step). B Metadata for NDC and EOAD subjects used in this study. C Multi-dimensional scaling (MDS) analysis after batch correction 
by experimental condition, sex and sequencing batch of filtered normalized RNA-seq data. D RNA-seq volcano plot of differentially expressed genes 
(DEGs) for EOAD patients relative to all NDCs as determined by kimma with an FDR p-value < 0.05. E  Quasi-proportional Venn diagram overlap 
of DEGs across the four EOAD patients relative to all NDC subject neurons. F MDS (left) and UMAP (right) analysis based on NDC and EOAD neurons 
generated in this study using filtered, normalized RNA-seq data. G RNA expression profile heatmap corresponding to all filtered genes. H MDS (left) 
and UMAP (right) analysis based on NDC and EOAD neurons generated in this study using filtered, normalized RNA-seq data for neuron lineage 
genes. I RNA expression profile heatmap corresponding to either neuron lineage genes (left) or post-mitotic genes (right) clustered by subject 
experimental condition (NDC or EOAD)
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cells, but without statistically significant expression dif-
ferences between EOAD and NDC (Additional file 1: Fig. 
S1A). When using all marker genes, we observe a slight 
decrease in average gene-level expression when compar-
ing expression data from all EOAD relative to all NDC 
neurons (Additional file  1: Fig. S1A). It is worth noting 
that the potential existence of populations of these ear-
lier lineage cell types could contribute to the relative vari-
ability seen in our iPSC-derived EOAD and NDC neuron 
cultures. We then proceeded to look at the average gene-
level expression of different EOAD and NDC subject lines 
using cell type markers from categories such as progeni-
tor cells, glial cells, immature neurons, and mature neu-
rons (Additional file 1: Fig. S1B–E) and cell subcategories 
such as neural progenitor cells (NPCs), oligodendrocytes, 
excitatory neurons, and inhibitory neurons (Additional 
file  1: Fig. S2D–G). For all cell types and subcategories, 
we find no significant differences between EOAD and 
NDC neurons (Additional file  1: Figs. S1B–E, S2D-G). 
Next, we performed clustering in MDS space within 
the different cell type classes to see if the separation of 
the two conditions changed with marker gene expres-
sion of different stages of neuronal lineage; we observed 
tighter clustering within experimental condition (EOAD 
or NDC) despite slight overlap for glial cells (Additional 
file 1: Fig. S1G) followed by mature neurons (Additional 
file 1: Fig. S1I), immature neurons (Additional file 1: Fig. 
S1H), and progenitor cells (Additional file  1: Fig. S1F). 
Furthermore, we also observe an increase in the separa-
tion of EOAD and NDC neurons along dimension 1 in 
MDS space for mature neuron marker genes (Additional 
file  1: Fig. S1I), providing evidence of the heterogeneity 
involved. Looking closely at different groups of cellular 
subtype markers (Additional file  1: Fig. S2A–C) across 
different EOAD patients relative to all NDC subjects, we 
observe no significant expression differences in any cel-
lular subtype (Additional file  1: Fig. S2D–G). When we 
observe these cellular subtypes in MDS space, there is 
tighter clustering involved within the experimental con-
dition, despite the slight overlap in marker gene expres-
sion for neural progenitor cells (Additional file  1: Fig. 
S2H) and oligodendrocytes (Additional file  1: Fig. S2I) 
when compared to excitatory and inhibitory neurons 
(Additional file  1: Fig. S2J, K) which are clustered more 
sparsely. This suggests that heterogeneity increases as 
EOAD and NDC iPSCs progress to a more mature state 
characterized by excitatory and inhibitory neurons.

Using a standard protocol for making human iPSC-
derived neurons, we have not effectively discriminated 
between NDC and EOAD neurons. Our findings sug-
gest that this approach for examining the biology of 
EOAD may fail either to adequately differentiate EOAD 

and NDC neurons or capture changes in gene expres-
sion characteristic of AD. The lack of patient cluster-
ing and variance observed in the EOAD study may 
be because diverse etiological factors contributing to 
aging-associated epigenetic changes (e.g., RNA modi-
fications and non-coding RNA regulation) [19] are 
not preserved during iPSC reprogramming [20]. We 
also investigated the expression levels of marker genes 
associated with major alternative cell types and their 
cell subtypes to determine whether they contribute to 
the EOAD and NDC neuron cell culture; we quantified 
average expression levels and MDS clustering with no 
adjustments made to account for the presence of vari-
able neuronal populations, which  revealed an increas-
ing separation between EOAD and NDC cultures for 
mature neuron marker genes. Furthermore, we can sug-
gest that the differentiation protocol via SMAD inhibi-
tion and bFGF removal used to generate the EOAD and 
NDC neurons did not ultimately result in a purely dif-
ferentiated mature neuron population. It is likely that 
there is a mix of different neuronal lineages, including 
those from an earlier lineage state (more specifically 
progenitor cells) and glial cells (not necessarily repre-
sentative of oligodendrocytes, but likely representative 
of astrocytes, microglia and OPCs), but it is unclear 
their relative contribution to the neuron culture. As 
such, we were not able to capture the phenotype differ-
ences between EOAD and NDC neurons. This is due to 
the following: (1) the variation of differentiation across 
clones of patients, (2) the variability within EOAD 
patients relative to NDC subjects and (3) the relative 
immature state of the neuron cultures.

Methods that preserve the epigenetic signatures may 
provide better models for studying sporadic AD. It is 
likely that induced neurons (iNs) that undergo direct 
neuronal conversion from fibroblasts via small mol-
ecule reprogramming [21] can capture a more mature 
neuron state of the EOAD brain and merit further stud-
ies. Previous studies have shown that age-dependent 
cellular programs of patients with late-onset sporadic 
AD derived from direct iNs are characterized by down-
regulation of mature neuronal properties (i.e., loss of 
mature neuronal fate, neuronal dedifferentiation) and 
upregulation of cell cycle re-entry. Additionally, age-
related changes in the epigenetic landscape appear 
to underlie a hypo-mature neuron state in iNs, thus 
directing toward a more de-differentiated state of spo-
radic AD [14, 20]. Ultimately, utilizing an iN model may 
be required to preserve both EOAD gene expression 
and epigenetic signatures, thus informing the cellular 
environment required to understand the neuronal biol-
ogy of EOAD.
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Methods
iPSC neuron generation
Fibroblasts were obtained by skin biopsy (n = 4 early-
onset Alzheimer’s disease (EOAD) patients composed 
of 2 females and 2 males; n = 5 non-demented control 
(NDC) subjects composed of 4 females and 1 male) at 
the Shiley-Marcos Alzheimer’s Disease Research Center 
at the University of California, San Diego (UCSD) 
in accordance with UC San Diego IRB approval. The 
age at onset (AAO) of EOAD patients ranged from 
51–56  years, whereas NDC subjects ranged from 
76–82 years. Human dermal fibroblasts were grown on 
a Trevigen Reduced Growth Factor Basement Mem-
brane Extract (Trevigen Cat. No. 3433-005-01) with 
Stem Cell mTeSR-1 media (STEMCELL Technologies 
Cat. No. 05851) for 5  weeks. Then they were repro-
grammed into iPSCs using Sendai Virus [22] from the 
2.0 Sendai Virus Kit (Life Tech Cat. No. A16517) at the 
Salk Institute Stem Cell Core. Direct differentiation of 
iPSCs to a population of neurons was performed as pre-
viously described [6]. Briefly, iPSCs were differentiated 
into neurons using two stages: First, iPSCs were dif-
ferentiated into neural pluripotent cells (NPCs) using 
dual Suppressor of Mothers Against Decapentaplegic 
(SMAD) inhibitors SB431542 (StemRD No. 50176030; 
Final concentration = 10 uM), LDN193189 (BioVision 
No. 1995–5; Final concentration = 0.5 uM), and the 
recombinant protein Noggin (R&D Systems No. 1967-
NG/CF; Final concentration = 0.5 ug/ml)) in 500 ml of 
Neural Maintenance Media (NMM) based on previous 
methods [6, 23]. Next, NPCs were differentiated into 
mixed neuronal cell populations by basic-Fibroblast 
Growth Factor (bFGF) (Millipore Cat. No. GF003AF; 
Final concentration = 20  ng/ml) withdrawal [24] for 
3–4 weeks. Neurons were suspended in neuronal media 
and 150,000–2 million cells were counted, pelleted 
down and then flash-frozen into individual tubes to 
retain cellular integrity long-term. One male NDC sub-
ject developed mild cognitive impairment (MCI) later 
in life and thus was excluded from further downstream 
RNA-seq analysis.

RNA extraction
Total RNA was extracted from previously-harvested 
EOAD and NDC frozen neuron pellets (replicates, n = 3) 
with cell counts ranging from 500,000–2 million cells 
using the Rneasy Plus Micro Kit protocol (Qiagen, cata-
log no. 74034) as previously described [4, 25]. Concentra-
tions of total RNA were determined using the Nanodrop 
2000c according to the manufacturer’s guidelines. QC 
measurements were performed at the UC San Diego IGM 
sequencing core to evaluate the RNA Integrity Numbers 

(RIN) using TapeStation (Agilent Technologies), which 
ranged from 7.8–9.8.

RNA sequencing
Libraries were generated for RNA-seq using the Illumina 
Ribo-Zero Plus rRNA Depletion kit with IDT for Illumina 
RNA UD Indexes (Illumina, San Diego, CA). Samples 
were processed following manufacturer’s instructions. 
Resulting libraries were multiplexed and sequenced on 
an Illumina NovaSeq 6000 generating paired-end, 100-
bp (PE100) to a depth of approximately 25 million reads 
per sample at the UC San Diego IGM sequencing core. In 
addition, samples were demultiplexed using the bcl2fastq 
v.2.20 Conversion Software (Illumina, San Diego, CA). 

RNA‑seq data processing and clustering
Preprocessing of the paired-end RNA-seq data was con-
ducted using the Trimgalore! package v0.6.4 by removing 
adapters and low quality reads using CutAdapt v1.18 [26] 
with the following options: -quality 25 -fastqc -illumina 
-length 98 -paired. Trimmed RNA-seq reads were then 
mapped to the GRCh38.104 human transcriptome using 
Kallisto v0.46.1 [27] with the following options: -bias -rf-
stranded -b 100. Transcript abundances from Kallisto 
were imported and summarized to the gene level using 
tximport v1.22.0 [28]. A DGEList object was created from 
gene-level read counts using the DGEList function from 
edgeR v3.36.0 [29]. Lowly expressed genes were filtered 
out using filterByExpr function in edgeR. Then gene-
level counts were normalized using the weighted mean 
trimmed of M values (TMM) in the calcNormFactors R 
package. Normalized, filtered counts were used for dif-
ferential gene expression (DGE) analysis using the limma 
v3.50.1 [30] R package. For multi-dimensional scaling 
(MDS) analysis, the filtered expression counts were cor-
rected for experimental condition, sex, and sequencing 
run batch using the removeBatchEffect function within 
limma, samples were grouped accordingly, and plotted 
using the glimmaMDS function in the Glimma v2.4.0 
[31] R package. Additional unsupervised clustering anal-
yses were performed, such as uniform manifold approxi-
mation and projection (UMAP) using umap v0.2.10.0 
[32] based on the following parameters: (1) metric which 
computes different distance metrics in high dimensional 
space based on: (a) cosine and (b) pearson2 that only 
relies on centering and (2) n_neighbors = 3 that allows 
local data to only be preserved. Differential gene expres-
sion (DGE) analysis for relative comparison of all EOAD 
and NDC subjects were performed using the the kmFit 
function within kimma based on a linear mixed model 
[33] represented by sex, sequencing batch, and experi-
mental condition covariates with an added random effect 
by patient number identification. Differentially expressed 
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genes (DEGs) from a filtered gene list were defined 
using a false discovery rate (FDR)-adjusted-p-value cut-
off of < 0.05 from the mixed effects model as a contrast 
between EOAD patients relative to NDC subjects using 
lme.contrast function from the kimma R package. Quasi-
proportional Venn diagrams of DEG overlap between the 
FAD mutations were generated using the nVennR v0.2.3 
package in R [34].

RNA‑seq data expression profiling
To compare filtered gene-level count expression based 
on (1) normalized, filtered genes and (2) genes that reg-
ulate neuron lineage (gene list sourced from literature) 
between paired-end EOAD relative to NDC, z-score 
normalization was applied. After filtered counts were 
acquired, they were either (1) converted to z-scores using 
the scale function from base v4.1.3 [35] or (2) subset to 
only neuron lineage genes using the merge function by 
common gene symbols and then underwent z-score con-
version using scale where the parameters center = TRUE 
and scale = TRUE were set. Finally, hierarchical agglom-
erative clustering using the Ward method [36] from the 
hclustfun parameter within the heatmap function from 
the stats [37] R package was performed to visually rep-
resent the set of z-scores. The mean z-scores per EOAD 
or control subject were calculated as initial input prior to 
performing the clustering.

RNA‑seq data classification surrogate neuron marker 
analysis
To determine the relative abundance of the sequenced 
reads (i.e. counts) at the gene-level (in transcripts per 
million, TPM) using both the tximport and filterbyExpr 
R packages for the EOAD study neurons (4 diseased 
patient and 4 healthy subject neurons) across differ-
ent cell type proportions, we subset the reads according 
to markers from different cellular classes (i.e. progeni-
tor cells, glial cells, immature and mature neurons) and 
subtypes (early, radial glial, intermediate and neural 
progenitor cells [IPCs and NPCs], astrocytes, micro-
glia, oligodendrocyte precursor cells [OPCs], oligoden-
drocytes, excitatory, inhibitory and glycolytic neurons) 
from human 10x  single-cell data originating from mul-
tiple sources such as the antibody database, ABCAM 
[9], additional literature for excitatory neurons from a 
single-nucleus RNA sequencing dataset that selectively 
characterized for excitatory neurons from postmortem 
brains spanning from early to late AD progression [38], 
immature neurons from a review about neurogenesis 
in the human hippocampal dentate gyrus [12] and gly-
colytic neurons from different human, post mortem AD 
brain regions and patient-derived AD iPSCs [15–17] and 
then finally the Allen Brain Atlas, particularly from the 

primary motor cortex, M1 brain region with a trimmed 
mean expression value threshold > 5 [18]. After, we gath-
ered a list of known differentially expressed up-regulated 
and down-regulated genes (DEGs) to be expressed in the 
various cell types by merging the genes with the filtered 
read counts (n = 21,546 genes) using the merge function 
by common gene symbols. We were then able to obtain 
the following number of genes for each cell type (n = 358 
genes for astrocytes; n = 140 genes for microglia; n = 2041 
genes for oligodendrocytes; n = 469 genes for OPCs; 
n = 48 genes for progenitor cells subset to n = 4 genes for 
early, n = 18 genes for radial glia, n = 11 genes for IPC and 
n = 19 genes for NPC; n = 2242 genes for glial cells; n = 9 
genes for mature neurons; n = 14 genes for immature 
neurons; n = 5228 genes for excitatory neurons; n = 4751 
genes for inhibitory neurons; and then n = 98 genes for 
glycolytic neurons). Then we calculated the mean gene-
level read counts per experimental condition for the fol-
lowing: (1) all filtered neurons, (2) progenitor cells, (3) 
glial cells, (4) immature neurons, and (5) mature neurons 
only genes. Code for all analysis is available at  https:// 
github. com/ Subra mania mLab/ EOAD- RNA- seq- Manus 
cript and https:// doi. org/ 10. 5281/ zenodo. 83205 37.
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Additional file 1: Figure S1. A. Bar plot showing average gene counts 
normalized to read library size (TPM) for all filtered neurons, progenitor 
cells, glial cells, immature neurons, and mature neurons across NDC and 
EOAD neurons. B‑E. Bar plot showing average gene counts normalized to 
read library size (TPM) across different groups of B progenitor cells, C glial 
cells, D immature neurons and E mature neurons marker genes across 
NDC and EOAD neurons. F‑I. Multi-dimensional scaling (MDS) analysis 
after batch correction by experimental condition, sex and sequencing 
batch of filtered normalized RNA-seq data subset to F progenitor cells, G 
glial cells, H immature neurons and I mature neurons genes. Figure S2. 
A‑C. Pie chart distribution of cellular subtypes classified in A progenitor 
cells, B glial cells and C neurons. D‑G. Bar plot showing average gene 
counts normalized to read library size (TPM) across different groups of dif-
ferent D neural progenitor cells, E oligodendrocytes, F excitatory neurons 
and G inhibitory neurons marker genes across NDC and EOAD neurons. 
H–K. Multi-dimensional scaling (MDS) analysis after batch correction by 
experimental condition, sex and sequencing batch of filtered normalized 
RNA-seq data subset to H neural progenitor cells, I oligodendrocytes, J 
excitatory neurons and K inhibitory neurons genes. Figure S3. A. RNA-seq 
volcano plots of differentially expressed genes (DEGs) across different 
EOAD patients relative to all NDCs as determined by kimma with an FDR 
p-value < 0.05.
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