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Abstract
There are nine inherited neurodegenerative disorders caused by polyglutamine (polyQ) expansion
in various disease proteins. Although these polyglutamine proteins have different functions and are
localized in different subcellular regions, all the polyQ diseases share a common pathological
feature: the nuclear accumulation of polyQ disease proteins and the formation of inclusions. The
nuclear accumulation of polyQ proteins in turn leads to gene transcriptional dysregulation and
neuropathology. Here we will discuss potential mechanisms behind the nuclear accumulation of
mutant polyQ proteins, since an understanding of how polyQ proteins accumulate in the nucleus
could help elucidate the pathogenesis of these diseases and develop their treatment.

There are nine inherited neurodegenerative disorders,
including Huntington's disease (HD), dentatorubral-pal-
lidoluysian atrophy (DRPLA), spinal bulbar muscular
atrophy (SBMA), and the spinocerebellar ataxias (SCA)
1,2,3,6,7 and 17, which are caused by a polyglutamine
(polyQ) expansion in their respective disease proteins [1].
The polyQ domain is encoded by polymorphic CAG
repeats that are expanded in polyQ diseases. For example,
in Huntington's disease the polyQ domain is in the N-ter-
minal region of the HD protein, huntingtin (htt), and its
expansion to more than 37 glutamines leads to the neuro-
logical symptoms of HD. All the polyglutamine disorders
share several common pathological features, including
the nuclear accumulation and aggregation of the disease
proteins. Neuronal nuclear inclusions are considered to
be a histopathological hallmark of the polyQ diseases and
are even observed in disease brains in which normal
polyQ proteins are predominantly expressed in the cyto-
plasm. Although the role of nuclear inclusions in pathol-
ogy is not fully understood, what is clear is that the
inclusions result from the nuclear accumulation of polyQ-

expanded proteins. Mutant polyQ proteins in the nucleus
can abnormally interact with nuclear proteins, such as
transcription factors, leading to transcriptional dysregula-
tion [2]. The preferential accumulation of mutant polyQ
proteins in neuronal nuclei may be associated with the
selective neuropathology seen in polyQ diseases. Thus, it
is important to understand how polyQ expansions can
cause the accumulation of polyQ proteins in neuronal
nuclei. Such an understanding would tell us much about
the selective neuropathology of polyQ diseases and also
help us develop effective therapeutics for these diseases. In
this review, we will discuss the potential mechanisms
underlying the accumulation of polyQ-expanded proteins
in neuronal nuclei.

Nuclear accumulation of mutant polyglutamine 
proteins
In all polyQ diseases, the disease proteins are ubiqui-
tously expressed; however, cell loss is restricted to the
brain cells of polyQ disease patients. The context of the
polyQ proteins and their interacting proteins may deter-
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mine the selective neuronal loss seen in distinct brain
regions in the different polyQ diseases (Table 1). Also, the
selective neuropathology appears to be associated with
the preferential accumulation of expanded polyQ pro-
teins in neuronal cells, as the presence of nuclear polyQ
proteins is evident in all polyQ disease brains. A prime
example of this is that htt, which is normally distributed
in the cytoplasm, can accumulate in the nucleus when its
polyQ tract is expanded. Immunohistochemical data
from the brains of HD patients reveal the presence of
nuclear htt inclusions in the affected brain regions of both
juvenile and adult patients [3,4]. Patients with other
polyQ diseases, such as SCA1, SCA3, SCA7, SCA17,
DPRLA, and SBMA, also show nuclear polyQ inclusions in
the affected brain regions [1]. Even in the brains of
patients with SCA2 and SCA6, which are caused by a
polyQ expansion in the cytoplasmic proteins ataxin-2 and
ataxin-6, respectively, there is evidence for the presence of
polyQ inclusions in the nuclei of neuronal cells [5,6].
Moreover, linking an expanded polyQ repeat to the cyto-
plasmic protein Hprt results in the formation of nuclear
polyQ inclusions in the brains of transgenic mice [7].
Thus, despite different subcellular localizations of the
normal polyQ proteins, mutant proteins with their
expanded polyQ repeats commonly form nuclear inclu-
sions or accumulate in the nucleus; such a common fea-
ture could be associated with the selective
neuropathology of polyQ diseases.

PolyQ inclusions in the nucleus are colocalized with ubiq-
uitin, proteasome components, and heat shock proteins

[3,8-10]. These findings suggest that polyQ protein depos-
its are targeted by cellular clearing systems. PolyQ inclu-
sions are likely to be compact structures consisting
primarily of the polyQ protein itself, since expanded
polyQ repeats can cause self-association of polyQ pep-
tides, leading to various forms of the proteins with differ-
ent conformations [11]. Examination of the brains of HD
patients indicates that only truncated N-terminal htt frag-
ments with an expanded polyQ tract are capable of form-
ing nuclear inclusions, as these nuclear inclusions can
only be labeled by antibodies against the N-terminal, but
not the internal or C-terminal, region of htt [3,4]. Western
blot analysis of HD mouse models that express full-length
mutant htt reveals the presence of a number of N-terminal
fragments of various sizes [12-14]. Cellular models of HD
have revealed a number of htt fragments containing the
polyQ tract and various proteolytic cleavage sites, includ-
ing those for caspase-3, caspase-6, and calpains [15-19].
Nonetheless, which fragments can accumulate in the
nucleus and how they contribute to neuropathology
remain to be investigated. Despite these unanswered
questions, we know that the presence of N-terminal htt
fragments in HD mouse brains can be detected as early as
two months prior to the obvious neurological phenotype,
which does not appear until the age of four to five
months, indicating that the generation and accumulation
of N-terminal htt precede neurological symptoms [13].

The fact that small htt fragments form nuclear inclusions
suggests that a shorter peptide with a larger polyQ tract
tends to misfold and aggregate more rapidly. In other

Table 1: A summary of the nine inherited polyglutamine repeat disorders.

Disease Disease protein Normal subcellular localization Affected brain regions

Huntington's disease (HD) Huntingtin (htt) Cytoplasm Striatum and cortex

Spinocerebellar ataxia 1 (SCA1) Ataxin-1 Nuclear and cytoplasmic Cerebellum

Spinocerebellar ataxia 2 (SCA2) Ataxin-2 Cytoplasmic Cerebellar Purkinje cells

Spinocerebellar ataxia 3 (SCA3) Ataxin-3 Nuclear and cytoplasmic Ventral pons and substantia nigra

Dentatorubral-pallidoluysian atrophy 
(DRPLA)

Atrophin-1 Nuclear and cytoplasmic Cerebral cortex

Spinocerebellar ataxia 6 (SCA6) Ataxin-6 Membrane associated Cerebellar Purkinje cells

Spinocerebellar ataxia 7 (SCA7) Ataxin-7 Nuclear and cytoplasmic Cerebellar Purkinje cells, brain stem, 
spinal cord

Spinal and bulbar muscular atrophy 
(SBMA)

Androgen receptor (AR) Nuclear and cytoplasmic Motor neurons

Spinocerebellar ataxia 17 (SCA17) TBP Nuclear Cerebellar Purkinje cells

Included are the polyQ proteins, their normal subcellular localization, and affected brain regions.
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polyQ diseases, it is also evident that shorter polyQ pro-
teins are prone to misfolding and aggregation. For exam-
ple, western blot analysis of a transgenic mouse model of
DRPLA showed the presence of a small N-terminal frag-
ment of atrophin-1 [20,21]. Similarly, brain samples from
SCA3 patients as well as mice transgenic for full-length
ataxin-3 with 71Q showed the production of a C-terminal
truncated fragment with the expanded polyQ domain
[22]. Furthermore, the production of small polyQ protein
fragments is found to be required for aggregation [23],
indicating that proteolytic processing of polyQ proteins is
critical for the generation of toxic and misfolded polyQ
proteins.

Although the role of nuclear inclusions remains contro-
versial, the formation of these nuclear inclusions clearly
results from the nuclear accumulation of misfolded and
toxic forms of mutant polyQ proteins. The toxicity of
small N-terminal htt fragments with an expanded polyQ
repeat is evidenced by the severe neuropathological phe-
notypes of transgenic mice expressing truncated and
polyQ-expanded htt. For example, the ubiquitous expres-
sion of exon 1 of mutant htt in the transgenic R6/2 model
of HD is sufficient to produce a progressive and severe
neurological phenotype. These mice exhibit the abundant
nuclear inclusions, motor abnormalities, weight loss, and
brain atrophy indicative of early neurodegeneration
[24,25]. The neuronal toxicity of mutant htt can be
enhanced by its nuclear accumulation, as the addition of
a nuclear localization sequence (NLS) to exon 1 of mutant
htt increases toxicity in neuroblastoma cells [26] and also
results in an accelerated neurological phenotype in trans-
genic mice [27].

Nuclear effects of mutant polyQ proteins
When localized to the nucleus, polyQ-expanded proteins
aberrantly interact with a variety of transcription factors,
many of which contain a polyQ or glutamine-rich
domain. Certain transcription pathways, including those
involving the cAMP response element (CRE)-binding pro-
tein (CREB) [28,29], Sp1 [30,31], and PGC-1alpha [32],
have been implicated in the pathogenesis of multiple
polyQ diseases. Soluble mutant htt seems to be able to
abnormally bind transcription factors to affect their tran-
scriptional activity [30,31]. In SCA17 mouse brains, aggre-
gated polyQ proteins could also sequester the
transcription factor TF-IIB [33], though it has been
reported that there is not a direct correlation between the
presence of nuclear polyQ inclusions and neurodegenera-
tion in other polyQ disease models [34-36]. It seems that
protein context determines specific protein interactions
and their consequences in polyQ diseases.

It is evident that mutant polyQ proteins can affect tran-
scriptional activities [37]. Microarray experiments using

brain mRNAs from various polyQ mouse models have
revealed some overlap in the expression changes induced
by the different polyQ disease proteins. For example,
comparing gene expression profiles of HD mouse models
that express exon 1 mutant htt (R6/2) and full-length
mutant htt shows no discernable differences between the
full-length and fragment models, despite the delayed
changes in full-length htt mouse brains, suggesting that N-
terminal fragments of mutant htt are the major patho-
genic form to induce altered gene transcription [38].
Although it is expected that mutant polyQ proteins in the
nucleus can affect gene expression, whether and how tran-
scriptional dysregulation can lead to neuronal dysfunc-
tion or cell death in the brain is not entirely clear.

Preferential accumulation of polyQ-expanded 
proteins in the nucleus
Although immunocytochemistry studies show that some
normal htt can localize to the nucleus [39], nuclear frac-
tionation of HD mouse brains clearly indicates that the
majority of full-length mutant htt is cytoplasmic and that
smaller N-terminal htt fragments are enriched in the
nucleus [13,14,40]. Understanding how a polyQ protein
that is normally distributed in the cytoplasm can accumu-
late in the nucleus when its polyQ tract is expanded is crit-
ical for gaining insight into the pathogenic mechanisms of
polyQ repeat disorders. This is especially important for
understanding the pathogenesis of HD, as N-terminal htt
does not carry the conserved nuclear import sequences.

Several putative nuclear localization signals have been
found in htt [41]; however, they are not localized in N-ter-
minal htt fragments that are able to accumulate in the
nucleus. Because only small N-terminal htt fragments are
able to accumulate in the nucleus, the belief is that these
htt fragments enter the nucleus via a passive diffusion
mechanism. We know that proteins <40 kDa can diffuse
freely through the nuclear pore, whereas proteins >40 kDa
normally rely on active transport [42]. N-terminal htt frag-
ments localize to the nucleus, while the large fragments
(>60 kDa) showed perinuclear and cytoplasmic but no
nuclear localization [43], suggesting that smaller frag-
ments are prone to passive diffusion. Indeed, the trans-
genic mouse model of HD expressing the short exon 1 or
N171 fragment of mutant htt consistently showed more
abundant nuclear aggregates and a more severe neurolog-
ical phenotype than HD mice expressing full-length
mutant htt [2]. The delayed nuclear accumulation of
mutant htt and the late onset of neurological phenotypes
in HD knock-in mice are consistent with a time-depend-
ent accumulation of N-terminal htt fragments.

If small polyQ proteins can be freely translocated between
the nucleus and cytoplasm, why do they preferentially
accumulate in the nucleus to form nuclear inclusions?
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Cornett et al have demonstrated that a polyQ expansion
can prevent mutant htt from being exported from the
nucleus. The presence of an expanded polyQ tract reduces
the association of N-terminal htt with the translocated
promoter region protein (Tpr) [44]. Tpr is a nuclear pore
protein that localizes to the nucleoplasmic side of the
nuclear pore complex and exports molecules from the
nucleus [45-47]. Expanded htt exhibits decreased interac-
tion with Tpr compared with wild-type htt and thereby
shows reduced nuclear export and increased nuclear accu-
mulation [44]. Thus their study suggests that polyQ-
expanded htt is prone to misfolding in the nucleus, which
subsequently reduces its ability to exit the nucleus. This
study also raises the interesting issue of whether the
nuclear environment itself favors the misfolding of polyQ
proteins.

Regulation of the nuclear accumulation of polyQ 
proteins
Since polyQ expansions cause proteins to misfold and
aggregate, clearing misfolded polyQ proteins is crucial to
prevent their accumulation. Protein degradation via the
ubiquitin-proteasome system (UPS) and autophagy are
the major mechanisms to remove polyQ proteins in the
cytoplasm. Because autophagy is not seen in the nucleus,
it is the nuclear UPS that plays a major role in clearing
mutant polyQ proteins in the nucleus. In vitro experi-
ments using cultured cells have shown that overexpressed
polyQ proteins can impair the function of the UPS [48-
50]; however, the real question is whether this impair-
ment occurs in the brains of mouse models expressing
transgenic mutant polyQ proteins. Several groups using
different mouse models of polyQ diseases have found no
decrease in UPS activity in the brain tissues of mutant
mice [51-55]. Hence the accumulation of mutant polyQ
proteins in the nucleus is likely due to an intrinsic differ-
ence in the neuronal nuclear UPS activity. One important
issue in this regard is whether the nuclear UPS has a lower
activity than the cytoplasmic UPS, such that the nuclear
UPS cannot efficiently degrade polyQ proteins, leading to
the preferential accumulation of mutant polyQ proteins
in the nucleus. Using fractionation and biochemical
assays of the UPS activity, Zhou et al demonstrated that
nuclear UPS activity is indeed lower than in the cytoplasm
[13]. The difference between nuclear and cytoplasmic UPS
activities was also demonstrated by targeting a fluorescent
UPS reporter to the cytoplasm and nucleus, which again
shows that UPS activity is lower in the nucleus than in the
cytoplasm [55].

Another relevant question is why mutant polyQ proteins
accumulate and form inclusions in the nucleus in an age-
dependent manner. Aging is reported to increase cellular
oxidative stress, which can damage the UPS and may
cause an age-dependent decline in UPS activity [56,57].

Biochemical and fluorescent UPS reporter assays have in
fact revealed an age-dependent decline in mouse brain
UPS activity. Moreover, this decline is correlated with the
observed age-dependent increase in nuclear htt accumula-
tion and aggregation [13,55]. Further buttressing this cor-
relation, increased nuclear accumulation of transfected
mutant htt was found in cultured cells that were treated
with proteasome inhibitors [13,44,50]. Thus, an age-
dependent decrease in the clearance of misfolded polyQ
proteins explains the late onset of nuclear polyQ protein
accumulation and the associated neurological pheno-
types.

Heat shock proteins are molecular chaperones that recog-
nize and refold misfolded proteins, such as polyQ protein
fragments, and the expression of endogenous chaperones,
such as Hsp70, is decreased in mouse models of polyQ
diseases [58,59]. Conversely, overexpression of heat
shock proteins decreases the half-life of mutant polyQ
proteins expressed in cell culture [60,61]. Although we
have yet to establish whether Hsp activity is reduced in the
nucleus by aging or mutant polyQ proteins, it is likely that
enhancing nuclear Hsp activity or increasing the clearance
of nuclear mutant polyQ proteins via the UPS should
decrease the nuclear accumulation of polyQ proteins and
ameliorate polyQ-mediated neuropathology.

As discussed above, protein-protein interactions can regu-
late the nuclear accumulation of polyQ proteins. In addi-
tion, posttranslational modifications are important for
the nuclear accumulation of polyQ proteins, as well. A
good example of this is that phosphorylation of the S776
residue in ataxin-1 can enhance its nuclear accumulation
[62]. Furthermore, the first 17 amino acids of htt are
found to be important for its nuclear localization [63].
Given that these N-terminal amino acids are conserved in
different species, we need to explore whether their phos-
phorylation and other modifications can influence the
nuclear accumulation of mutant htt.

Concluding remarks
The nuclear accumulation of toxic polyQ proteins is nec-
essary for the nuclear toxic effects of polyQ proteins. The
fact that nuclear polyQ inclusions are a pathological hall-
mark of polyQ diseases indicates that the expanded polyQ
tract can cause various proteins to accumulate in the
nucleus. Moreover, the age-dependent decrease in nuclear
UPS activity may account for the age-dependent accumu-
lation of polyQ proteins in the nucleus. The intrinsically
low UPS activity in the neuronal nuclei may contribute to
the preferential accumulation of mutant polyQ proteins
in neuronal nuclei. For those polyQ proteins that are nor-
mally present in the cytoplasm, proteolytic processing of
these proteins to generate small truncated proteins that
contain an expanded polyQ repeat and are able to enter
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the nucleus via a passive diffusion mechanism is impor-
tant for their nuclear accumulation. In addition, protein
interactions and posttranslational modifications, such as
phosphorylation and acetylation, also affect the nuclear
accumulation of polyQ proteins. In the case of HD, we
have yet to determine which N-terminal htt fragments are
generated and enter the neuronal nuclei in the brain and
whether posttranslational modifications influence their
nuclear accumulation.

Of course the ultimate goal in studying polyQ diseases is
to determine the best targets for therapeutics to treat
them. The model presented in this review suggests several
such possible targets. First, inhibition of the cleavage of
toxic fragments from the full-length htt may prevent its
nuclear accumulation and nuclear dysfunction. Second,
improving the function of nuclear clearing systems, such
as the UPS and chaperones, could reduce the nuclear accu-
mulation of mutant polyQ proteins. Third, preventing or
reducing the aberrant interactions between the soluble
polyQ proteins and transcription factors should also
reduce polyQ-induced toxic effects. Thus, understanding
the mechanism underlying the nuclear accumulation of
mutant polyQ proteins could help us develop effective
therapies for polyQ diseases.
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