Skip to main content
Fig. 1 | Molecular Brain

Fig. 1

From: Appearance of fast astrocytic component in voltage-sensitive dye imaging of neural activity

Fig. 1

Spatial characteristics of VSD and IOS transients. a: 2D representation of the VSD (left) and IOS (right) amplitude distribution in the hippocampal slice. Optical signals were recorded from the same NK3630 stained slice. b: Time course of the field potential responses and the VSD (left) and the IOS (right) transients on the diode at the field potential recording site evoked by a single stimulus (VSD) or a stimulus train (10 stimuli, 20 Hz, IOS). Signals were recorded from the two different slices. IOS was recorded from an unstained slice while VSD was recorded from a stained slice. c: (Left) Spatial overview of the VSD transient pattern on the 464-element photodiode array. Transparent lines indicate the pyramidal cell layers (CA1 and CA3) and the granular cell layer of the DG. The position of the stimulating electrode is marked by an arrow. (Right) Comparison of the profile of VSD traces along the somato-dendritic axis of CA1 (black lines) and CA3 (red lines) regions. Inserts show the first 40 ms of the traces following stimulation onset. d: 2D representation of the VSD and IOS spreading patterns. Spreading is represented by the time required for the optical signal to reach 50 % of its amplitude following the stimulus onset. Transparent lines indicate the pyramidal cell layers (CA1 and CA3) and the granular cell layer of the DG. The positions of the stimulating and recording electrodes are marked by gray and green arrows, respectively

Back to article page