Skip to main content
Fig. 1 | Molecular Brain

Fig. 1

From: VPS35-deficiency results in an impaired AMPA receptor trafficking and decreased dendritic spine maturation

Fig. 1

Reduced mature spines in VPS35+/m hippocampus and cortex. a Reduced mature spines in both apical and basal dendrites of CA1 region from VPS35+/m mice at age of 4-months old by Golgi staining analysis. Top, representative lower power images. Bottom, higher power images of apical dendrites from CA neurons. Scale bars, 5 μm. b Quantification of spine density and spine morphology in CA1 basal and apical dendrites viewed by Golgi staining analysis. Data shown were mean ± SEM; n = 20 neurons; *p < 0.05. c Illustration of 4 different types of spines (mushroom, thin, stubby, and filopodia) based on their morphology. The mushroom spines were defined as mature spines, and the other three types of spines were defined as immature spines. d, e No difference in spine density and morphology in cortical layer 2 neurons between WT and VPS35+/m mice at age of 4-months old. Scale bars, 5 μm. D, representative images of Golgi staining analysis; and E, quantification analysis. Data were shown as mean ± SEM; n = 20 neurons; *p < 0.05. f, gReduced mature spines in both apical and basal dendrites of cortical layer 5 from 4 months old VPS35+/m mice. F, representative images. Scale bars, 5 μm. G, quantification analysis. Data were shown as mean ± SEM; n = 20 neurons; *p < 0.05. h Detection of β-Gal activity (blue color) in VPS35+/m cortical layer 5 at age of 3-months old. Layers I-VI were indicated. Left, Representative X-gal staining images. Right, Amplified images of cortical layer 5 from VPS35+/m brain. Scale bars, 100 μm

Back to article page