Skip to main content
Fig. 1 | Molecular Brain

Fig. 1

From: Development of a peptide targeting dopamine transporter to improve ADHD-like deficits

Fig. 1

The disruption of D2R-DAT protein complex stimulates voluntary movement of SD rats. a-b The effects of TAT-DATNT peptide treatment on locomotor behavior (n = 6–8 animals per group). a Thirty minutes after the peptide administration, SD rats treated with TAT-DATNT (at 40 nmol, i.c.v.) exhibited a significantly higher level of locomotor activity compared to those treated with saline or TAT (p < 0.001). b The stimulant effects of TAT-DATNT were significant across all six time intervals compared to both saline and TAT, indicating that the difference in locomotor activity is unlikely novelty-driven. c-f The effects of TAT-DATNT on the D2R-DAT protein interaction (n = 3 per group). c Co-immunoprecipitation showed that TAT-DATNT disrupts the D2R-DAT complex in SD rats, as compared to those from TAT- or saline-injected group. d-f Densitometric analysis of DAT co-immunoprecipitation (DAT CoIP) and D2R immunoprecipitation (D2R IP) from striatal lysate of SD rats injected with saline, TAT, or TAT-DATNT peptide. Results for each sample are presented as the ratio of the saline group. Data were analyzed by one-way ANOVA followed by Tukey’s test. *p < 0.05, **p < 0.01, ***p < 0.001. Data are shown as mean ± S.E.M

Back to article page