Skip to main content
Fig. 1 | Molecular Brain

Fig. 1

From: Loss of endosomal recycling factor RAB11 coupled with complex regulation of MAPK/ERK/AKT signaling in postmortem spinal cord specimens of sporadic amyotrophic lateral sclerosis patients

Fig. 1

Complex regulation of RAB11 and AKT/MAPK/ERK signaling in ALS. a Total spinal cord (postmortem) tissue extracts from four controls and 10 ALS patients were immunoblotted using a pathway-specific antibody cocktail (Abcam# ab151279). b-g Protein levels were quantitated by band intensity measurements, and mean ± SD values were plotted as histograms. *, p < 0.1; **, p < 0.05. f Plot representing correlations between p-AKT and p-ERK1/2 levels in ALS. h Model showing dynamic and complex activation of RAB11, AKT, and ERK signaling in ALS subtypes. Loss of RAB11 may lead to defective axonal trafficking and perturbed endosomal recycling, both of which may contribute to synaptic abnormalities. While activation of AKT signaling is protective, sustained activation may contribute to synaptic dysfunction and oxidative stress-mediated neuroinflammation. The competitive nature of AKT versus ERK signaling may contribute to underlying disease processes and influence patient response to therapeutics. i Clinical features of control and ALS patients

Back to article page