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Abstract
Background: In previous work, we investigated dieldrin cytotoxicity and signaling cell death
mechanisms in dopaminergic PC12 cells. Dieldrin has been reported to be one of the
environmental factors correlated with Parkinson's disease and may selectively destroy
dopaminergic neurons.

Methods: Here we further investigated dieldrin toxicity in a dopaminergic neuronal cell model of
Parkinson's disease, namely N27 cells, using biochemical, immunochemical, and flow cytometric
analyses.

Results: In this study, dieldrin-treated N27 cells underwent a rapid and significant increase in
reactive oxygen species followed by cytochrome c release into cytosol. The cytosolic cytochrome
c activated caspase-dependent apoptotic pathway and the increased caspase-3 activity was
observed following a 3 hr dieldrin exposure in a dose-dependent manner. Furthermore, dieldrin
caused the caspase-dependent proteolytic cleavage of protein kinase C delta (PKCδ) into 41 kDa
catalytic and 38 kDa regulatory subunits in N27 cells as well as in brain slices. PKCδ plays a critical
role in executing the apoptotic process in dieldrin-treated dopaminergic neuronal cells because
pretreatment with the PKCδ inhibitor rottlerin, or transfection and over-expression of catalytically
inactive PKCδK376R, significantly attenuates dieldrin-induced DNA fragmentation and chromatin
condensation.

Conclusion: Together, we conclude that caspase-3-dependent proteolytic activation of PKCδ is a
critical event in dieldrin-induced apoptotic cell death in dopaminergic neuronal cells.
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Background
Epidemiological studies of Parkinson's disease (PD) over
the past decade have promoted the conclusion that idio-
pathic, geriatric-onset PD is an environmentally-mediated
neurodegenerative disorder [1-5]. PD-associated factors
most often cited include residence in a rural area, use of
well water as a drinking water source, and occupational
use of pesticides, all of which are linked to pesticide expo-
sures. These have been reported in numerous epidemio-
logical studies [6-17]. A landmark epidemiology study by
Tanner and colleagues [18] of nearly 20,000 twin pairs
from a WWII veterans health care database determined
that no clear genetic correlate exists to explain the inci-
dence of PD and concluded that PD is an environmen-
tally-mediated disorder. Postmortem studies of PD
patients have reported significantly higher brain concen-
trations of chlorinated hydrocarbons, particularly cyclodi-
ene insecticides [19-21], further suggesting a direct link
between environmental exposure to neurotoxicants and
PD.

Cyclodiene insecticides are heavily chlorinated toxicants
that act primarily as antagonists of the GABAA receptor
ionophore [22,23]. Since the majority of GABA projec-
tions in the brain are inhibitory in function, cyclodienes
are pharmacologically defined as pro-convulsant chemi-
cals [23-25]. Pharmacokinetically, cyclodienes and simi-
lar lipophilic chlorinated cage toxicants, collectively
termed polychlorocycloalkanes, accumulate in fatty tis-
sues and the brain [26,27]. Dieldrin, specifically, is one of
the most environmentally persistent insecticides known
[28]. Polychlorocycloalkanes were used extensively due to
their excellent latent-kill activity against crop and struc-
tural pests and their low cost. However, bioaccumulation
and biomagnification in non-target species led to the ban
of these chemicals in the 1970s, with a few exceptions
(e.g., g-HCH, endosulfan, methoxychlor). Approximately
3 billion tons of these chemicals have been manufactured
and used commercially for insect control to date [29].

Despite the current restricted use of polychlorocycloal-
kanes in western countries, humans continue to be
exposed through either direct contact with environmental
residues, exposure to contaminated ground water, or con-
sumption of imported products from countries where
these chemicals are still legal for agricultural and indus-
trial use. Daily dietary exposure to dieldrin, according to a
study of 120,000 U.S. adults, is estimated to be in excess
of EPA minimum safety standards [30].

Attempts to link dieldrin to emerging models of disease
progression in idiopathic PD have been reported by our
laboratory [31,32] and others [33-35]. Previously, we
demonstrated the existence and regulation of a selective
toxicant-evoked apoptotic pathway in PC12 cells which

incorporates a signal amplification loop between caspase-
3 and PKCδ [32]. Herein, we report further characteriza-
tion of dieldrin-specific pro-apoptotic effects in a rat mes-
encephalic cell line (N27) with dopaminergic
characteristics. The present work strongly supports results
reported in PC12 cell studies that indicated dieldrin initi-
ates apoptosis in cells by a mitochondrial mechanism that
facilitates early onset reactive oxygen species generation,
cytochrome c release to the cytoplasm, caspase cascade
activation, and PKCδ cleavage and activation. The central
role of PKCδ linking initiation and end-point effects in
dieldrin-induced apoptosis is supported by evidence pre-
sented and discussed in the present work.

Materials and methods
Materials
Dieldrin, Hoechst 33342, and mouse monoclonal anti-β-
actin antibody were purchased from Sigma (St. Louis,
MO, USA). Caspase-3 substrate, Ac-DEVD-AMC, was pur-
chased from Bachem Biosciences, Inc. (King of Prussia,
PA). Caspase-3 specific inhibitor, Z-DEVD-FMK, was pur-
chased from Alexis Biochemicals (San Diego, CA).
Hydroethidine was purchased from Molecular Probes
(Eugene, OR, USA). Rabbit polyclonal anti-PKCδ anti-
body was purchased from Santa Cruz Biotechnology, Inc.
(Santa Cruz, CA). ECL Western blotting analysis kit was
purchased from Amersham Pharmacia Biotech, Inc. (Pis-
cataway, NJ). Cell Death Detection Elisa Plus Assay kit was
purchased from Roche Molecular Biochemicals (Indiana-
polis, IN). Cytochrome c ELISA kit was obtained from
MBL International Corp. (Watertown, MA). All tissue cul-
ture supplies were purchased from Gibco-BRL (Gaithers-
burg, MD, USA). Other routine laboratory reagents were
purchased from Fisher Scientific (Pittsburg, PA, USA).
Plasmids, PKCδK376R-GFP fusion protein, and pEGFP-N1
were kind gifts from Dr. Stuart H. Yuspa, National Cancer
Institute (Bethesda, MD). The immortalized rat mesen-
cephalic (N27) cell line was a kind gift from Dr. Kedar N.
Prasad, University of Colorado Health Sciences Center
(Denver, CO).

Animals
Adult male Sprague Dawley rats (125–150 g; Zivic Miller
Laboratory, Alison Park, PA) were used in all experiments
with animal tissues. Rats were housed one per cage in a
temperature-controlled room (23°C) with a 12:12 L:D
cycle. Animals were fed standard laboratory diet and water
ad libitum. Experimental procedures used here were
approved by the Institutional Animal Care and Use Com-
mittee at Iowa State University. The Iowa State University
vivarium is an AAALAC approved facility.

Stable transfection
Plasmid pPKCδK376R-GFP encodes protein kinase Cδ-GFP
fusion protein; K376R refers to the mutation of the lysine
Page 2 of 15
(page number not for citation purposes)



Molecular Brain 2008, 1:12 http://www.molecularbrain.com/content/1/1/12
residue at position 376 to arginine in the catalytic site of
PKCδ, rendering it inactive [36]. Plasmid pEGFP-NI
encodes the green fluorescent protein alone and was used
as vector control. N27 cells stably expressing pEGFP-NI
and pPKCδK376R were established using Lipofectamine
Plus reagent, as per the procedure recommended by the
manufacturer and described previously (51). Stable cell
lines were maintained in medium containing 200 μg/ml
hygromycin.

Cell lines
Immortalized rat mesencephalic cells (1RB3AN27, abbre-
viated here as N27 cells) were grown in RPMI medium
supplemented with 10% fetal bovine serum, 1% L-
glutamine, penicillin (100 U/ml), and streptomycin (100
U/ml), and maintained at 37°C in a humidified atmos-
phere of 5% CO2 [37,38]. Vector-transfected (N27-GFP)
and PKCδ dominant negative mutant (N27-PKCδK376R)
cells were maintained in serum containing growth
medium with 200 μg/ml hygromycin.

Isolation of cytosolic fraction in N27 cell homogenates
Cytosolic fractions were isolated from untreated and diel-
drin-treated N27 cells as per previously published proce-
dures (51). Briefly, cells were pelleted by centrifugation at
200 × g for 10 min at 4°C. The cell pellet was washed once
with ice-cold PBS and resuspended in 2 ml homogeniza-
tion buffer (20 mM Tris HCl, 2 mM EDTA, 10 mM EGTA,
2 mM dithiothreitol, 1 mM phenylmethylsulfonyl fluo-
ride, 25 μg/ml aprotonin, and 10 μg/ml leupeptin). The
suspension was then sonicated for 10 sec and centrifuged
at 100,000 × g for 1 hr at 4°C. Resulting supernatant was
used as a cytosolic fraction. The protein concentration of
each cytosolic fraction was determined using a Bradford
protein assay dye reagent (BioRad Laboratories; Hercules,
CA, USA). Cytosolic fractions were stored frozen at -80°C
and used subsequently for biochemical and Western blot
experiments. Samples were diluted with homogenization
buffer according to the protein concentration estimated
by the assay to equalize protein concentrations for gel
loading. Each sample was then mixed with 2× gel loading
buffer containing 10% SDS and 200 μM DTT and placed
in boiling water for 5 min.

Treatment paradigm
After 2–4 days in culture, N27 cells were harvested and
resuspended in serum-free growth medium at a cell den-
sity of 1–3 × 106/ml. Cell suspensions were treated with
DMSO (0.1% final concentration) or dieldrin (30–300
μM) over a period of 5 min to 3 hr at 37°C. In inhibitor
studies, Z-DEVD-FMK (caspase-3-specific inhibitor, 50
μM), was added 30 min prior to the addition of dieldrin.
The reaction samples were removed at various time
points, centrifuged at 200 × g (5 min, 4°C), and cell pel-
lets were used for assessing cytochrome c release, caspase-

3 enzymatic activities, PKCδ cleavage, and DNA fragmen-
tation. Cell samples used for flow cytometry were further
treated with visualization flourometric chemicals, as
described in the methods below.

Brain slice preparation and treatment
Sprague Dawley male rats (125–150 g) were euthanized
by ether and decapitated. Brains were removed by brain
case dissection to a cold table, dura and pia mater were
removed by forceps, and brains were rinsed with 0.9%
sterile saline. Brain sections (300 μm) were cut in 4°C car-
boxygenerated (5% CO2/95% O2) artificial cerebrospinal
fluid slicing medium (1.4 mM KCl, 685 μM NaH2PO4, 14
mM NaHCO3, 2 mM CaCl2, 1.2 mM MgSO4, 50 mM
sucrose, and 2.5 mM dextrose) using a Lancer Vibratome
(model 1000; The Vibratome Co., St. Louis, MO, USA).
Sections were transferred to carboxygenerated artificial
cerebrospinal fluid (ACSF; 126 mM NaCl, 2.5 mM KCl,
1.25 mM NaH2PO4, 26 mM NaHCO3, 2 mM CaCl2, 1.2
mM MgSO4, and 2.5 mM dextrose) and allowed to recover
from trauma for 2 hr at 37°C prior to treatment with tox-
icants. At 2 hr, the incubation medium was refreshed with
37°C carboxygenerated ACSF and DMSO (0.033% final
concentration), or DMSO containing dieldrin (30–100
μM final concentration) was added to the medium and
incubated with slices for 3 hr at 37°C. Following incuba-
tion, slices were removed to 1.5 ml tubes, centrifuged
briefly at 1000 × g. The supernatant was discarded and tis-
sues were prepared for Western blot by Dounce homoge-
nization (15 strokes) in a modified lysis buffer (25 mM
HEPES, 100 μM Na2VO4, 300 μM NaCl, 1.5 mM MgCl2,
200 μM EDTA, 50 mM dithiothreitol, 10 μl Triton X-100,
20 mM NaF, 20 mM β-glycerophosphate, 1 mM phenyl-
methylsulfonyl fluoride, 25 μg/ml aprotinin, and 50 μg/
ml leupeptin) at 400 μl/slice. Homogenates were centri-
fuged (12,000 × g, 20 min, 4°C) and protein concentra-
tions of supernatants were determined using a Bradford
protein assay dye reagent (BioRad Laboratories, Hercules,
CA, USA). Cytosolic fractions were stored.

Reactive oxygen species (ROS) flow cytometry
Flow cytometry analysis was performed on a Becton Dick-
enson FACScan™ flow cytometer (Becton Dickenson, San
Francisco, CA), as described previously (51). Hydroethi-
dine, a sodium borohydride-reduced derivative of ethid-
ium bromide, was used to detect ROS production,
specifically O2

-inside the cell [39]. Hydroethidine loaded
to cells binds to cellular macromolecules and reacts with
O2

- as it is generated, converting hydroethidine to ethid-
ium bromide, increasing red fluorescence (620 nm). A 15-
mW air-cooled argon-ion laser was used as an excitation
source for hydroethidine at 488 nm, and the optical filter
was 585/42 nm bandpass. Cells were detected and distin-
guished from the background by forward-angle light scat-
tering (FSC) and orthogonal light scattering (SSC)
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characteristics. All the flow cytometric data were analyzed
by Cellquest™ data analysis software to determine signifi-
cant increases or decreases in fluorescence intensity.

Cytochrome c release assay
Dieldrin-induced cytochrome c release was measured
using a cytochrome c ELISA kit, as described previously
[37]. Briefly, N27 cells (5 × 106 cells) were resuspended in
serum-free RPMI-1640. Cell suspensions were exposed to
100 μM or 300 μM dieldrin for 15–30 min at 37°C. After
exposure, cells were collected, washed once with ice-cold
phosphate-buffered saline (PBS; pH 7.4), and resus-
pended in 1 ml of ice-cold homogenization buffer (10
mM Tris HCl pH 7.5, 0.3 M sucrose, 1 mM phenylmethyl-
sulfonyl fluoride, 25 μg/ml aprotinin, 10 μg/ml leupep-
tin). Following homogenization, cells were centrifuged at
10,000 × g for 60 min at 4°C. Resulting supernatants were
collected as cytoplasmic fractions and used to measure
cytochrome c release by the cytochrome c ELISA assay kit,
strictly following the protocol provided by the manufac-
turer (MBL, Watertown, MA, USA). Optical density of
each well was then measured at 450 nm using a micro-
plate reader (Molecular Devices Corp., Sunnyvale, CA,
USA). The cytochrome c concentration was calibrated
from a standard curve based on reference standards.

Caspase-3 activity
Caspase activities were determined as previously
described [37]. Briefly, after exposure to dieldrin, cells
were washed once with PBS and resuspended in lysis
buffer containing 50 mM Tris/HCl (pH 7.4), 1 mM EDTA,
10 mM EGTA, and 10 μM digitonin. Cells were then incu-
bated at 37°C for 20–30 min to allow complete lysis.
Lysates were quickly centrifuged and cell-free superna-
tants were incubated with 50 μM Ac-DEVD-AMC (cas-
pase-3 substrate) at 37°C for 1 hr. Caspase activity was
then measured using a microplate reader (Molecular
Devices Corp., Sunnyvale, CA) with excitation at 380 nm
and emission at 460 nm. Caspase activity was expressed as
fluorescence unit (FU) per mg protein per hr.

Western blot
Samples were diluted to protein concentrations appropri-
ate for gel loading and boiled for 5 min in 2× gel loading
buffer containing 10% SDS and 20 mM dithiothreitol.
Samples were stored at -80°C until used for Western blot
analysis. Cytoplasmic fractions or brain tissue samples
containing equal amounts of protein (5–10 μg) were
loaded in each lane and separated on a 10% SDS-polyacr-
ylamide gel. Proteins were then transferred to nitrocellu-
lose membranes by electro-blotting overnight (4°C, 25
V). Non-specific binding sites were blocked by treating the
nitrocellulose membranes with 5% non-fat dry milk pow-
der for 2 hr prior to treatment with primary antibodies.
Nitrocellulose membranes containing the proteins were

incubated with rabbit anti-PKCδ for 1 hr at RT (1:2000
dilution). Primary antibody treatments were followed by
treatment with secondary HRP-conjugated anti-rabbit IgG
(1:2000 dilution) for 1 hr at RT. Secondary antibody-
bound proteins were detected using Amersham's ECL
chemiluminescence kit. To confirm equal protein load-
ing, blots were re-probed with a β-actin antibody (1:5000
dilution). Gel photographs were taken with a gel imaging
system and quantification of bands was performed using
Scion Image.

Annexin V and propidium iodide flow cytometry
Flow cytometry analysis of apoptotic and necrotic N27
cells following a 3 hr exposure to dieldrin (100 μM) was
performed by Annexin V-FTIC and propidium iodide (PI)
staining kit (BD PharMingen), as per the manufacturer's
specifications and as described previously [51]. Annexin V
binds to phosphatidylserine (PS) and other negatively
charged phospholipids, producing fluorescence primarily
indicative of PS translocation from the inner to the outer
cell membrane leaflet, reflective of aminophospholipid
translocase activity in apoptotic cells [40]. PI is a nucleic
acid dye that penetrates the nuclear envelope of necrotic
cells and was used here as a counter stain to differentiate
between live, apoptotic, late stage apoptotic/early stage
necrotic, and necrotic cells. Flow cytometry analysis was
performed on a Becton Dickenson FACScan™ flow cytom-
eter (Becton Dickinson, San Francisco, CA). N27 cells
were washed twice with cold phosphate-buffered saline
(pH 7.4) and resuspended in a binding buffer (10 mM
HEPES, 140 mM NaCl, 2.5 mM CaCl2; pH 7.4) at a con-
centration of 0.5 × 106 cells/ml. Cell aliquots of 100 μl
were incubated with Annexin V-FITC (5 μl) and PI (2 μl)
for 15 min at RT in the dark. After 15 min, incubates were
diluted with 400 μl of binding buffer and analyzed by
flow cytometry. A 15-mW air-cooled argon-ion laser was
used as an excitation source for Annexin V-FITC at 488 nm
with optical filter at 530/15 nm bandpass. PI fluorescence
was measured with the optical filter at 650/42 nm band-
pass. Cells were detected and distinguished from the back-
ground by forward-angle light scattering (FSC) and
orthogonal light scattering (SSC) characteristics. All the
flow cytometric data were analyzed by Cellquest™ data
analysis software to determine the significant increases or
decreases of fluorescence intensity.

DNA fragmentation analysis
DNA fragmentation assay was performed using a Cell
Death Detection Elisa Plus Assay kit (51). N27 cells were
exposed to DMSO (0.1% final concentration) or DMSO
containing dieldrin (30–100 μM) for 3 hr at 37°C. Fol-
lowing treatment, cells were centrifuged at 200 × g for 5
min at 4°C and washed once with 1× phosphate-buffered
saline (pH 7.4). Cells were then incubated with a lysis
buffer (supplied with the kit) at RT for 30 min. Incubates
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were centrifuged at 10,000 × g for 20 min at 4°C and 20
μl aliquots of supernatant were dispensed to streptavidin-
coated 96 well microtiter plates followed by addition of
80 μl of antibody cocktail. Plates were incubated for 2 hr
at RT with mild shaking. The antibody cocktail consisted
of a mixture of anti-histone biotin and anti-DNA-HRP
directed against various histones and antibodies to both
single strand DNA and double strand DNA, which are
major constituents of the nucleosomes. After incubation,
unbound components were removed by washing with the
incubation buffer supplied with the kit. Quantitative
determination of the amount of nucleosomes retained by
anti-DNA-HRP in the immunocomplex was determined
spectrophotometrically with 2,2'-azino-di-(3-ethylbenz-
thiazoline sulfonate (6)) diammonium salt (ABTS) as an
HRP substrate (supplied with the kit). Measurements were
made at 405 nm against an ABTS solution as a blank (ref-
erence wavelength ~490 nm) using a Molecular Devices
Spectramax Microplate Reader. The data were analysed
using Graphpad Prism 4.0 software and expressed as per-
centage of DNA fragmentation observed in vehicle (0.1%
DMSO)-treated cells.

Immunocytochemistry
N27 cells were grown on collagen (6 μg/cm2) coated
slides for 2–3 days in a 37°C, 5% CO2 incubator. Cells
were washed twice with phosphate-buffered saline (pH
7.4) and treated for 3 hr with DMSO (0.1% final concen-
tration) or DMSO containing dieldrin (100 μM). Cells
were again washed with phosphate-buffered saline and
fixed with 10% buffered formaldehyde for 30 min at
room temperature, followed by staining with Hoechst
33342 (10 μg/ml) for 3 min in the dark. Cells stained with
Hoechst 33342 dye fluoresce bright blue upon binding to
DNA in the nucleus. The nucleus of apoptotic cells exhib-
its strong blue staining in a heterogeneous and patchy pat-
tern, indicative of chromatin condensation, whereas the
nucleus of non-apoptotic cells exhibits a more diffused,
weak and homogenous staining [41,42]. Slide-mounted
cells were observed under a Nikon DiaPhot microscope
under UV illumination, and pictures were captured with a
SPOT digital camera (Diagnostic Instruments, Sterling
Heights, MI).

Data analysis
Data were first analyzed using one-way ANOVA. Dun-
nett's post-test or Bonferroni's multiple comparison test
was then performed to compare treated samples, and p <
0.05 was considered significant.

Results
Dieldrin-induced reactive oxygen species (ROS)
Exposure of N27 cells to dieldrin resulted in a rapid, tran-
sient increase in generation of ROS as measured by flow
cytometric analysis of hydroethidium dye oxidation (Fig.

1A). A significant shift of fluorescent intensity indicates
the massive generation of intracellular ROS in a time-
dependent manner. Moderate concentrations of dieldrin
(30 μM) produced a significant time-dependent increase
of approximately 65% in ROS levels 5 min after treatment
(p < 0.01), which appeared to reach signal saturation by
15 min, at approximately 200% of vehicle control (Fig.
1B). Comparison of exposure of N27 cells to various con-
centrations of dieldrin (30–200 μM) indicated that simi-
lar levels of ROS generation were reached at 5 min post-
treatment (~145–165% vehicle control) and subse-
quently reversed at concentrations of dieldrin greater than
100 μM beyond 5 min exposure (data not shown).

Dieldrin promotes mitochondrial cytochrome c release
Dieldrin-mediated cytochrome c release, an early event in
apoptosis, was determined by ELISA assay. As shown in
Fig. 2A, dieldrin treatment induced time- and dose-
dependent increases in the appearance of cytochrome c in
the cytosol over a 30 min exposure period. Dieldrin signif-
icantly increased cytochrome c release by 50% and 140%
at 15 and 30 min post-treatment, respectively. Exposure of
N27 cells to 300 μM dieldrin evoked significant increases
in accumulation of cytosolic cytochrome c by 110% and
260% following 15 min and 30 min of dieldrin exposure,
respectively.

Dieldrin-mediated activation of caspase-3
Dieldrin increased caspase-3 enzyme activity, an impor-
tant effector caspase in apoptosis, in a dose-dependent
manner after 3 hr of exposure, as measured by Ac-DEVD-
AMC fluorometry (Fig. 2B). Caspase-3 activity increased
by 210%, 260%, and 340% of vehicle control following
treatment with 30, 100, and 300 μM dieldrin, respectively.
No significant vehicle effect (DMSO, 0.2% final concen-
tration) was observed, suggesting that measured effects
were directly attributable to dieldrin exposure. Concentra-
tions of dieldrin above 100 μM appeared to produce sim-
ilar levels of caspase-3 activity, whereas 30 μM dieldrin-
induced increases in caspase-3 activity were lower but
greater than the vehicle control level.

Caspase-3-dependent dieldrin-induced cleavage and 
activation of PKCδ
Dieldrin at 100 and 300 μM induced maximum increases
in caspase-3 activity by increasing the cleavage and activa-
tion of PKCδ in a concentration-dependent manner 3 hr
following treatment, as measured by Western blot analysis
(Fig. 3A). Previously, we and others have shown that
PKCδ is selectively activated by caspase-3 under condi-
tions of toxicant exposure [37,43,44]. Pretreatment with a
selective caspase-3 inhibitor, Z-DEVD-FMK (50 μM), for
30 min prior to 3 hr treatment of N27 cells with 100 μM
dieldrin markedly reduced PKCδ cleavage and activation
(Fig. 4A), approximating basal levels of cleaved products
Page 5 of 15
(page number not for citation purposes)



Molecular Brain 2008, 1:12 http://www.molecularbrain.com/content/1/1/12

Page 6 of 15
(page number not for citation purposes)

Dieldrin-induced ROS generation in N27 cellsFigure 1
Dieldrin-induced ROS generation in N27 cells. N27 cells (~1 × 106 cells/ml) were treated with 30 μM dieldrin for 0–30 
min. Hydroethidine fluorescence intensity was measured at various time points by flow cytometry. Representative shift of fluo-
rescent intensity during dieldrin treatment (A). Quantitative analysis of ROS generation deduced from Fig. 1A (B). Data repre-
sent the mean ± SEM for three separate experiments performed in triplicate. Significance was determined by ANOVA followed 
by Dunnett's post-test between the vehicle-treated group and dieldrin-treated group (*p < 0.05 and **p < 0.01).
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Dieldrin-induced increases in cytosolic cytochrome c and caspase-3 activity in N27 cellsFigure 2
Dieldrin-induced increases in cytosolic cytochrome c and caspase-3 activity in N27 cells. In A, N27 cells (5 × 106 

cells) were exposed to 100 or 300 μM dieldrin for 15–30 min. The mitochondria-free cytosolic fraction was collected as 
described in "Materials and Methods," and cytosolic cytochrome c was measured using ELISA cytochrome c assay. Data repre-
sent the mean ± SEM for three separate experiments performed in triplicate. Significance was determined at *p < 0.05 or **p < 
0.01 compared with the vehicle-treated group at each time point. In B, N27 cells (2 × 106 cells/ml) were exposed to 30–300 
μM dieldrin for 3 hr at 37°C, and caspase-3 activity was measured using the caspase-3 specific substrate Ac-DEVD-AMC, as 
described in the "Materials and Methods." The data are expressed as fluorescent unit (FU) per mg protein per hr of incubation. 
Each point represents mean ± SEM from two separate experiments in triplicate. Significance was determined at *p < 0.05 or 
**p < 0.01 compared with vehicle-treated cells.
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observed in controls. As shown in Fig. 4B densitometric
analysis of 41 kDa cleaved and 72 kDa full-length PKCδ
bands in Fig 4A revealed an 80% increase in cleaved PKCδ
band in dieldrin-treated samples compared to vehicle-
treated samples. Whereas pretreatment with Z-DEVD-
FMK almost completely prevented dieldrin induced

increase in cleaved PKCδ levels. The densitometric data
where normalized to 43 kDa β-actin band prior to analy-
sis of cleaved and full-length PKCδ bands.

Proteolytic cleavage of PKCδ following dieldrin treatment in N27 cellsFigure 3
Proteolytic cleavage of PKCδ following dieldrin treatment in N27 cells. In A, N27 cells (~1 × 107 cells) were exposed 
to 100 μM or 300 μM dieldrin for 3 hr at 37°C, and cytosolic proteins were collected as described in "Materials and Methods." 
Approximately 5 μg of cytosolic proteins were resolved on 10% SDS-polyacrylamide gel, revealing native PKCδ (72 kDa), the 
catalytic subunit (41 kDa) and the regulatory subunit (38 kDa) of proteolytically cleaved PKCδ. In B, rat brain slices were 
exposed to 30 μM dieldrin for 3 hr. PKCδ was detected by Western blot and equal protein loading was confirmed by reprob-
ing with β-actin (43 kDa). Veh represents 0.2% DMSO.
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Effect of caspase-3 inhibitor on dieldrin induced PKCδ proteolytic cleavageFigure 4
Effect of caspase-3 inhibitor on dieldrin induced PKCδ proteolytic cleavage. In A, N27 cells were pretreated with 
caspase-3 specific inhibitor, Z-DEVD-FMK (50 μM), for 30 min, and then exposed to 100 μM dieldrin for another 3 hr and 
cytosolic proteins were collected as described in "Materials and Methods." PKCδ was detected by Western blot, and equal 
protein loading was confirmed by reprobing with β-actin (43 kDa). Veh represents 0.2% DMSO. In B, Densitometric data of 
cleaved (41 kDa) and full-length (72 kDa) PKCδ bands in A. Densitometric analysis was performed to determine the level of 
inhibition of proteolytic cleavage of PKCδ by caspase-3 inhibitor. Density of each band was normalized to 43 kDa β-actin band 
prior to analysis. The data are expressed as a ratio of cleaved versus full-length. **p < 0.01 compared with vehicle-treated 
group and ##p < 0.01 compared with dieldrin-treated group.
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Dieldrin promotes PKCδ cleavage in brain tissue
Preliminary results from incubations of 300 μm coronal
sections of rat midbrain tissue with concentrations of diel-
drin were similar to results in N27 cells. Dieldrin at 30 μM
produced a 75.3% increase in cleaved products of PKCδ
(Fig. 3B), reminiscent of changes observed with 100 μM
dieldrin in N27 cells (see Fig. 3A), and suggested that sim-
ilar apoptotic cell death processes may be activated in situ
following dieldrin exposure.

Dieldrin induces apoptotic cell death in N27 cells
Flow cytometric analysis of N27 cells incubated 3 hr with
DMSO (0.1% final concentration) or DMSO containing
dieldrin (100 μM) revealed marked increases in both
apoptotic (annexin V, 51%) and apoptotic/necrotic or late
apoptotic (annexin V and propidium iodide, 31%) indi-
ces, whereas vehicle-treated cells did not have an
increased apoptotic level (9% and 13% apoptotic and late
apoptotic, respectively) (Fig. 5). Chi square analysis of the
distribution of annexin V FITC and propidium iodide pos-
itive cells indicated a positive trend toward apoptosis in
dieldrin-treated N27 cells (χ2 = 69.12, p < 0.0001).

PKCδ mediates dieldrin-induced DNA fragmentation in 
N27 cells
To further confirm the results obtained by flow cytometry
and to assess the involvement of PKCδ. in mediation of
apoptosis, a quantitative DNA fragmentation assay was
performed. N27 cells were treated with 100 μM dieldrin
for 3 hr. N27 cells were also pretreated with 1–3 μM rott-
lerin for 30 min prior to dieldrin exposure As shown in
Fig. 6A, dieldrin treatment alone induced > 3-fold increase
in DNA fragmentation, and rottlerin dose-dependently
blocked dieldrin-induced increases in DNA fragmenta-
tion. We also confirmed DNA fragmentation by qualita-
tive analysis of apoptosis. Hoechst 33342 staining showed
nuclear condensation, one of the distinct morphological
changes during apoptosis, following 3 hr dieldrin expo-
sure (Fig. 6B). Pretreatment with rottlerin remarkably
reduced dieldrin-induced chromatin condensation. As
shown in Fig. 6B, rottlerin dose-dependently protected
against dieldrin-induced chromatin condensation. The
levels of chromatin condensation observed by Hoechst
33342 were 64%, 40%, and 28% in 100 μM dieldrin only,
dieldrin + 1 μM rottlerin, and dieldrin + 3 μM rottlerin,
respectively. Together, these results suggest that proteo-
lytic activation of PKCδ plays an important role in execu-
tion of apoptosis.

Catalytically inactive PKCδK376R mutant rescues N27 cells 
from dieldrin-induced DNA fragmentation
Measurement of DNA fragmentation by the ELISA
method in N27-GFP and N27-PKCδK376R cells following 3
hr dieldrin exposure indicated a significant increase in
DNA fragmentation (Fig. 7). Maximal increases (350%)

in DNA fragmentation were observed with N27GFP

exposed to 100 μM dieldrin compared to only a 212%
increase in DNA fragmentation observed in N27-
PKCδK376R cells. These results suggest that N27-PKCδK376R

cells were resistant to dieldrin-induced DNA fragmenta-
tion

Discussion
Results presented here further support our hypothesis that
dieldrin contributes to apoptotic cell death in dopaminer-
gic neuronal cells. We and others previously demon-
strated the selective toxicity of dieldrin on dopaminergic
cells [31,45] as well as characterized the subsequent sign-
aling cell death mechanism in dopaminergic PC12 cells
[32]. Here we demonstrated that the cell death pathway
observed in dopaminergic neuronal cells following acute
exposure to dieldrin was identical to that observed in
PC12 cells, i.e., i) initial and rapid increase in reactive oxy-
gen species (ROS), ii) possible mitochondrial damage and
subsequent release of cytochrome c, iii) caspase-3 activa-
tion and proteolytic cleavage of PKCδ, and iv) apoptotic
cell death as a result of activation of these pro-apoptotic
molecules.

Generation of ROS was a rapid response to dieldrin toxic-
ity. Within 5 min after the exposure, cells increased intra-
cellular ROS by 50% from the basal level, suggesting
dieldrin somehow interacts with certain cellular mole-
cules (possibly mitochondrial proteins responsible for
cellular respiration) to potentiate the production of ROS
as soon as it gets into the cells. Dieldrin reportedly inhib-
its the mitochondrial electron transport system (ETS) near
the complex III [46]. Termination of ETS causes accumu-
lation of the reduced form of electron carrier proteins and
unused oxygen, resulting in uncoupling of mitochondria
and conversion of oxygen into ROS. Since the generation
of ROS was observed so rapidly, the primary target of diel-
drin could be mitochondria, as also shown previously
[31].

ROS is known to induce release of cytochrome c in neuro-
nal cells. The release of cytochrome c was dose- and time-
dependent, and occurred as early as 15 min following
dieldrin exposure. The release of cytochrome c and other
pro-apoptotic factors, such as apaf-1 from mitochondria,
activates caspase-9 [47,48]. Caspase-9 serves as an initia-
tor caspase, and it further proteolytically cleaves and acti-
vates effector caspases including caspase-3, -6, and -7 [49].
We observed a significant increase in caspase-3 activity
following a 3 hr dieldrin exposure in a dose-dependent
manner (100 and 300 μM dieldrin), indicating the level of
dieldrin-induced cytochrome c release can promote the
mitochondrial-mediated apoptotic cell process in
dopaminergic cells.
Page 10 of 15
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Accumulating evidence strongly suggests the pro-apop-
totic role of PKCδ during apoptosis in neuronal systems
[43,44,50]. We have verified that the proteolytic activa-
tion of PKCδ was due to caspase-3 activation. The caspase-
3 specific inhibitor Z-DEVD-FMK blocked the proteolytic
cleavage of PKCδ by 70%, indicating the majority of PKCδ
cleavage was due to caspase-3. Previously, we also showed
that PKCδ plays an essential role in environmental chem-
ical-induced apoptotic cell death in PC12 cells [32,37]. In

these reports, PKCδ not only facilitates the downstream
apoptotic process, including DNA fragmentation, but also
modulates the upstream process, including caspase-3
activity, by an unknown mechanism. The regulatory role
of PKCδ has also been documented elsewhere [44], but
the exact regulatory function of PKCδ and mechanism by
which it acts remain to be elucidated.

Dieldrin-induced apoptosis in N27 cellsFigure 5
Dieldrin-induced apoptosis in N27 cells. N27 cells (~1 × 106 cells/ml) were treated with 100 μM dieldrin for 3 hr, and 
apoptotic cells were detected by flow cytometry as described in "Materials and Methods." Dual staining of cells with annexin-V-
FITC and propidium iodide enabled categorization of cells into four regions (A, B, C, and D). Region A was apoptotic cells, B 
was apoptotic and necrotic cells, C was live or healthy cells, and D was necrotic cells. The experiment was repeated three 
times and data represent the average of each region.
Page 11 of 15
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PKCδ mediates dieldrin-induced DNA fragmentation and nuclear condensation in N27 cellsFigure 6
PKCδ mediates dieldrin-induced DNA fragmentation and nuclear condensation in N27 cells. N27 cells were pre-
treated with 1–3 μM rottlerin for 30 min, and then treated with 100 μM dieldrin for another 3 hr. In A, DNA fragmentation 
was quantitatively measured by ELISA DNA fragmentation assay kit. Each bar represents mean ± SEM for two separate exper-
iments in triplicate. **p < 0.01 compared with dieldrin-treated group. In B, chromatin condensation was observed using 
Hoechst 33342 staining. The percentage of nuclear condensation was calculated by counting positive cells in three to five ran-
domly selected regions. The experiment was repeated three times, and similar results were obtained.
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In the present paper, we focused on the execution of
PKCδ. We demonstrated dieldrin-induced apoptosis using
annexin-V-FITC. Further experiments characterized
whether PKCδ played an important role in dieldrin-
induced DNA fragmentation using catalytically inactive
PKCδ mutant (PKCδK376R)-expressed dopaminergic cells
and measuring DNA fragmentation by ELISA. The kinase
activity of mutant cells was documented previously by our
laboratory [32]. Mutant cells were partially protected fol-
lowing dieldrin exposure, indicating that PKCδ is modu-
lating DNA fragmentation somehow. Furthermore,
pretreatment with a PKCδ specific inhibitor rottlerin also
dose-dependently reduced nuclear condensation. These
results are consistent with our previously published
results related to dopaminergic toxins: MMT [51], MPP+

[52], 6-OHDA [53] and manganese [54]. Recently, we
demonstrated that PKCδ is highly expressed in the sub-
stantia nigra of mouse brain [55]. PKCδ negatively regu-
lates the activity of tyrosine hydroxylase, a rate limiting
enzyme for dopamine synthesis in dopaminergic neurons
[55]. We have also shown that PKCδ inhibitor rottlerin
protects against MPTP-induced behavioral, as well as neu-
rochemical and biochemical deficits in animal models of
Parkinson's disease [56]. Therefore, the proteolytic activa-
tion of PKCδ observed in this study may contribute to
dopaminergic degeneration observed during dieldrin neu-
rotoxicity.

Conclusion
In conclusion, we demonstrate that dieldrin is a potent
inducer of apoptosis in dopaminergic neuronal cells.
Compared with our previous data from non-neuronal
dopaminergic PC12 cells, neuron-derived cells seem to be
more sensitive to dieldrin toxicity. Future investigation of
chronic dieldrin exposure in animal models will help elu-
cidate dieldrin neurotoxicity and the pathogenesis of neu-
rodegenerative disorders such as Parkinson's disease.
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