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Abstract
Whereas the induction of short-term memory involves only covalent modifications of
constitutively expressed preexisting proteins, the formation of long-term memory requires gene
expression, new RNA, and new protein synthesis. On the cellular level, transcriptional regulation
is thought to be the starting point for a series of molecular steps necessary for both the initiation
and maintenance of long-term synaptic facilitation (LTF). The core molecular features of
transcriptional regulation involved in the long-term process are evolutionally conserved in Aplysia,
Drosophila, and mouse, and indicate that gene regulation by the cyclic AMP response element
binding protein (CREB) acting in conjunction with different combinations of transcriptional factors
is critical for the expression of many forms of long-term memory. In the marine snail Aplysia, the
molecular mechanisms that underlie the storage of long-term memory have been extensively
studied in the monosynaptic connections between identified sensory neuron and motor neurons
of the gill-withdrawal reflex. One tail shock or one pulse of serotonin (5-HT), a modulatory
transmitter released by tail shocks, produces a transient facilitation mediated by the cAMP-
dependent protein kinase leading to covalent modifications in the sensory neurons that results in
an enhancement of transmitter release and a strengthening of synaptic connections lasting minutes.
By contrast, repeated pulses of 5-hydroxytryptamine (5-HT) induce a transcription- and
translation-dependent long-term facilitation (LTF) lasting more than 24 h and trigger the activation
of a family of transcription factors in the presynaptic sensory neurons including ApCREB1,
ApCREB2 and ApC/EBP. In addition, we have recently identified novel transcription factors that
modulate the expression of ApC/EBP and also are critically involved in LTF. In this review, we
examine the roles of these transcription factors during consolidation of LTF induced by different
stimulation paradigms.

Introduction
Memory can be divided into declarative and non-declara-
tive processes. Declarative or explicit memory is the con-

scious recall of knowledge about facts and events and is
particularly well developed in the vertebrate brain. Non-
declarative or implicit memory is the non-conscious recall
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of skilled behavior and other tasks and includes simple
associative forms such as classical conditioning and non-
associative forms such as sensitization [1,2]. During sensi-
tization an animal learns about the properties of a single
noxious stimulus enabling the formation of a learned fear
response. The cellular and molecular mechanisms that
underlie the storage of implicit memory have been most
extensively analyzed in the gill- and siphon-withdrawal
reflex of marine mollusk Aplysia. This organism offers sev-
eral unique advantages for the study of learning and mem-
ory, such as a relatively simple and tractable central
nervous system, large identified neurons, and well-charac-
terized neural circuits related to specific behaviors that can
be modified by learning [3]. In Aplysia, sensitization of the
gill- and siphon-withdrawal reflex is induced by a strong
stimulus to its tail [4]. Repetitive stimuli produce long-
term sensitization that lasts days to several weeks whereas
a single stimulus induces short-term sensitization lasting
only minutes to a few hours [5,6]. These two forms of
memory can be reconstituted in dissociated sensory-
motor neuron cultures by the modulatory neurotransmit-
ter serotonin (5-HT) [7]. A single pulse of 5-HT induces
short-term facilitation (STF), whereas five applications of
5-HT induce long-term facilitation (LTF) [8].

In contrast to the short-term synaptic changes, which
involve covalent modifications of preexisting molecules
leading to an alteration of preexisting synaptic connec-
tions, long-term synaptic changes require the synthesis of
new macromolecules including mRNAs and proteins [8-
11]. In addition, long-term changes are accompanied by
structural modifications including the growth of new syn-
aptic connections between the sensory neurons and their
target motor neurons [12,13]. These features of long-term,
learning-related synaptic plasticity, are highly conserved
throughout evolution of the nervous system. A variety of
experimental systems, ranging in complexity from Aplysia
to rodents, have been used to examine the molecular
mechanism underlying long-term synaptic changes
[1,2,10,11]. In this review, we focus on the role of nuclear
transcription factors in the presynaptic sensory neurons of
Aplysia during LTF.

A model system for examining the molecular 
biology of long-term memory – the Aplysia 
sensory to motor neuron synapse
In sensory-motor neuron cultures, STF and LTF can be
induced by applying 5-HT. One pulse of 5-HT activates
PKA and PKC, probably via the activation of different
types of G proteins. Activated PKA phosphorylates a
potassium channel (S channel), resulting in the elevated
influx of calcium leading to an increase in membrane
excitability and spike broadening. PKC facilitates the
mobilization of synaptic vesicles to the presynaptic active

zone. Together, these kinases enhance transmitter release
by modifying preexisting molecules [14-17].

LTF induced by repeated pulses of 5-HT requires the syn-
thesis of both new proteins and RNAs. Inhibitors of pro-
tein or RNA synthesis selectively block LTF, but not STF
when applied within a critical time window that encom-
passes the training protocol [8]. Analogous to STF, cAMP-
dependent protein phosphorylation is also involved in
LTF and cAMP analogs induce LTF [18]. Bacskai and col-
leagues first demonstrated that in response to repeated
pulses of 5-HT the catalytic subunit of PKA translocates
into the nucleus of the presynaptic sensory neuron to acti-
vate CREB-1 [19]. Repeated pulses of 5-HT also induce
phosphorylation of MAPK and the activated MAPK also
translocates into the nucleus of the sensory neuron where
it removes the repressive influence of ApCREB-2 [20].

Dash et al. provided the first evidence of the involvement
of cAMP-inducible genes expressed during LTF in Aplysia.
Microinjection of CRE (cAMP-responsive element) oligo-
nucleotides into the nucleus of sensory neurons selec-
tively blocked 5-HT-induced LTF without affecting short-
term changes [21]. These data first suggested that LTF
requires the activation of cAMP-inducible genes, and that
CRE oligonucleotides prevent interactions between CRE-
binding protein (CREB)-related transcription factors and
these genes. Using a newly developed gene transfer tech-
nique, Kaang and colleagues next showed directly that
four or more pulses of 5-HT stimulate CRE-mediated gene
expression. Moreover, transcription induced by 5-HT
requires the phosphorylation of CREB on Ser119 by PKA
[22]. Indeed Bartsch et al. went on to show that injection
of phosphorylated CREB into the sensory neuron can by
itself initiate the long-term process [23]. Collectively these
results suggested that a signaling axis composed of cAMP-
PKA-CREB participates in the molecular cascade leading
to the expression of LTF. Subsequent studies confirmed
the involvement of a number of related downstream mol-
ecules in the induction of LTF, including CAMAP, ApC/
EBP, and ApAF.

ApCREBs – Central modulators of LTF
In Aplysia, ApCREB1a and ApCREB2 have been character-
ized as an activator and repressor of LTF, respectively.
ApCREB2 is a homolog of mammalian CREB2/ATF4
which is also identified as a transcriptional repressor
[24,25]. Inhibition of ApCREB2 by injecting antiserum or
double-strand RNA (dsRNA) into sensory neurons
allowed a single pulse of 5-HT to produce translation-
dependent LTF and the growth of new synapses [25,26].
Conversely, injection of an anti-CREB1 antibody into sen-
sory neurons selectively blocked LTF. Moreover, introduc-
tion of the phosphorylated transcriptional activator,
ApCREB1a, was sufficient to induce LTF. [23]. PKA-medi-
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ated activation of ApCREB1a stimulated the downstream
transcription factor, ApC/EBP, via recruiting CBP and sub-
sequently facilitating histone acetylation [27]. For activa-
tion of downstream gene expression by ApCREB1a, the
inhibitory constraint of ApCREB2 must be relieved. This
de-repression is mediated by the phosphorylation of
ApCREB2 by nuclear translocated MAPK [20,28].
Together these results suggest that LTF requires not only
the activation of memory-enhancer genes but also the
inactivation of memory-suppressor genes. Moreover,
CREBs appear to play a critical role in maintaining the
dynamic balance between these positive and negative fac-
tors.

CREB, a basic leucine zipper transcription factor, is also
reported to be involved in long-term plasticity in the nerv-
ous systems of other organisms, including fly and mouse.
In transgenic Drosophila, expression of dCREB2b led to the
blockage of long-term memory, whereas dCREB2a facili-
tated memory [29,30]. Similarly, CREB-deficient mice dis-
played impaired long-term potentiation (LTP) and long-
term memory [31]. The threshold for late phase LTP was
lowered in the hippocampus from mice expressing the
constitutively active form of CREB [32].

ApC/EBP – A key downstream gene for LTF
In view of the critical roles of CREB in memory consolida-
tion, characterization of its downstream effectors has been
a major focus of research in both invertebrate and verte-
brate learning models [33-35]. In Aplysia the CCAAT
enhancer-binding protein (ApC/EBP), an immediate early
gene during the consolidation phase of LTF, was found by
Alberini et al. to be a downstream target of ApCREB1 [36].
The C/EBP family of transcription factors contains a basic
leucine-zipper domain. Specifically, expression of ApC/
EBP is rapidly induced in response to 5-HT treatment and
this occurs to an immediate early gene in a translation-
independent manner [36]. Inhibition of ApC/EBP by
injection of ERE oligonucleotides, ApC/EBP antiserum or
dsRNA into the sensory neurons in sensory-to-motor neu-
ron cultures during a critical time window blocked 5-HT-
induced LTF [36,37]. Moreover, a single pulse of 5-HT
which normally induces only STF, produces LTF when
ApC/EBP is overexpressed in the sensory neuron [37].
These findings support the idea that ApC/EBP is both nec-
essary and sufficient to consolidate short-term memory
into long-term memory. However, since overexpression of
ApC/EBP alone does not induce LTF, an additional com-
ponent must be required for converting STF to LTF. Lee
and colleagues used the RNA interference technique
designed to block the function of ApC/EBP and similarly
found that this blocked LTF in Aplysia [26,37]. Moreover,
in addition to these studies in Aplysia, C/EBPβ and -δ are
induced in the rodent hippocampus after inhibitory
avoidance learning, suggesting that C/EBPs are highly

conserved molecular components of the CREB-dependent
signal pathway involved in memory consolidation [38].

ApC/EBP is also known to be induced by the neural activ-
ity. The depolarization-induced ApC/EBP induction
appears to be mediated by transient induction of the
nucleolar protein, ApLLP, which was recently character-
ized as a novel transcription factor induced by neural
activity in Aplysia sensory neuron [39]. Kim et al. also
showed that a single pulse of 5-HT can produce LTF when
the synapse is pretreated with high potassium solution.
LTF induced by this protocol was completely blocked by
the injection of anti-ApLLP or anti-ApC/EBP antibody
[39].

One important feature of immediate early genes such as
ApC/EBP, is that their expression is tightly regulated
within a specific and narrow time window. ApC/EBP
mRNA displays a peak expression at 2 h after induction
that rapidly returns to the basal levels [36]. Recent studies
have found that the ApC/EBP 3' UTR contains putative
AU-rich element (ARE) sequences which are cis-acting reg-
ulatory elements commonly found in labile mRNAs [40].
Different sets of ARE binding proteins may interact with
ApC/EBP mRNA to regulate its stability and/or translata-
bility [41-43]. Yim et al. found that an ARE binding pro-
tein, ApELAV binds to and stabilizes ApC/EBP mRNA,
suggesting that post-transcriptional regulation of ApC/
EBP may also play an important role during LTF [40].

ApAF – A binding partner for both ApCREB2 
and ApC/EBP
Both ApC/EBP and ApCREBs are transcription factors con-
taining the basic leucine zipper (bZIP) domain in the C-
terminus. This domain is involved in both DNA binding
and multimerization [23,25,44]. Using the bZIP domain
of ApC/EBP as bait, Bartsch and colleagues screened a
cDNA library to identify additional transcription factors
acting downstream of ApCREB1. In this fashion, they
cloned a novel transcription factor ApAF, whose activity is
regulated by PKA [45]. In contrast to ApC/EBP, which is
induced in response to 5-HT, ApAF is a constitutively
expressed gene. Interestingly, an in vitro binding assay
revealed that ApAF interacts with both ApCREB2 and
ApC/EBP, but not ApCREB1. Inhibition of ApAF by injec-
tion of a specific antibody blocked LTF induced by
repeated pulses of 5-HT, suggesting that ApAF is necessary
for LTF. Previously, it had been found that injection of
phosphorylated ApCREB1a by itself or anti-ApCREB2
antibody combined with a single pulse of 5-HT induced
LTF that phenocopied 5 × 5-HT-induced LTF [23,25].
ApAF is involved in both forms of LTF: an anti-ApAF anti-
body blocked LTF induced by phosphorylated CREB1a as
well as that by ApCREB2 antibody injection paired with
one pulse of 5-HT. Moreover, overexpression of ApAF
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enhanced both LTF induced by 5 × 5-HT and ApCREB2
antibody with 1 × 5-HT [45]. Thus, ApAF may be a poten-
tial memory enhancer gene downstream of ApCREB1 and
ApCREB2.

To determine whether ApC/EBP is the critical partner of
ApAF, Lee and colleagues investigated the effects of silenc-
ing the ApAF gene on LTF induced by ApC/EBP overex-
pression paired with one pulse of 5-HT [46]. ApAF
inhibition by dsRNA completely blocked LTF induced by
both ApC/EBP overexpression and 5 × 5-HT. In combina-
tion with a single pulse of 5-HT, the ApAF-ApC/EBP het-
erodimer produced LTF, even in the absence of CRE- and
CREB-mediated gene expression. These results provide
direct evidence that the ApAF-ApC/EBP heterodimer is a
key downstream effecter of ApCREB. Furthermore, ApAF
enhances ERE-mediated gene expression by cooperating
with ApC/EBP and phosphorylation at Ser-266 of ApAF
by PKA is required for activation of the ApAF-ApC/EBP
heterodimer during 5-HT-induced LTF [46]. These data
explain why ApC/EBP overexpression in the absence of 5-
HT could not convert STF to LTF. The single pulse of 5-HT
in ApC/EBP-induced LTF possibly functions in triggering
the phosphorylation of ApAF by activated PKA.

Lee et al. also examined the role of Ser-266 phosphoryla-
tion of ApAF in the relief of ApCREB2 repression [46].
Overexpression of a dominant negative mutant of ApAF
which cannot be phosphorylated at Ser-266 completely
blocked both LTF induced by 5 × 5-HT and that by the
ApC/EBP overexpression combined with 1 × 5-HT. More-
over, this mutant restored ApCREB1-mediated gene
expression and 5-HT-induced LTF repressed by ApCREB2
as efficiently as its wild type counterpart, suggesting that
Ser-266 phosphorylation of ApAF is not required to
relieve ApCREB2 repression [46]. However, the precise
signaling pathway that regulates the interactions between
ApAF and ApCREB2 remains to be characterized. Taken
together, these studies of ApAF indicate that transcrip-
tional regulation of memory consolidation is quite
diverse and can recruit both direct and indirect interac-
tions between transcription factors.

CAMAP – A retrograde signal from the 
membrane to the CRE promoter
Neurons display a distinct highly differentiated form
which consists of three basic compartments: a cell body or
soma which contains the nucleus harboring genomic
information and two types of processes axons and den-
drites. Dendrites are input elements of the neuron.
Together with the cell body they receive synaptic contacts
from other neurons. Axons are the output elements of the
neuron. The branches of each axon form numerous syn-
aptic connections with other neurons. It is well known
that long-term synaptic plasticity requires the synthesis of

both new RNAs and proteins. This raises three fundamen-
tal questions: 1) Does synaptic plasticity always occur in a
cell-wide manner? 2) If not, how does the nucleus identify
the correct synapses for delivery of gene products to
achieve synapse-specific plasticity? 3) Is the nucleus the
only site responsible for transcription and translation?

To address the question of synapse specificity, Martin and
her colleagues developed a new culture system in Aplysia
consisting of a bifurcated Aplysia sensory neuron which
makes synapses with two spatially separated motor neu-
rons in culture [47]. They found that 5-HT can induce
branch-specific LTF that was dependent on CREB activa-
tion in the nucleus of presynaptic sensory neuron. Branch-
specific LTF was also accompanied by synapse-specific
growth of new sensory neuron synapses. These studies
highlight the importance of a retrograde signal propagat-
ing from the stimulated synaptic site to the nucleus. The
CREB-downstream molecules produced in the cell body
can be captured by other synapses which have been tagged
or marked. This synaptic mark is PKA-dependent; how-
ever, rapamycin-dependent local protein synthesis is
required for LTF to persist for more than 72 h [47,48]. Fur-
ther molecular studies have dissected the characteristics of
the retrograde signal and the synaptic mark.

An early step in the growth of new synaptic connections is
the internalization of an NCAM immunoglobulin-related
cell adhesion molecule – apCAM. In recent studies Lee et
al. addressed the question: How does this internalization
of apCAM relate to the activation of transcription? Lee
found that CAMAP is an interacting partner of apCAM in
the sensory neuron. CAMAP serves as a transcriptional co-
activator that is also a crucial retrograde signaling mole-
cule involved in the initiation phase of LTF [49]. ApCAM
is down-regulated upon application of 5-HT [50]. Serot-
onin leads to clathrin-mediated endocytosis of the trans-
membrane isoform of apCAM (TM-ApCAM) from the
surface membrane of sensory neurons and this internali-
zation depends on phosphorylation of its cytoplasmic tail
by MAPK [51,52]. When TM-apCAM was overexpressed in
sensory neurons, five pulses of 5-HT failed to produce syn-
aptic facilitation or enhancement of synaptic growth, sug-
gesting that down-regulation of apCAM is required for
both LTF and the presynaptic structural changes induced
by 5-HT [53]. Whereas MAPK is known to be involved in
apCAM downregulation, the subcellular mechanisms
responsible for apCAM internalization remain to be char-
acterized. CAMAP (apCAM-Associated Protein) was
cloned by yeast two-hybrid screening using the cytoplas-
mic tail of TM-ApCAM as bait [49]. CAMAP is colocalized
with apCAM at the surface of the plasma membrane in the
basal state and is translocated to the nucleus of sensory
neuron after treatment with 5-HT. Nuclear translocation
and dissociation from apCAM are modulated by PKA-
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mediated phosphorylation of CAMAP. A phosphoryla-
tion-mimicking mutant of CAMAP can dissociate from
apCAM and translocate to the nucleus in the absence of 5-
HT stimulation [49]. How does CAMAP translocate to the
nucleus? Importins, which transport cargo molecules
from the cytosol to nucleus, are critically involved in syn-
aptic plasticity in both Aplysia and rodent brain [54]. This
raises the possibility that importin may transport CAMAP
into the nucleus of the sensory neuron.

In view of nuclear translocation of CAMAP from the
plasma membrane, Lee et al. suggested that CAMAP acts
as a retrograde signaling molecule in the induction of LTF.
To act as a retrograde signal, a molecule must meet several
criteria, specifically, 1) it should translocate into the
nucleus from the synaptic site in response to stimuli that
induce synaptic plasticity, such as LTF and LTP, 2) it
should play a specific function in the nucleus, and 3)
blockage of its translocation and function should inhibit
the long-term synaptic change. CAMAP appears to fulfill
all of the above requirements. First, CAMAP translocates
to the nucleus following both cell-wide and synapse-spe-
cific applications of 5-HT. After 5-HT treatment, the
mobility of CAMAP is significantly increased at the distal
neurites of sensory neurons. Second, CAMAP binds to
ApCREB1 in the nucleus, where it acts as a transcriptional
co-activator that can induce ApC/EBP expression. Interest-
ingly, the N-terminal region, but not full-length CAMAP
displayed transcriptional activity. The C-terminus of
CAMAP appears to act as an autoinhibitory domain. This
inhibitory clamp is relieved by PKA phosphorylation of
CAMAP. Details of the molecular mechanisms that under-
lie the co-activator function of CAMAP and the PKA phos-
phorylation-dependent restoration of transcriptional
activity of the N-terminus of CAMAP are currently not
known. Finally, blockage of CAMAP expression by dsRNA
completely suppresses 5-HT-induced ApC/EBP upregula-
tion and LTF. Moreover, CAMAP dsRNA blocks synapse-
specific LTF induced by local application of 5-HT at the
synapse. Taken together, these results indicate that
CAMAP is a critical retrograde messenger in the initiation
of LTF.

The precise role of CAMAP in the internalization of
apCAM remains unclear. We have recently found that
overexpression of mutant CAMAP that cannot be phos-
phorylated by PKA impaired the 5-HT-induced internali-
zation of apCAM [49]. This finding suggests that CAMAP
tethers apCAM to the plasma membrane in the basal state,
and that the phosphorylation and nuclear translocation of
CAMAP are necessary for the subsequent down-regulation
of apCAM.

Chromatin alteration and epigenetic changes in 
gene expression with memory storage
Although epigenetic mechanisms were widely known to
be involved in the formation and long-term storage of cel-
lular information in response to transient environmental
signals, the discovery of their putative relavance in adult
brain function is relatively recent [27,55]. The epigenetic
marking of chromatin, such as histone modification,
chromatin remodeling and the activity of retrotrans-
posons, may have long-term consequences in the tran-
scriptional regulation of specific loci involved for long-
term synaptic changes [56].

The contribution of histone tail acetylation, a modifica-
tion that favors transcription and is associated with active
loci, to LTF formation was first revealed by the study of
Guan et al. in Aplysia neurons [27]. This study found that
both facilitatory and inhibitory stimuli bidirectionally
alter the acetylation stage and structure of promoters
driven by the expression of genes involved in the mainte-
nance of LTF, such as ApC/EBP. It also demonstrated that
enhancing histone acetylation with histone deacetylase
(HDAC) inhibitors facilitates the induction of LTF (Guan
et al. 2002). HDAC inhibitors have recently been shown
to have similar effects during L-LTP in the Schaffer collat-
eral pathway of mammals and to enhance memory forma-
tion in hippocampus-dependent tasks [57-61]. HDAC
inhibitor, sodium butyrate, has been shown to induce the
growth of new dendrites and synapses, which might be an
underlying mechanism of its memory enhancing effects
[61]. Moreover, mice with reduced histone acetyltrans-
ferase activity, such as different mouse models for Rubin-
stein-Taybi mental retardation syndrome, have deficits in
both long-lasting forms of memory and LTP
[57,58,62,63]. These results indicate that critical chroma-
tin changes occur during the formation of long-term
memory and that these changes are required for the stable
maintenance of these memories.

Perspectives
During the last decade molecular studies have increased
our understanding of the signaling and regulatory mecha-
nisms that underlie LTF (Figure 1). Several research
groups have generated a variety of cellular models of long-
term memory by investigating 5-HT-induced LTF and
other forms of long-term synaptic changes induced by dif-
ferent stimulation paradigms in Aplysia.

Recently, operant conditioning was demonstrated in the
gill-withdrawal and feeding behavior in Aplysia and an
electrophysiological study revealed that operant and clas-
sical conditioning of feeding behavior differentially mod-
ify the intrinsic excitability of an identified neuron [64-
66]. PolyADP-ribose-polymerase 1 (PARP1) facilitates the
transcription of long-term memory related genes by
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decondensing chromatin structure in neurons that medi-
ate operant conditioning [67]. However, the transcription
factors involved in this behavioral modification are yet to
be identified.

Interestingly, ApC/EBP is the common downstream mol-
ecule of the novel transcription factors, ApLLP and
CAMAP. ApC/EBP, which pairs with ApAF, could activate
the transcription of effector genes critically involved in the
consolidation and maintenance of long-term memory
[36]. Genes encoding structural proteins, such as clathrin

light chain and the chaperon BiP were identified as late
effector genes [68,69]. The elongation factor 1 alpha was
also suggested to be essential for maintaining newly
formed synapses [70]. However, the number of late genes
identified thus far represents only a beginning. Since the
DNA-binding motifs of ApC/EBP and ApAF homodimer
or heterodimer have been analyzed, completion of the
ongoing Aplysia genome sequencing project should facili-
tate the identification of other novel late effector mole-
cules [45].

Schematic model of signaling pathways underlying long-term facilitation in Aplysia sensory neuronFigure 1
Schematic model of signaling pathways underlying long-term facilitation in Aplysia sensory neuron. The repeated 
treatments with neurotransmitter 5-HT activate a G-protein coupled receptor that stimulates adenylyl cyclase, which in turn 
activates PKA. MAPK are also activated and translocates into the nucleus. At the synaptic site, PKA stimulates the nuclear 
translocation of the retrograde signal molecule CAMAP via phosphorylating its Ser148. This phosphorylation results in both the 
dissociation from TM-apCAM and the restoration of its transcriptional activity from autoinhibition. In the nucleus, MAPK phos-
phorylates CREB2 which represses CREB1 and ApAF in the absence of 5-HT. Once freed from CREB2 and stimulated by PKA, 
CREB1 forms a homodimer to activate the downstream target gene, ApC/EBP. Translocated CAMAP acts as a co-activator of 
CREB1. ApC/EBP interacts with ApAF that is activated by PKA to form a core downstream effector of CREB1. ApC/EBP-ApAF 
heterodimer induces the late genes which are critical for the consolidation and maintenance of LTF. Robust neural activity 
induces and activates the transcription factor, ApLLP in the nucleus in a calcium-dependent manner. ApLLP induces ApC/EBP 
expression and lowers the threshold for LTF induction. Elucidating the downstream molecule of ApC/EBP remains to be chal-
lenged. SNS, strong noxious stimulus.
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Recently, advances have also been made in clarifying the
molecular mechanisms that contribute to learning-related
synaptic plasticity in the mammalian brain, particularly
those that underlie the induction and expression of LTP
and LTD [71,72]. When it comes to transcriptional regula-
tion, however, our current understanding is far from com-
plete. Aplysia was the first organism in which cAMP was
shown to play a critical role in learning-related synaptic
plasticity [28,73]. Since signaling cascades that underlie
the expression of long-term memory are surprisingly well
conserved throughout the species, insights from the
molecular studies of Aplysia should provide an important
foundation for future studies into the transcriptional reg-
ulation of memory formation in the more complex mam-
malian brain.
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