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Abstract
Background: Long-term depression (LTD) in the hippocampus can be induced by activation of
different types of G-protein coupled receptors, in particular metabotropic glutamate receptors
(mGluRs) and muscarinic acethycholine receptors (mAChRs). Since mGluRs and mAChRs activate
the same G-proteins and isoforms of phospholipase C (PLC), it would be expected that these two
forms of LTD utilise the same molecular mechanisms. However, we find a distinct mechanism of
LTD involving GRIP and liprin-α.

Results: Whilst both forms of LTD require activation of tyrosine phosphatases and involve
internalisation of AMPARs, they use different molecular interactions. Specifically, mAChR-LTD, but
not mGluR-LTD, is blocked by peptides that inhibit the binding of GRIP to the AMPA receptor
subunit GluA2 and the binding of GRIP to liprin-α. Thus, different receptors that utilise the same
G-proteins can regulate AMPAR trafficking and synaptic efficacy via distinct molecular mechanisms.

Conclusion: Our results suggest that mAChR-LTD selectively involves interactions between
GRIP and liprin-α. These data indicate a novel mechanism of synaptic plasticity in which activation
of M1 receptors results in AMPAR endocytosis, via a mechanism involving interactions between
GluA2, GRIP and liprin-α.

Background
Cholinergic neurotransmission in the brain has a critical
role in cognition [1-4]. In particular, inhibition of mus-

carinic receptors produces pronounced amnesia and loss
of cholinergic innervation is an early feature of Alzhe-
imer's disease (AD) [5-8]. As a result, the primary treat-
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ment for the cognitive deficits in AD is cholinesterase
inhibitors, used to increase the amount of ACh available
to activate neurons. In addition, there is increasing inter-
est in the use of agents that specifically activate muscarinic
AChRs (mAChRs) for the treatment of both AD [9-11]
and schizophrenia [12]. It is therefore extremely impor-
tant to understand how ACh regulates synaptic function,
particularly that which is relevant to learning and mem-
ory.

In this context, activation of mAChRs using carbachol
(CCh) induces LTD of excitatory synaptic transmission in
various brain regions, including the visual cortex [13-15],
perirhinal cortex [16,17] and hippocampus [13,18-21].
However, the molecular mechanisms of mAChR-depend-
ent LTD are poorly understood. In the present study we
have therefore investigated the mechanisms involved in
CCh-induced LTD (mAChR-LTD) in the hippocampus of
adult rats. We find that activation of M1 receptors results
in an LTD that is dependent on the activity of protein tyro-
sine phosphatases (PTPs), but is independent of Ca2+,
PKC, serine/threonine protein phosphatases and protein
synthesis. In all of these respects, this form of LTD is the
same as that induced by activation of mGlu5 receptors in
hippocampal slices obtained from adult animals [22,23].
However, to our surprise, we found that mAChR-LTD, but
not mGluR-LTD, involves interactions between GRIP and
the AMPAR subunit GluA2 (IUPHAR nomenclature for
subunits previously known as GluR2 or GluRB; see [24]).
Furthermore, mAChR-LTD also selectively involves inter-
actions between GRIP and liprin-α. These data indicate a
novel mechanism of synaptic plasticity in which activa-
tion of M1 receptors results in AMPAR endocytosis, via a
mechanism involving interactions between GluA2, GRIP
and liprin-α.

Results
Carbachol induces an NMDAR-independent form of LTD in the CA1 
area
Bath application of carbachol (CCh; 50 μM, 10 min)
resulted in LTD of synaptic transmission in the CA1
region of the hippocampus in 4–5 week old rats (56% ±
7% of baseline, quantified 30 min following washout of
CCh; n = 8) (Figure 1A). A similar LTD was induced when
CCh was applied in the presence of an NMDAR antago-
nist, D-AP5 (58% ± 5%, n = 9) (Figure 1B), demonstrating
that this is an NMDAR-independent form of synaptic plas-
ticity. The AChR-LTD involved activation of M1 receptors,
since it was significantly reduced by pirenzepine (0.5 μM)
(88% ± 7%, n = 5 [p < 0.05 vs control LTD]) (Figure 1C).
In addition, the M1 selective agonist 77-LH-28-1 (10 μM)
induced a slow-onset LTD (60% ± 8%, n = 6) (Figure 1D)
that was also resistant to treatment with D-AP5 (61% ±
7%, n = 5) (Figure 1E) and was blocked by pirenzepine
(93% ± 11%, n = 7 [p < 0.05 vs control]) (Figure 1F). The

CCh-induced LTD resembles that induced by group I
mGluRs and so could conceivably be due to CCh facilita-
tion of endogenous L-glutamate actions on group I
mGluRs. However, this was not the case, since CCh-
induced LTD was completely resistant to inhibitors of
group I mGluRs (58% ± 13%, n = 6) (Figure 1G).

To investigate the expression mechanism of this mAChR-
LTD, we performed surface biotinylation assays using hip-
pocampal slices. Hippocampal slices were treated with
CCh, in the presence or absence of pirenzepine, and the
cell surface and total expression level of GluA2 subunits
was compared. CCh induced a substantial internalisation
of GluA2 subunits (Figure 1H), consistent with a mecha-
nism that involves the internalisation of AMPARs [20].

Signalling mechanisms involved in mAChR-LTD
M1 receptors conventionally signal via IP3-induced Ca2+

release from intracellular stores and/or activation of PKC
[25-28]. However, intracellular infusion of cyclopiazonic
acid (CPA, 2 μM), which depletes Ca2+ stores, had no
effect on mAChR-LTD (52% ± 6%, n = 6) (Figure 2A).
Similarly, postsynaptic infusion of either the PKC inhibi-
tor Ro 32-0432 (10 μM, 53% ± 7%, n = 6) (Figure 2B) or
the inhibitory peptide PKC19–31 (10 μM; 64% ± 7%, n = 9)
(data not shown) had no effect on mAChR-LTD. There-
fore, it would seem that mAChR-LTD involves an uncon-
ventional signalling mechanism. An alternative
possibility is that mAChR-LTD involves a different Ca2+-
dependent process, since most forms of synaptic plasticity
are Ca2+-dependent [29]. However, postsynaptic infusion
of BAPTA (10 mM) had no effect on mAChR-LTD (61% ±
9%, n = 9) (data not shown).

The serine/threonine protein phosphatases PP1 and PP2B
(calcineurin) are required for NMDAR-dependent LTD
[30,31]. To determine whether these enzymes are impor-
tant for mAChR-LTD we included either okadaic acid or
cyclosporin-A in the whole-cell solution. However, nei-
ther okadaic acid (100 nM, 66% ± 8%, n = 5) (Figure 2C)
nor cyclosporin-A (10 μM, 64% ± 7%, n = 7) (data not
shown) had any effect on mAChR-LTD. Another candi-
date mechanism for mAChR-LTD involves protein synthe-
sis [16,20]. Therefore it was surprising to find that neither
of the protein translation inhibitors anisomycin (20 μM,
68% ± 7%, n = 7) (Figure 2D) nor cycloheximide (80 μM,
70% ± 8%, n = 7) (data not shown) had any significant
effect on mAChR-LTD.

These negative findings are reminiscent of mGluR-LTD in
the CA1 region of the hippocampus of adult rats [22,23].
Since this latter form of LTD is blocked by broad spectrum
PTP inhibitors, we tested orthovanadate and phenylarsine
oxide (PAO) on mAChR-LTD. Both orthovanadate (100
μM, 101% ± 5%, n = 5) (Figure 2E) and PAO (1.5 μM,
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Properties of CCh-induced LTD in the CA1 region of the hippocampusFigure 1
Properties of CCh-induced LTD in the CA1 region of the hippocampus. (A) A pooled data (n = 8) of EPSC amplitude 
vs time to show that carbachol application (CCh, 50 μM, 10 min) induces mAChR-LTD. (B) D-AP5 (50 μM) has no effect on 
mAChR-LTD (n = 9). (C) mAChR-LTD was prevented by bath application of an M1 mAChR antagonist, pirenzepine (0.5 μM, n 
= 5). (D) The M1 specific agonist, 77-LH-28-1, induces LTD (n = 6). (E) D-AP5 (50 μM) has no effect on LTD induced by 77-
LH-28-1 (n = 5). (F) Pirenzepine (0.5 μM) prevents LTD induced by 77-LH-28-1 (n = 7). (G) Co-application of LY367385 (100 
μM) and MPEP (50 μM) has no effect on mAChR-LTD (n = 6). (H) An example of biotinylation from hippocampal slices. Pooled 
data (n = 4) shows that CCh induces internalisation of GluA2. Error bars represent s.e.m.
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Signalling mechanisms involved in mAChR-LTDFigure 2
Signalling mechanisms involved in mAChR-LTD. (A) Cyclopiazonic acid (2 μM) has no effect on mAChR-LTD (n = 6). 
(B) Ro 32-0432 (10 μM) has no effect on mAChR-LTD (n = 6). (C) Okadaic acid (100 nM) has no effect on mAChR-LTD (n = 
5). (D) Anisomycin (20 μM) has no effect on mAChR-LTD (n = 7). (E) Orthovanadate (100 μM) prevents the induction of 
mAChR-LTD (n = 5). (F) GDPβS (1 mM) blocks the induction of mAChR-LTD (n = 6). (G) A summary of results from control 
(n = 8), BAPTA (n = 9), cyclopiazonic acid (n = 6), PKC19–31 (n = 9), Ro 32-0432 (n = 6), okadaic acid (n = 5), cyclosporin A 
(n = 7), anisomycin (n = 7), cycloheximide (n = 7), orthovanadate (n = 5), phenylarsine oxide (n = 7) and GDPβS (n = 6), exper-
iments. * P < 0.05 vs control ** P < 0.01 vs control.
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93% ± 7%, n = 7) (data not shown) blocked mAChR-LTD.
Finally, we tested whether, like mGluR-LTD [32], mAChR-
LTD requires activation of G-proteins or whether it oper-
ates in a G-protein independent manner (see [33]). Post-
synaptic inclusion of guanosine-5'-O-(2-
thiodiphosphate) (GDPβS) inhibited mAChR-LTD (1
mM, 91% ± 6%, n = 6) (Figure 2F), confirming that a G-
protein signalling mechanism is involved. These results,
which are summarised in Figure 2G, show that mAChR-
LTD involves very similar signalling mechanisms to that
previously described for mGluR-LTD in adult hippocam-
pus [22,23,32].

An interaction between GluA2 and GRIP is necessary for 
mAChR-LTD
How activation of PTPs results in LTD is not known, but
the finding that both mGluR-LTD and mAChR-LTD
involve internalisation of AMPARs suggests that proteins
that interact with these receptors might be involved. In the
ventral tegmental area (VTA) it has been shown that
blocking the interaction between GluA2 and PICK1, with
the peptide inhibitor pep2-EVKI (YNVYGIEEVKI) [34,35],
prevents mGluR-LTD [36]. In addition, blocking GluA2
interactions with PICK1 also prevents mGluR-LTD in the
cerebellum [37]. We therefore included pep2-EVKI (100
μM) in the whole-cell solution and compared its effects
with that of a control peptide, pep2-SVKE (100 μM),
which has no effect on GluA2-PDZ interactions [34,35].
We found that neither pep2-EVKI (64% ± 6%, n = 9) (Fig-
ure 3A) nor pep2-SVKE (67% ± 13%, n = 6) (Figure 3A)
had any effect on mAChR-LTD. We therefore tested pep2-
SVKI (YNVYGIESVKI), which in addition to blocking
PICK1 interactions with GluA2 also blocks GRIP (ABP)
interactions with this subunit [34,35]. We found that
pep2-SVKI (100 μM) caused a characteristic run-up in syn-
aptic transmission [35] and, most surprisingly, blocked
mAChR-LTD (97% ± 9%, n = 8) (Figure 3B). These inter-
fering peptide experiments suggest that GRIP rather than
PICK1 is involved in mAChR-LTD.

Given the identical signalling cascades triggered by both
M1 and mGlu5 receptors it was natural to assume that
pep2-SVKI should also block DHPG-LTD. Remarkably,
however, it did not. Thus, the levels of LTD induced in
cells loaded with pep2-SVKE (54% ± 8%, n = 6) (Figure
3C) and pep2-SVKI (61% ± 4%, n = 6) (Figure 3D) were
not significantly different. These results demonstrate a
divergence at the level of AMPAR trafficking between
these two forms of LTD, despite the similarity in signal
transduction mechanisms.

GRIP1-Liprin-α association has a critical role in mAChR-
LTD
We sought an explanation how GRIP might be involved in
mAChR-LTD. In this context, an association between

GRIP and liprin-α is important for synaptic targeting of
AMPA receptors [38,39]. Liprin-α directly interacts with
GRIP through its PDZ6 domain [38] and it also recruits
leukocyte common antigen-related receptor (LAR) to
GRIP [39]. LAR is a PTP that is known to be involved in
axonal guidance and neuronal development including
cholinergic network formation [40,41]. Therefore we
determined whether the GRIP-liprin-α association has a
role in mAChR-LTD.

To investigate the potential role of the GRIP-liprin-α asso-
ciation in mAChR-LTD we included a peptide in the patch
pipette (TVRTYSC) (100 μM) that corresponds to the C-
terminal region of liprin-α, which is the interaction site
with the PDZ6 domain of GRIP [38]. We interleaved these
experiments with a control peptide (TVRTASC) (100 μM),
which is unable to bind to GRIP due to an alanine substi-
tution for tyrosine in the -2 position [38]. Whilst the C-
terminal fragment blocked mAChR-LTD (98% ± 9%, n =
6) (Figure 4A) the control peptide did not (59% ± 7%, n
= 5) (Figure 4B). To investigate whether the GRIP-liprin-α
interaction is specifically required for mAChR-LTD we
also investigated both mGluR-LTD and NMDAR-LTD.
Interestingly, neither the active (60% ± 8%, n = 7) (Figure
4C) nor control (59% ± 9%, n = 8) (Figure 4D) peptides
had any effect on DHPG-LTD. Similarly, the active (62%
± 3%, n = 6) (Figure 4E) and control (62% ± 6%, n = 6)
(Figure 4F) peptides were also without effect on NMDA-
induced LTD. These data indicate a specific role for the
interaction between GRIP and liprin-α in the induction of
mAChR-LTD (see Figure 5).

Discussion
In the present study we have investigated a form of LTD
involving muscarinic activation that leads to tyrosine
dephosphorylation and the removal of AMPARs from the
cell surface. Novel aspects of this work include the obser-
vations that the process involves interactions between the
GluA2 subunit and GRIP and between GRIP and liprin-α,
a protein that targets the PTP, LAR to GRIP. Remarkably,
LTD induced by group I mGluRs does not utilise this same
set of protein interactions, despite being triggered by acti-
vation of the same class of G protein and involving similar
signal transduction mechanisms. These results point to a
hitherto unexpected and remarkable degree of specificity
in the protein: protein interactions that are involved in
very similar forms of synaptic plasticity.

Receptor mechanisms involved in CCh-LTD
LTD induced by the activation of muscarinic ACh recep-
tors has been described in several brain regions, in partic-
ular the hippocampus [13,19-21,42], visual cortex [13-
15,43] and perirhinal cortex [16,17]. In some instances
the LTD is dependent on the activation of NMDARs
[13,19,43] whilst in others it is not [14,16,20]. It is estab-
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lished that stimulation of muscarinic receptors can facili-
tate the activation of NMDARs [44-46]. It is likely
therefore that the LTD that is sensitive to NMDAR block-
ade involves a muscarinic modulation of NMDAR-
dependent LTD. In contrast, the LTD that is insensitive to
NMDAR blockade is an independent form of LTD. In the
present study the LTD that we have studied was of the lat-
ter variety since it was unaffected by D-AP5. This LTD
resembles that induced by other Gq coupled receptors,
such as the extensively characterised LTD induced through
the activation of group I mGluRs by DHPG [e.g. [47-52]].

Other Gq coupled receptors can also induce LTD [21,53]
suggesting that these neurotransmitters converge at the
level of the G-protein with respect to their involvement in
LTD. Consistent with previous work, CCh-induced LTD is
mediated via activation of M1 receptors [14,19] whilst the
initial depression requires activation of a different mus-
carinic subtype [19,42].

Signalling mechanisms involved in mAChR-LTD
We tested a number of different inhibitors of cell signal-
ling pathways to elucidate the pathways that lead from

Interactions between GluA2 and GRIP, but not PICK1, are required for mAChR-LTDFigure 3
Interactions between GluA2 and GRIP, but not PICK1, are required for mAChR-LTD. (A) Neither pep2-SVKE (n 
= 6) nor pep2-EVKI (n = 9) has any effect on mAChR-LTD. (B) Pep2-SVKI prevents mAChR-LTD (n = 8). (C) Pep2-SVKE (n = 
6) has no effect on mGluR-LTD. (D) Pep2-SVKI (n = 6) has no effect on mGluR-LTD.
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Interaction between liprin α and GRIP is required for mAChR-LTDFigure 4
Interaction between liprin α and GRIP is required for mAChR-LTD. (A) Intracellular infusion of the C terminal frag-
ment of liprin α (TVRTYSC) prevents induction of mAChR-LTD (n = 6). (B) A control peptide (TVRTASC) has no affect on 
mAChR-LTD (n = 5). (C) TVRTYSC (n = 7) has no effect on mGluR-LTD. (D) TVRTASC (n = 8) has no effect on mGluR-LTD. 
(E) TVRTYSC (n = 6) has no effect on NMDAR-LTD. (F) TVRTASC (n = 6) has no effect on NMDAR-LTD.
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mAChR activation to AMPAR internalisation. In many
cases we obtained negative results but this is not due to
ineffective inhibition of the target compound. Not only
were the inhibitors applied directly to the postsynaptic
cell via the patch pipette, at concentrations known to be
effective in other experiments, but in most cases we
found, during parallel experiments, that the same com-
pounds were effective on other forms of synaptic plasticity
(e.g. [54]).

Compared to DHPG-LTD very little is known about the
downstream signalling during mAChR-LTD. Classically,
stimulation of M1 receptors leads to activation of PKC
and the release of Ca2+ from intracellular stores. However,
we found no evidence that either limb of this pathway was
involved in mAChR-LTD. The lack of effects of PKC inhib-
itors agree with previous studies of LTD induced by carba-
chol [14] and DHPG [55,56]. The effect of interfering with
Ca2+ stores is less clear, since a partial inhibition by CPA
of CCh-LTD was observed in perirhinal cortex [16]. This
might reflect a difference in brain region. In the present
study, the LTD studied was also unaffected by BAPTA. This
insensitivity to the chelation of intracellular Ca2+ has also
been reported for DHPG-LTD [57], and suggests that the
signalling pathways involved in these Gq-dependent
forms of synaptic plasticity can be Ca2+-independent. Pre-

vious work has implicated protein synthesis in mAChR-
LTD. In two of these studies the effect of protein transla-
tion inhibitors were apparent rapidly but were only par-
tially effective [16,20] whilst in another study these same
inhibitors only affected mAChR-LTD after a delay of more
than an hour [14]. In agreement with the latter report, we
found no effect of protein translation inhibitors on
mAChR-LTD during the duration of our experiments. A
similar dichotomy has been reported with mGluR-LTD,
with reports of both protein synthesis dependence [49]
and independence [23], for reasons that are not clear. In
terms of treatments that were effective, we did find that
inhibition of PTPs completely prevented the induction of
mAChR-LTD. This observation, together with the insensi-
tivity to a serine/threonine protein phosphatase, again
highlights similarities between mAChR-LTD and mGluR-
LTD [22,23]. In summary, we can conclude that activation
of M1 receptors results in the loss of surface AMPARs and
the generation of LTD via a Ca2+-independent signalling
cascade that involves one or more types of PTP.

A role for GRIP in mAChR-LTD
Our study has demonstrated that mAChR-LTD induced by
carbachol application is dependent on the internalisation
of GluA2-containing AMPA receptors (see also [20]). A
number of studies have shown that the induction of vari-

A novel mechanism of LTD involving liprin-α and LARFigure 5
A novel mechanism of LTD involving liprin-α and LAR. Activation of mAChRs leads to a G-protein dependent 
mAChR-LTD that does not involve the canonical pathway (IP3 and PKC). The data can most simply be explained by GRIP act-
ing as a targeting molecule that brings LAR and the GluA2 subunit of AMPARs into contact. This then enables LAR to dephos-
phorlyate a tyrosine residue (such as YGIESVKI on GluA2) which initiates the removal of the AMPAR from the synapse.
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ous forms of LTD involves phosphorylation and dephos-
phorylation events, which regulate interactions of PDZ
domain proteins with AMPA receptors and induce AMPA
receptor mobilisation (see, [58]). In particular, endocyto-
sis of GluA2-containing AMPA receptors has previously
been suggested to involve the PICK1-GluA2 interaction
and a dependency upon PKC phosphorylation of S880 on
the GluA2 subunit [59-62]. Indeed, there is considerable
evidence for a role of PICK1 in mGluR-LTD in a variety of
brain regions, including the cerebellum [37,63,64], VTA
[65] and perirhinal cortex [54]. Surprisingly, therefore, we
obtained no evidence for a role of PICK1 in mAChR-LTD
in the hippocampus. This observation suggests that
despite coupling to the same G-proteins and utilising sim-
ilar signal transduction methods, mGluR-LTD and
mAChR-LTD exploit different mechanisms at the level of
AMPAR trafficking.

Whilst we found no evidence for a role of PICK1 in
mAChR-LTD, we did find evidence of an essential role for
GRIP. Although GRIP, and the related protein ABP, are
established as important interactors with AMPARs
[35,59,66,67] their precise roles are not known. For exam-
ple, GRIP has been implicated in the stabilisation of
AMPARs at synapses [59,61,62] and intracellular
organelles [35,68] as well as in the sorting and transport
of AMPARs [69,70]. Our results suggest that GRIP is also
involved in the regulated synaptic removal of AMPARs.
Specifically, blocking the interaction of GRIP with GluA2
prevents mAChR-LTD. This suggests that GRIP targets
machinery to GluA2 that is involved in their synaptic
removal. Remarkably, this effect is not part of a general-
ised LTD mechanism triggered by Gq-coupled receptor
activation since mGluR-LTD was completely unaffected
by blockade of the GluA2-GRIP interaction.

A role for liprin-α in mAChR-LTD
An important interactor of GRIP is liprin-α (SYD2). This
molecule binds to PDZ6 of GRIP and is involved in the
surface expression and synaptic clustering of AMPARs
[38]. Whether liprin-α is involved in the acute regulation
of AMPAR synaptic expression, as occurs during LTP and
LTD, is unknown. Our data, showing that a peptide capa-
ble of blocking the interaction of liprin-α with GRIP
blocks mAChR-LTD, is consistent with the possibility that
liprin-α plays a role in the rapid removal of AMPAR from
synapses. Consistent with the unique role of GRIP in
mAChR-LTD we found that the peptide designed to block
the interaction between GRIP and liprin-α selectively
blocks mAChR-LTD, having no effect on two other forms
of LTD.

This raises the question as to how liprin-α might be func-
tioning in mAChR-LTD. It is known that liprin-α binds
the leukocyte common antigen-related (LAR) family

receptor protein tyrosine phosphatase (LAR-RPTP). These
PTPs are enriched at synapses and form complexes with
GRIP and AMPARs [39], making them potential phos-
phatases involved in synaptic plasticity. Indeed, LAR-
RPTPs could be the target of the broad spectrum PTP
inhibitors that we have shown block mAChR-LTD. In con-
trast, since mGluR-LTD does not involve liprin-α, it is
likely that it utilises a different PTP, such as STEP [71].
Conversely, NMDAR-LTD does not seem to involve PTPs
of any kind, rather it involves serine/threonine protein
phosphatases [31] and protein tyrosine kinases (PTKs)
[72,73]. What is most clear from the present results is that
there is a specific mechanism that is engaged for the regu-
lation of synaptic AMPARs by the stimulation of mus-
carinic receptors, which is distinct from that employed by
the activation of glutamate receptors. This might relate to
the differences in the location of the glutamate receptors
and muscarinic receptors that are activated by their respec-
tive neurotransmitters.

Significance of the findings for cognition
The critical involvement of ACh in cognition is well estab-
lished. It is likely that the ability of muscarinic receptor
activation to modulate NMDAR-dependent synaptic plas-
ticity and to induce synaptic plasticity in an NMDAR-
independent manner are both important aspects of this
function. Dissecting the relative roles of the cholinergic
modulation of NMDAR-dependent synaptic plasticity and
the cholinergic induction of LTD will be important chal-
lenges for the future. Interestingly, mGluR-LTD and
mAChR-LTD are likely to be evoked under quite different
conditions. The former requires strong activation of gluta-
matergic pathways and constitutes a form of homosynap-
tic plasticity. In contrast, mAChR-LTD can be induced
with little or no activation of the glutamatergic system,
and hence constitutes a form of heterosynaptic plasticity.
In this way, cholinergic activation could simultaneously
boost both NMDAR-dependent synaptic plasticity at
strongly active inputs and depress transmission at inac-
tive, or weakly active, inputs.

Conclusion
We have identified a novel mechanism of synaptic plastic-
ity that is specifically engaged during muscarinic receptor
activation. This mechanism is not utilised by mGluR acti-
vation, demonstrating that different Gq-coupled receptors
can affect AMPAR trafficking via distinct molecular mech-
anisms.

Methods
Electrophysiology
Hippocampal slices were obtained from 4–5 week old
male Wistar rats. Animals were sacrificed by cervical dislo-
cation in accordance with the UK Animals Scientific Pro-
cedures Act of 1986. The brains were quickly removed and
Page 9 of 12
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transferred into ice-cold artificial cerebrospinal fluid
(aCSF; bubbled with 95% O2/5% CO2) containing the
following: (mM) NaCl, 124; KCl, 3; NaHCO3, 26;
NaH2PO4, 1.25; CaCl2, 2; MgSO4, 1; D glucose, 10. Sub-
sequently, a mid-sagittal cut was made in the brain and
one hemisphere was placed back into the ice cold aCSF
until it was required. Transverse hippocampal slices (400
μm) were prepared using either a vibratome (Leica, Nuss-
loch, Germany) or a McIllwain tissue chopper (Mickle
Laboratory Engineering Co. Ltd., Gomshall, UK). The
slices were then submerged in aCSF (20°C–25°C) for at
least 1 hour before recording. Slices were then transferred
to the recording chamber and perfused with aCSF (28°C–
30°C, flow rate 2~3 ml/min). Before recording, the CA3
region of the hippocampus was severed using a scalpel
cut.

Whole-cell recordings were made from pyramidal cells in
the CA1 region of the hippocampus (Axopatch 200 B
amplifier, Molecular Devices, Sunnyvale, California). The
patch pipette (resistance – 4–7 MΩ), pulled from borosil-
icate glass, was filled with a solution composed of (mM)
CsMeSO4, 130; NaCl, 8; Mg-ATP, 4; Na-GTP, 0.3; EGTA,
0.5; HEPES 10; QX-314, 6 (280 mOsm [pH 7.2]). CA1
pyramidal neurons were voltage clamped at -70 mV and
AMPA receptor-mediated synaptic currents were meas-
ured in the presence of picrotoxin (20 μM). Stimulating
electrodes placed into the Schaffer collateral-commissural
pathway, in the CA2 region, delivered stimuli at a fre-
quency of 0.033 Hz. Series resistance and input resistance
were monitored during the experiment and experimental
data was not included if changes > 10% were seen.

In all experiments a baseline of at least 10 minutes was
obtained before application of CCh or 77-LH-28-1. After
drug application a washout period of 30–40 minutes was
obtained. In experiments where pep2-SVKI, pep2-SVKE,
pep2-EVKI, TVRTYSC and TVRTASC were incorporated
into the pipette filling solution (Figure 3 and 4) a 20–30
minute baseline was obtained to ensure effective loading
of the peptide and for stabilization of any effects on base-
line transmission. The peptides, pep2-SVKI, pep2-SVKE
and pep2-EVKI were purchased from Tocris (Bristol, UK)
while TVRTYSC and TVRTASC were purchased from Pep-
tide Protein Research LTD (Fareham, Hampshire, UK).
BAPTA, cyclopiazonic acid, Ro 32-0432, PKC19-31, oka-
daic acid, cyclosporin A, anisomycin, cycloheximide,
orthovanadate, phenylarsine oxide and GDPβS were
added to the whole cell-patch filling solution. These
chemicals were purchased from Calbiochem (California,
U.S.A.). Picrotoxin, pirenzepine, and LY367385 were pur-
chased from Tocris (Bristol, UK). Carbachol was pur-
chased from SigmaAldrich (St Louis, U.S.A.). MPEP and
D-AP5 was purchased from Ascent Scientific (Bristol, UK).
These chemicals were made up as a stock solution and

diluted to their final appropriate concentration in aCSF as
required (indicated in Figures).

Biotinylation
Surface expression of GluA2 was analysed with a commer-
cial surface labelling kit according to the manufacturer's
instructions (Thermo Fisher Scientific Inc., Rockford, IL,
USA). Briefly, 400 μm thick hippocampal slices (6 slices
for each lane) were incubated with aCSF containing 1 mg/
ml sulfosuccinimidyl-6-(biotinamido) hexanoate for 45
min on ice, quenched by further incubation in aCSF con-
taining 100 mM glycine, and followed by two washes in
ice-cold Tris-buffered saline (50 mM Tris, pH 7.5, 150 mM
NaCl). Crude cell lysates were prepared in modified RIPA
buffer containing 50 mM Tris (pH 7.6), 150 mM NaCl,
0.5% Triton X-100, 0.5% sodium deoxycholate, 0.1%
SDS, 5 mM NaF, 1 mM Na3VO4 and protease inhibitor
cocktail (SigmaAldrich, St Louis, U.S.A.). Small aliquots
of each lysates were kept for total GluA2 protein levels.
The detergent-solubilized lysates were incubated with 50
μl of hydrated Neutravidin-Agarose beads for 4 h at 4°C
to isolate biotinylated proteins. After the Neutravidin
beads were washed four times with the RIPA buffer,
bound proteins were eluted with SDS sample buffer by
boiling for 5 min. Isolated biotinylated proteins and
whole cell lysates were subsequently analyzed by western
blotting with monoclonal anti-GluA2 (1:1,000; 556341,
BD Bioscience, Frankin Lakes, NJ, USA). Immunoreactive
bands were then probed with HRP-conjugated secondary
antibody for 1 h and developed using the ECL detection
system (Thermo Fisher Scientific Inc.). Equal loading of
isolated surface proteins was confirmed based on silver-
stained bands profiles on gels that were pre-run with
small aliquots of samples. Optical densities of immunore-
activities were quantified using NIH ImageJ software
(downloaded from http://rsb.info.nih.gov/ij/).

Data Analysis
A sophisticated, free data acquisition and analysis pack-
age, the "LTP program" [74], was used to record the data,
which had been filtered at 2 kHz and digitized at 10 kHz.
During whole cell patch recording excitatory postsynaptic
current (EPSC) amplitude, series resistance, DC current
and input resistance were recorded. To graphically display
the data, the amplitude of the EPSCs was normalized
against baseline values and plotted against time. In the fig-
ures each data point represents the average of two raw
data points. In each figure, data are shown as mean ± SEM.
Where appropriate, the statistical significance of the data
was established through use of a Student's t test, which
was performed on EPSC amplitude measurements
obtained during the 5 minutes before and between 25 and
30 minutes following washout of the muscarinic agonist.
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