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The role of orexin in post-stroke inflammation,
cognitive decline, and depression
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Abstract

Ischemic stroke results in diverse pathophysiologies, including cerebral inflammation, neuronal loss, cognitive
dysfunction, and depression. Studies aimed at identifying therapeutic solutions to alleviate these outcomes are
important due to the increase in the number of stroke patients annually. Recently, many studies have reported that
orexin, commonly known as a neuropeptide regulator of sleep/wakefulness and appetite, is associated with
neuronal cell apoptosis, memory function, and depressive symptoms. Here, we briefly summarize recent studies
regarding the role and future perspectives of orexin in post-ischemic stroke. This review advances our understanding of
the role of orexin in post-stroke pathologies, focusing on its possible function as a therapeutic regulator in the
post-ischemic brain. Ultimately, we suggest the clinical potential of orexin to regulate post-stroke pathologies.
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Introduction
Ischemia resulting from a disturbance of cerebral blood
flow is one of the leading causes of morbidity and mor-
tality worldwide, resulting in permanent disability [1,2].
The prevalence of stroke was estimated almost 5.7
million people in 2005 [2,3] and was expected the
increase of prevalence in the future according to global
researches [4-6]. Stroke is related to several diseases, in-
cluding hypertension, dyslipidemia, and obesity [7,8].
Recently, stroke has emerged as a direct cause of
dementia [9]. Some stroke patients are diagnosed with
dementia or show cognitive decline [10]. Additionally,
new-onset dementia occurs in 5.4% of patients older
than 60 years and 10.4% of patients older than 90 years
1 year after a stroke [11]. Furthermore, several studies
indicate a strong relationship between stroke and de-
pression [12-14]. Several studies also report that the
prevalence of post-stroke depression is more than 22.5%
[13,14]. Orexin peptides (orexin-A and orexin-B) pro-
duced by the lateral hypothalamus are known to regulate
feeding, energy homeostasis, neuroendocrine activities,
and the sleep-wake cycle by binding to orexin-1 (OX1R)
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and orexin-2 (OX2R) receptors [15-18]. OX1R is com-
monly present in the tenia tecta, dorsal raphe nucleus
and Cornu Ammonis (CA)1, CA2, indusium griseum,
septohippocampal nucleus in brain [19,20]. OX2R is
abundant in brain regions related to basal ganglia such
as the ventral striatum and subthalamic nucleus
[19,21-23]. Some studies have elucidated the role of
orexin in blood pressure regulation [24], inflammation
[25], memory function [26,27], and depression [28]. In
this review, we highlight recent studies regarding the
role of orexin in the brain following ischemic stroke,
particularly emphasizing studies on the role of orexin in
inflammation, cognitive dysfunction, and depression fol-
lowing post-ischemic stroke.
Post-ischemic stroke
Inflammation following a stroke
Ischemic stroke results in inflammation in the brain,
which can directly influence the repair of neural damage
and subsequent pathologies [29]. Inflammation is com-
monly regarded as necessary for the clearance of the
large amount of debris caused by brain cell necrotic
death [30,31]. After a stroke, cerebral inflammation
exacerbates vascular dysfunction and leads to severe
neuronal cell death [32]. Post-ischemic inflammation,
which is a crucial process in the pathophysiology of is-
chemic stroke, is associated with post-stroke prognosis
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[29,30,32-35]. The distinct features of ischemic stroke
are not only a large amount of necrotic neuronal death
but also extreme infiltration of immune cells [29,30].
After the mild middle cerebral artery occlusion,
cytochrome-C release and caspase processing are ob-
served at 6 and 9 hour, and cell death are reported the
severe inflammation of post-ischemic stroke between 24
and 72 hour [29,32]. Severe inflammation results in sec-
ondary brain damage [36] such as cerebral swelling (i.e.,
brain edema), which is often fatal in ischemic stroke pa-
tients [29,30]. Modulation of the inflammatory response
after a stroke is important due to the direct association
between inflammation and secondary damage following
a stroke.

Cognitive impairment following a stroke
According to recent studies, stroke is an emerging risk
factor for dementia [37]. A previous study identified de-
mentia after a stroke as vascular dementia [38]. How-
ever, a recent study used the term post-stroke dementia
(PSD) to define any dementia occurring after a stroke
[39]. PSD includes all dementias occurring after a stroke,
including vascular dementia, Alzheimer’s disease (AD),
and mixed dementia (vascular dementia with AD)
[39,40]. Dementia is associated with neuronal dysfunc-
tion and neuronal death, causing cognitive impairment
[41]. Approximately 30% of stroke patients suffer cogni-
tive impairment after a stroke [42] and develop dementia
within 1 year of stroke onset [43]. Some clinical studies
also report the presence of AD-related pathogenesis in
one-third of dementia cases after a stroke [44]. Accord-
ing to recent studies, a high proportion of stroke
patients exhibit cognitive impairment within 3 months
after a stroke [45], and 47.3% of first-stroke patients
show memory loss 3 month after a stroke [46]. There-
fore, several studies have continued to search for thera-
peutic solutions for PSD. One study utilizing a middle
cerebral artery occlusion (MCAO) animal model sug-
gests that reduced activity of extracellular regulated
protein kinase (ERK) in the bilateral hippocampi may
contribute to cognitive impairment after ischemic
stroke [47]. Another study focused on a novel neuro-
transmitter that could decrease hippocampal neuronal
damage and thereby alleviate cognitive impairment
after ischemic stroke [48].

Depression
Depression following ischemic stroke is termed post-
stroke depression and is considered the most frequently
observed psychiatric problem after cerebral ischemia
[49]. A recent study reports that the prevalence of de-
pression after a stroke ranges from 39% to 52% within
5 years following a stroke [12]. Post-stroke depression
commonly occurs approximately 2 to 3 years following a
stroke [50]. In the 1970s, the identification of depression
following a stroke led to the concept that clinical depres-
sion after a stroke could be a consequence of brain dam-
age [51,52]. A recent study reports that 33% of all stroke
survivors show depressive symptoms based on research
conducted between 1977 and 2002 [53]. In addition,
clinical studies report that post-stroke depression could
affect the recovery of function and cognitive ability
[54-56]. One study reports that stroke patients who
show improvements in cognitive function in the
3 months following the onset of a stroke show greater
improvements in their levels of depression [57]. Post-
stroke depression is an important issue that it is linked
to the progression of other stroke pathologies and could
affect functional recovery after a stroke.

Orexin
The orexins, named for the Greek word for appetite
[58], stimulate appetite [58] and are the common name
given to the neuropeptide and the neurotransmitter [21]
called orexin-A and orexin-B (also known as hypocretin-1
[HCRT-1] and hypocretin-2 [HCRT-2]) [58,59]. Orexins
work by activating two G-protein-coupled receptors that
are differentially expressed throughout the brain [19,20],
orexin receptor 1 (OXR1) and orexin receptor 2 (OXR2)
(also named HCRTR1 and HCRTR2 [60]). Orexin-A has
equal affinity for both OXR1 and OXR2 receptors,
whereas orexin-B acts primarily on OX2R [21,61,62]. The
activation of OX2R by orexin-A or -B opens nonselective
cation channels to depolarize orexin neurons [63], and
regulates the opening of K channels [64,65], and promotes
the release of presynaptic glutamate [63,66], and gamma-
aminobutyric acid (GABA) [64]. Particularly, orexin-A
rapidly crosses the blood–brain barrier (BBB) [67].
Orexins are produced by neurons mainly located in the
lateral hypothalamic area [58,68]. These neurons send
widespread projections into the prefrontal cortex,
hippocampus, thalamus, and hypothalamus [69]. Orexin
neurons also play crucial roles in the regulation of sleep
and wakefulness [58,70,71], appetite [72-74], and energy
homeostasis [75]. Orexin neurons detect nutritional status
by reacting to peripheral metabolic signals such as glucose
and appetite-related hormones (leptin and ghrelin) [76-78]
and controlling the production glucose [79-81] and vital
gases [82], and also receive the various neural signal inputs
[83]. Moreover, orexin projected to cardiovascular regula-
tory centers in the hindbrain [21], and projected to the
areas including locus coeruleus, raphe nuclei, parabrachial
nuclei, central gray and nucleus tractus solitarius [69]
which regulate peripheral blood pressure [69,84,85].
Several studies also show the cardiovascular effect of
orexin through intracisternal and intrathecal injections of
orexin-A and -B in the vasopressor area of the brain
[86,87]. One study reports that orexin knock-out mice
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exhibit a reduced basal blood pressure response to moti-
vated behavior [88]. In addition, the orexinergic system
plays important roles in the regulation of depression-
related neurophysiological processes, including cognitive
processes [89,90]. The projection of orexinergic neurons
to the hippocampus is implicated in learning and memory
function [26,27,91]. Recent studies show that the nasal
administration of orexin-A alleviates cognitive impairment
in orexin/ataxin-3-transgenic mice [92]. Another clinical
study demonstrates that lower orexin-A levels in cerebro-
spinal fluid are involved in learning and memory impair-
ments caused by epilepsy [93]. Orexin levels in plasma
and hypothalamus in brain were reduced in animal study
[94] and orexin’s concentration in serum and cerebro-
spinal fluid (CSF) also were low level in stroke patients
[95]. Considering the results of these previous studies,
orexins may play multiple roles by binding orexin recep-
tors in diverse pathophysiologies after a stroke and the
development of brain injury.

The role of orexin in post-ischemic stroke
The relationship between orexin and risk factors for a
stroke
Orexin is involved in blood pressure regulation [96,97].
Orexin knock-out mice and orexin neuron-ablated
transgenic rats have lower basal blood pressure [24,98].
Additionally, the orexin system participates in the patho-
genesis of high blood pressure in spontaneously hyper-
tensive rats [24,99]. One study reported that the
blockage of orexin receptors attenuates blood pressure
in hypertensive rats [97]. In another in vivo study, the
central administration of orexin in animals increases
arterial blood pressure and heart rate, and these effects
are attenuated by treatment with orexin receptor antago-
nists [100-104]. Intracerebroventricular injection of
orexin-A increases arterial pressure in rats and rabbits
[85,105]. One study demonstrated that intravenous
administration of orexin decreases infarct volume by
increasing cerebral blood flow [106]. Acute intracerebro-
ventricular injection of orexin-B also increases arterial
pressure [85]. Given that blood pressure is a risk factor
for a stroke [107-109], the promotion of orexin secretion
may be involved in the onset of stroke by regulating
blood pressure.

The role of orexin in inflammation after a stroke
Several studies demonstrate that orexin-A inhibits apop-
tosis and lipid peroxidation in a hypothalamic cell model
[25,106,110]. Another study reports that inflammation
conditions induced by lipopolysaccharide administration
lead to orexin neuron damage [111]. Recent studies
highlighted the anti-inflammatory function of orexin in
neuroinflammation diseases [112]and oxidative stress
caused by cerebral ischemia [113]. In addition, orexin-A
mRNA level is decreased under acute inflammation con-
ditions [114]. The cellular response to orexin receptor
activation is increased intracellular Ca2+ influx by pro-
tein kinase C-dependent activation or voltage-gated Ca2+

receptors [115,116]. The common downstream pathways
of activated orexin receptors involve the activity of
extracellular-signal-regulated kinases (ERK1/2) and p38
mitogen-activated phosphate kinase (MAPK) [116,117].
Tumor necrosis factor alpha (TNF-α), a proinflammatory
cytokine, impairs the function of the orexin system by de-
creasing levels of both prepro-hypocretin and OXR2
[118]. Moreover, intracerebroventricular administration of
orexin-A before MCAO in rats [119,120] and mice [110]
reduces infarct size. Orexin-A alters intracellular meta-
bolic function and cell survival in neuronal tissue and cells
[110,120-122]. Recent studies show that orexin-A exerts
neuroprotective effects, including the activation of
hypoxia-inducible factor-1α (HIF-1α) and reduction of
oxidative stress [110,120]. Orexin-A increases ATP via
induction of the transcription factor HIF-1α in mouse
hypothalamic tissue under normoxic conditions [121].
Under ischemic conditions, orexin-A promotes the sur-
vival of primary cortical neurons in vitro and alleviates
neuronal damage by modulating post-ischemic glucose in-
tolerance in vivo [110,121]. In several clinical studies, a
direct association between immunological problems
[123-125] and orexin cell loss [126,127] is found in some
narcolepsy patients. Indeed, narcolepsy patients exhibit el-
evated levels of TNF-α, interleukin (IL)-6, and p75 in their
blood [128]. In addition, recent study reported that
orexin-A regulates infection-induced inflammation by
modulating the IL-6 and TNF-α in microglia and has
protective role against ischemia stress [113]. Based on
upper evidences, the elevation of orexin production may
attenuate inflammation after a stroke and reduces the in-
farct size in brain.

The role of orexin in cognitive impairment following a
stroke
Orexins play a positive role in learning and memory
function, suggesting that they are directly associated
with the arousal process [26,129]. Orexin and its recep-
tors (OX1R and OX2R) are widely distributed through-
out the brain and thereby regulate learning and memory
functions [26,27,91]. Specifically, orexin-A enables the
acquisition, consolidation, and retrieval of learning and
memory in a passive avoidance task even in the presence
of an over-production of beta amyloid [27,91,130]. To
date, some studies indicate an emerging role of the
orexin system in the avoidance test [27,91,130] and
Morris water maze test [26,131]. In detail, the inhibition
of hippocampal OX1R using OX1R antagonism occurs
in a deficit in cognitive processes based on the results of
morris water maze task [131]. Also, the role of orexin-A
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demonstrated the contribution in the memory process-
ing thorough T-maze footshock avoidance test and step-
down inhibitory avoidance [27]. Orexins could increase
the release of corticotrophin-releasing hormone (CRH)
as well as the circulating levels of adrenocorticotropic
hormone and glucocorticoids in the bloodstream
[132,133]. Consequently, orexins are considered crucial
regulators of monoaminergic neurotransmission [75]. A
recent study shows that the activation of orexin neurons
disrupts sleep [134]. The lateral hypothalamus is the
most extensively interconnected area of the hypothal-
amus, allowing it to control diverse autonomic and
somatomotor functions. Several studies have revealed
direct projections from the lateral hypothalamus to
hypothalamic, cortical, and limbic areas [135,136]. These
connections are considered to represent the anatomical
connectivity that supports sleep-wake regulation
[69,137], energy homeostasis, and cognitive functions
[138,139]. The function of the lateral hypothalamus de-
pends on the function of orexin neurons that produce
orexin-A and -B [21]. In an AD animal study, orexin
was confirmed to improve memory in mice overprodu-
cing amyloid beta [27]. Additionally, treatment with
orexin-A and OX1R exerts a neuroprotective effect and
improves learning and memory in epilepsy [140]. Hippo-
campal neurogenesis plays a cardinal role in learning
and memory, and the proliferation of immature neurons
is particularly important due to their contribution to
Figure 1 The schematic image regarding the function of orexin in post-
after stroke such as inflammation, memory dysfunction, and depression. In inf
production to reduce the oxidative stress and stimulates the immune cells ag
stroke, orexin alleviates the learning impairment by regulating the secretion o
the neurogenesis. In depression caused by stroke, orexin plays a beneficial rol
long term potential.
cognition [141-143]. Orexin-A and its receptors partici-
pate in neuronal cell proliferation and developmental
mechanisms [144]. Considering upper evidences, we
assume that the increase of orexin may improve cogni-
tive impairment following a stroke.

The role of orexin in depression following a stroke
Depression has considerable implications for the quality
of life of affected individuals and is one of the most im-
portant causes of early death worldwide [145,146].
Depression induces distinctive neuroanatomical changes,
including reducing the volume of the hippocampus and
prefrontal cortex, which are brain regions that are im-
portant for inhibiting the stress response and restricting
depressive behavior [147], and enlarging the amygdala
[147-151]. Depression results from changes in various
biochemical factors, including stress hormones, cyto-
kines, neurotrophic factors such as brain-derived neuro-
trophic factor (BDNF), and neuropeptides such as
orexins [152]. In Parkinson’s disease patients with
depression, levels of BDNF [153] and orexin [154] are
down-regulated. Recently, studies have demonstrated
that neuropeptidergic dysregulation plays an essential
role in the onset of depressive symptoms [155,156].
Since orexin’s discovery in 1998, the neuropeptide has
been emerging as a promising target against depression
[21]. A clinical case regarding the dysregulation of
orexin release in depression was reported in 2003 [28].
stroke. This image presented that the function of orexin on pathogenesis
lammation caused by ischemic stress, orexin modulates the cytokine’s
ainst post-stroke induced inflammation. In cognitive decline caused by
f neurotransmitters and also attenuates the memory loss by increasing
e by accelerating the production of BDNF and facilitating the increase of
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Some suicidal patients show lower levels of orexin A
than normal individuals [157,158]. Activation of orexin
receptors promotes intracellular calcium influx through
various intracellular signaling cascades that induce long-
term potentiation [149-160]. A relationship between
orexinergic neurotransmission and depression has been
reported in a genetic rat model of depression [161].
Using orexin receptor knock-out mice, OXR2 was
shown to have anti-depressive properties [162]. Specific-
ally, this study showed that mice with increased OXR2
mRNA levels exhibit relatively normal behavior, whereas
OXR2 knock-out mice exhibit depressive behavior [162].
In addition, orexin promotes the expression of BDNF
[160,163,164], which regulates neuronal plasticity and is
reduced in the blood serum of depression patients
[165,166]. Moreover, an increased concentration of in-
flammatory cytokines in the brain is the major cause of
depression in humans and animals [167-169]. One study
showed that the relationship between depression and
inflammation is strongly associated with alternations of
synaptic plasticity and the metabolism of neurotransmit-
ters involved in mood regulation [170]. Considering
these lines of evidence, orexin may be involved in the
onset of depression after a stroke. Furthermore, given
that orexin regulates the inflammatory response, orexin
may attenuate depressive symptoms after a stroke by
attenuating inflammation.
Conclusions
Inflammation, cognitive impairment, and depression are
distinctive features that appear after a stroke. To allevi-
ate the pathophysiologies following a stroke, many
researchers have studied the regulators of these phe-
nomena. Orexin is a neuropeptide that is known to
regulate appetite, metabolism, and sleep/awakeness. In
this review, we focused on the emerging roles of orexin
in post-stroke-related pathophysiologies. To conclude,
this review highlights three remarkable roles of orexin
after stroke: 1) orexin controls inflammation by regulat-
ing immune mediators such as pro-inflammatory cyto-
kines after stroke; 2) orexin improves memory by
modulating other neurotransmitters, and promoting
hippocampal neurogenesis, and protecting the neuronal
damage against post stroke induced oxidative stress; 3)
orexin mitigates depression by accelerating neurotrophic
factor secretion and by promoting long term potenti-
ation through calcium influx’s increase (Figure 1).
Although studies concerning the post-stroke role of
orexin are still in preliminary stages, further studies
involving the function of orexin after stroke might sug-
gest the potential clinical value of orexin as an effective
therapeutic modulator to alleviate pathologies following
a stroke.
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