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Abstract

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by deficits in social cognition,
language development, and repetitive/restricted behaviors. Due to the complexity and heterogeneity of ASD and lack of
a proper human cellular model system, the pathophysiological mechanism of ASD during the developmental process is
largely unknown. However, recent progress in induced pluripotent stem cell (iPSC) technology as well as in vitro neural
differentiation techniques have allowed us to functionally characterize neurons and analyze cortical development during
neural differentiation. These technical advances will increase our understanding of the pathogenic mechanisms of
heterogeneous ASD and help identify molecular biomarkers for patient stratification as well as personalized medicine. In
this review, we summarize our current knowledge of iPSC generation, differentiation of specific neuronal subtypes from
iPSCs, and phenotypic characterizations of human ASD patient-derived iPSC models. Finally, we discuss the current
limitations of iPSC technology and future directions of ASD pathophysiology studies using iPSCs.
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Introduction
Autism spectrum disorder (ASD), which is characterized,
in varying degrees, by difficulties in social interactions,
verbal and nonverbal communications, and by repetitive
behaviors, is complex disorders of brain development.
The prevalence of ASD is estimated to range between
~25 and ~110 per 10,000 children [1, 2]. There are no
available cures for this devastating disease despite sev-
eral current clinical trials. ASD is known to be highly
heritable, as indicated by a study of monozygotic twins
with a 70–90 % concordance rate. In addition to its
strong heritability, recent genetic studies have shown
that ASD has hundreds of candidate genes with many
different putatively disruptive variants [3, 4]. However,
these are relatively rare genetic variations, each of which
accounts for less than 1 % of ASD cases [5]. Furthermore,

ASD-associated genetic variations occur de novo in af-
fected individuals and are sometimes inherited from nor-
mal parents, indicating either incomplete penetrance or
other genetic modifications. Current studies have focused
on the identification of common cellular pathways in
order to account for connections between these various
ASD candidate genes. Interestingly, to date, many synaptic
proteins have been identified as ASD candidate genes,
making it possible to study ASD pathogenesis using cellu-
lar and animal models [6–9].
To understand the underlying pathophysiological mech-

anisms of ASD, murine models have been generated using
ASD candidate genes, including synaptic genes [10–12].
However, murine models are not always feasible and have
several limitations for studying human neurodevelopment.
Heterozygous mice with ASD mutation rarely develop
ASD phenotypes unless the ASD genetic mutation is
homozygous, which is exceptionally rare in ASD cases, in-
dicating that other genetic modifications are required for
developing ASD phenotypes or candidate genes have dif-
ferent functions in human neurons [13]. Furthermore,
some human neocortical regions affected in ASD are not

* Correspondence: leeja@hnu.kr; kaang@snu.ac.kr
2Department of Biological Sciences and Biotechnology, College of Life
Science and NanoTechnology, Hannam University, Jeonmin-dong 461-6,
Daejeon, Yuseong-gu 305-811, Korea
1Department of Biological Sciences, College of Natural Sciences, Seoul
National University, Gwanangno 599, Seoul, Gwanak-gu 151-747, Korea
Full list of author information is available at the end of the article

© 2016 Lim et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Lim et al. Molecular Brain  (2015) 8:57 
DOI 10.1186/s13041-015-0146-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s13041-015-0146-6&domain=pdf
mailto:leeja@hnu.kr
mailto:kaang@snu.ac.kr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


obtainable from mouse brain tissue, and brain develop-
ment of mice does not perfectly reflect typical develop-
ment of the human brain. Thus, understanding of
neurodevelopmental disorders such as ASD has been
lagged in the studies using animal models, including ro-
dents or primate [14, 15]. Although primate models can
overcome the limitations of rodent models such as differ-
ences in brain anatomy, response to drugs, or circuit con-
nectivity between human and rodent brains, they
recapitulate only limited behaviors such as simple social
interactions or repetitive behaviors. Primate models could
be difficult to apply for representation of a variety of
human complex behavioral alterations shown in ASD
patients to understand associated biological mechanisms
and develop a knowledge-based therapy for ASD [15].
Although in vitro studies on neural differentiation using
human embryonic stem cells (ESCs) have been suggested
for understanding of human neurodevelopment, there
remain numerous practical or ethical issues [16, 17].
To overcome these obstacles, induced pluripotent

stem cells (iPSCs) technology, which allows the gener-
ation of personalized human neurons from ASD pa-
tients, has been used for studying the pathophysiology of
ASD [18–20]. In this case, human neurodevelopment,
which cannot be addressed in an animal model in vitro
or in vivo, can be tracked using personalized iPSCs from
ASD patients under an individual genetic background.
Moreover, current gene engineering technology for hu-
man iPSCs using sequence-specific designed zinc finger
nuclease (ZFN), transcription activator-like effector nu-
clease (TALENs), or CRISPR/Cas-9 has made disruption,
mutation, or deletion of even large genomic fragments
possible at a specific locus in the genome of hiPSCs and
can be applied in ASD research for generation of iso-
genic iPSCs with gene correction and genetic disruption
[21–26]. In addition, as an alternative method for cus-
tomized disease modeling, direct conversion methods
from human somatic cells into desired cell types such as
neurons using lineage-specific factors have been sug-
gested [27–29], although this method is still challenging
and further stabilizing steps are needed for standardization
of protocols.
In this review, we summarize (1) recent advances in

generation of iPSCs, (2) current methods of neural differ-
entiation from iPSCs, and (3) functional characterization
of cellular disease phenotypes using recent ASD iPSC
models and then discuss current limitations, future direc-
tions for modeling of ASD using iPSC technology, and
potential applications [26, 30].

Generation of iPSCs from human somatic cells:
cellular reprogramming
In 2006–2007, Takahashi and Yamanaka first showed
that retroviral transfer of four transcription factors

(Oct4, Sox2, Klf4, and c-Myc) known as Yamanaka’s
factors is sufficient for cellular reprogramming of mouse
or human skin fibroblasts into stem-cell like cells known
as iPSCs, which have self-renewability and pluripotency
[31, 32]. Although there are concerns about subtle dif-
ferences in transcriptomes, proteomes, and epigenomes
between ESCs and iPSCs, iPSCs have been used in
diverse research areas and clinical trials such as disease
modeling, drug discovery, toxicology test, and regenera-
tive medicine [26, 33] (Fig. 1). In recent years, iPSC re-
programming technology has undergone considerable
improvements to overcome inefficient protocols and en-
sure functional derivatives for clinical application. Re-
cent developments in iPSC technology using various
somatic cell types include improved reprogramming
methods using novel delivery systems such as non-
integrating viral and non-viral vectors as well as identifi-
cation of alternative reprogramming factors or small
molecules such as inhibitors of specific signaling or
epigenetic modulators, which replace conventional re-
programming factors and facilitate reprogramming pro-
cesses [33–35] (Table 2). A number of studies have
reported detailed protocols for iPSC generation [35, 36].
Here, we summarize recent trends for generation of
iPSCs from human somatic cells.

Sources of somatic cells for reprogramming
The first step in iPSC generation is obtaining appropriate
human somatic cells from patient tissues [37, 38] after an
accurate diagnosis of disease based on valid clinical pro-
cesses. However, unlike other genetic or non-psychiatric
disorders, the examiners should be far more careful when
diagnosing ASD, including autism. Clinicians can usually
consider two different categories of behavioral tests for the
diagnosis of autistic individuals, observational reports
(including questionnaires) such as the Autism Diagnostic
Observation Schedule (ADOS) [39], Autism Diagnostic
Interview-Revised (ADI-R) [40], Clinical Global Impression
(CGI) Scale [41], Childhood Autism Rating Scale (CARS)
[42, 43], Autism Behavior Checklist (ABC) [44, 45] and
Social Responsiveness Scale (SRS) [46, 47] and the results
of an aptitude test such as the Wechsler Adult Intelligence
Scale (WAIS) [48] (Table 1).
The most common cell type as the starting material for

reprogramming process is skin dermal fibroblasts [38].
However, since it is difficult to obtain skin biopsies from
young children, especially those with autistic behavior, and
the skin biopsy method using a punch is an invasive ap-
proach, it is important to obtain donor cells with high re-
programming capacity in a non-invasive way. As an
alternative common cell source, peripheral blood cells are
used for cellular reprogramming due to their non-invasive,
easy, and routine accessibility in a clinic setting [38, 49, 50].
Recent efforts in iPSC generation have attempted to
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develop exfoliated renal epithelial cells from urine, buccal
cells, cord blood-derived cells, or keratinocytes from hair
cells as cell sources for reprogramming despite concerns
about purification method, culture stability for long-term
passaging, reproducibility, and efficiency for reprogram-
ming [38]. Future advances in iPSC technology using hu-
man somatic cell types with easier access and handling,
higher efficiency, and cost-effectiveness for successful re-
programming will allow development of more common
customized medicines using iPSCs.

Induction methods for cellular reprogramming:
integrative/non-integrative
Once somatic cells are taken from biopsies and cultured
enough passages, they can be induced into stem cells
using an appropriate reprogramming method. Many kinds
of induction methods for cellular reprogramming have
been reported depending on the delivery system of repro-
gramming factors or types of factors (ex, small molecules,
inhibitors, etc.) as alternative reprogramming inducers
[33]. The most common method is the introduction of

Fig. 1 Generation and application of patient-specific iPSCs. Patient-specific iPSCs have been generated from human somatic cells such as skin fibroblasts
or peripheral blood cells by viral, non-viral delivery, or chemical induction method. These customized iPSCs have been differentiated into desired neuronal
cell types such as neurons, astrocytes, or microglia. Furthermore, iPSC-derived EB (embryoid body) could develop 3D cerebral organoids, which can
recapitulate human cortical development. Therefore, patient-specific iPSC-derived neural cells or cerebral organoids could be used for diverse applications
for disease modeling, drug discovery, toxicology test, and regenerative medicine

Table 1 Behavioral tests for the diagnosis of autistic individuals

Test methods Description References

Observational report
(including
questionnaires)

Autism Diagnostic
Observation Schedule
(ADOS)

A standardized assessment in terms of objective evaluation of autistic
social and communicative behavior symptoms

Lord et al. 1989 [39]

Autism Diagnostic
Interview-Revised (ADI-R)

An interview conducted with the parents of autistic individual to
cover autistic individual’s full developmental history

Lord et al. 1994 [40]

Clinical Global
Impression (CGI) Scale

A three-item scale used to assess treatment response in patients with
mental disorders

Guy 1976 [41]

Childhood Autism Rating
Scale (CARS)

A score calculated by subjective observation of a child’s behavior
across fifteen criteria

Schopler et al. 1980 [42];
Mayes et al. 2012 [43]

Autism Behavior
Checklist (ABC)

A 57-checklist of behavioral characteristics, which has been used for
diagnosis of autism

Krug et al. 1980 [44];
Volkmar et al. 1988 [45]

Social Responsiveness
Scale (SRS)

A quantitative measure of autistic traits completed by a caregiver
familiar with the autistic individuals within 4–18 year olds

Constantino 2002 [46];
Aldridge et al. 2012 [47]

Aptitude test Wechsler Adult
Intelligence Scale (WAIS)

A form of IQ test designed to measure intelligence in adults and
older adolescents, which has separate verbal and non-verbal IQ
scores

Wechsler 1939 [48]
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Table 2 Comparisons of reprogramming delivery system

Delivery system Pros Cons References

Integrating
method

Retrovirus High reprogramming efficiency (~0.01–0.1 %) Possibility of oncogenesis; silencing of
functional genes

Takahashi and Yamanaka. 2006 [32]

Lentivirus High reprogramming efficiency (~0.01–0.1 %) Possibility of oncogenesis; silencing of
functional genes

Yu et al. 2007 [51]

Non-
integrating
method

Sendai virus No risk of altering the host genome;
high reprogramming efficiency(~1 %); easy to
select iPSCs

Stringent steps to remove the reprogrammed cells of
replicating virus; sensitivity of the viral RNA replicase

Fusaki et al. 2009 [55]

Adenovirus Transient, high-level expression Low reprogramming efficiency (0.0001-0.001 %);
possibility of small pieces insertion of adenoviral
DNA; 3 out of 13(or approximately 23 %) were
tetraploid

Stadtfeld et al. 2008 [56]

OriP/EBNA-based episomal
vector

Unnecessary for viral packaging; gradual loss of
cellular EV without drug selection; relatively
high reprogramming efficiency of IRES2-mediated
expression(~0.1 %); further addition of c-Myc
and Klf4 improve the reprogramming
efficiency to over 1 %

Unstable transfection efficiency Yu et al. 2009 [168]

Piggy BAC transposons Technical simplification (use of effortless
plasmid DNA preparation and commercial
transfection products); no limited range of
somatic cell types for reprogramming; allow
the option of xeno-free hiPSC production;
accurate transgene removal through
transposase expression

Labor intensive removal of multiple transposons;
more CNVs in early passage than in intermediate
passage;

Woltjen et al. 2009 [59];
Hussein et al. 2011 [162]

Cre-inducible/excisable lentivirus Minimize the risk of chromosomal
translocations; improve the developmental
potential and differentiation capacity

Inefficient delivery of Cre; difficult to detect successful
Cre-recombeniation; result in mosaic colonies; leaves
200 bp of exogenous DNA

Sommer et al. 2010 [58]; Soldner et al.
2009 [169]; Papapetrou et al. 2011 [170]

Minicircle DNA Free of foreign or chemical elements; requiring
only a single vector without the need for
subsequent drug selection, vector excision,
or the inclusion of oncogenes; FAD approved

Low reprogramming efficiency (~0.005 %) Jia et al. 2010 [73]; Narsinh et al. 2011 [75]

Poly-arginine-tagged polypeptide No risk of altering the host genome; simpler
and faster approach than the genetic method

Low reprogramming efficiency (~0.006 %);
requires either chemical treatment or greater
than four rounds of treatment; expertise in protein
chemistry and handling

Zhou et al. 2009 [171]; Kim et al. 2009 [60]

RNA-modified synthetic mRNA Avoid the endogenous antiviral cell defense;
high efficiency of over 2 %; resultant iPSC
colonies emerge as early as 17 days

Labor intensive repeated transfection Warren et al. 2010 [61]

Non-immunogenic; cost-effective; easily
handled;

Relatively low and inconsistent efficiency Hou et al. 2013 [80]
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reprogramming factors into somatic cells via an integra-
ting or non-integrating delivery system [33, 51, 52].

Integrating delivery system: retroviral/lentiviral vectors
Integrating methods use viral vectors such as retroviral
or lentiviral vectors with high efficiency of gene delivery,
although viral vectors integrate into the host cell gen-
ome (reprogramming efficiency: ~0.01–0.1 %). Generally,
reprogramming factors are silenced after cellular repro-
gramming. However, genomic integration using viral
vectors could induce reactivation of these genes, raising
the possibility of oncogenesis in iPSC–derived cells or
silencing of other functional genes after cellular repro-
gramming [53, 54]. Thus, many reprogramming methods
without genomic integration have been described as a
non-integrating approach, and some are commonly used
for generation of iPSCs [26, 33, 36, 52].

Non-integrating delivery system
Regarding non-integrating approaches, non-integrating
viral vectors (Sendai or Adeno virus), episomal vector,
piggy BAC vector, Cre-inducible/excisable lentiviral vector,
minicircle DNA, poly-arginine-tagged polypeptide (pro-
tein), RNA-modified synthetic mRNA, or microRNAs
have been suggested for iPSC generation with diverse
ranges of reprogramming efficiency (reprogramming
efficiency: 0.001 ~ 4 %) [33, 35, 55–65]. Although each
method has pros and cons (Table 2), non-integrating
approaches generally have lower efficiency of cellular re-
programming compared to integrating lenti- or retroviral
vectors. However, many efforts have attempted to improve
the efficiency of cellular reprogramming.

1. Non-integrating transgene systems: Sendaiviral/
Adenoviral vector, episomal vector, integrative but
excisable system (piggy Bac, Cre-loxP), and mini-
circle DNA
As one of the most attractive non-integrating viral
vectors, Sendai virus with a negative-sense single-
stranded RNA has been suggested as a potential
clinical candidate since replication of transgenes
occurs in the cytoplasm without possible genomic
integration [55, 66, 67]. Although adenoviral vectors
for cellular reprogramming have also been suggested
as a non-integrating delivery system due to their
transient and high expression of transgenes, repro-
gramming efficiency of human somatic cells is too
low for common use (~0.0002 %) [68]. For transient
expression of reprogramming factors, compared to
previous episomal vectors, more advanced OriP/
EBNA-based episomal vectors delivering combin-
ational transgenes such as OCT3/4, SOX2, KLF4,
L-MYC, LIN28, and shRNA for p53 have been de-
scribed as a promising non-integrating approach for

successful iPSC generation with acceptable
reprogramming efficiency [57, 69]. Generation of
integration-free iPSCs using either piggy Bac trans-
poson or the Cre-loxP system has been also success-
ful. Both systems are known to remove integrating
transgenes from iPSCs after reprogramming,
although there is a small risk of gene breaks near
the insertion site [58, 59, 70, 71]. Recently, mini-
circle DNA, which is a novel compact vector free
of bacterial DNAs or human artificial chromosomes
(HACs) with capacity for large gene insertion and
stable episomal maintenance, have been used to
successfully generate iPSCs, although their low re-
programming efficiency should be improved [72–75].

2. Non-integrating transgene-free systems: modified
mRNA, protein, and chemicals
As for other transgene-free systems, modified
mRNA, microRNA, or protein has been suggested
as an attractive method for iPSC reprogramming
in a clinical application due to more direct delivery
of reprogramming factors without genomic inte-
gration. Synthetic mRNAs modified to avoid the
endogenous antiviral cell defense system have
more efficiently generated iPSCs with higher effi-
ciency and faster iPSC induction compared to the
retroviral system. However, labor-intensive steps
such as repeated transfections of mRNAs should
be improved. Reprogramming using microRNAs
has also been successful with higher efficiency
[62]. The protein transduction method using cell
penetrating peptides is one of the safest methods
for generating foot-print free iPSCs for use in a
clinical purpose although reprogramming effi-
ciency is very low (~0.0001 %) [60]. In this system,
technical challenges include generation of a large
amount of functionally active and stable proteins
as well as induction of reprogramming from di-
verse types of somatic cell sources via penetrating
reprogramming proteins with simple treatment [76].
Alternatively, diverse chemical compounds capable
of replacing initial Yamanaka’s factors or other
reprogramming factors have been investigated for
iPSC generation due to their non-immunogenic,
cost-effective, ease of use, reversible, cell-
permeable, and standardized properties despite
their inconsistent and low reprogramming effi-
ciency. Small molecules that target signaling path-
ways such as transforming growth factor β (TGFβ)
or epigenetic factors such as histone deacetylase
have been proposed to generate iPSCs and im-
prove reprogramming efficiency [76–79]. More
recently, a cocktail of chemical compounds with-
out any genetic factors successfully induced iPSCs
from mouse somatic cells, raising the possibility of
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its application in the generation of iPSCs from hu-
man somatic cells [80]. More intensive screening
for small molecules for cellular reprogramming
and optimization is needed for efficient iPSC
generation and its suitable application.
As mentioned above, a variety of promising
methods with advantages and disadvantages have
been proposed for the generation of patient-specific
iPSCs (Table 2). Recent systematic evaluation of the
most widely used techniques (Sendai-viral, episomal,
or transfection of mRNA methods) for generating
transgene-free hiPSCs have shown that significant
differences between methods include aneuploidy
rates, reprogramming efficiency, reliability, and
workload, although they all result in high-quality
iPSCs [81]. iPSC technology is rapidly advancing
toward a transgene-free, small-molecule-based
approach using diverse types of human somatic
cells. Choice of reprogramming method will depend
on the specific purposes for one’s own iPSC re-
search. For basic research or drug/toxicology tests
using iPSCs, reprogramming methods generating
iPSCs such as cost-effective integrating/noninter-
grating methods with higher efficiency could be
selected based on reprogramming efficiency, work-
load, time or economic feasibility, regardless of its
safety issues. However, for clinical applications using
iPSCs, safety issues such as caner progression,
purity, or accessibility and feasibility using patient
samples would be the most important concerns
influencing selection of reprogramming methods,
which would be nonintegrating/transgene-free
methods.

Generation of iPSC-derived neurons: neural
differentiation
In disease modeling using patient-specific iPSCs, the
most important step is to differentiate iPSCs into desired
cell types with high purity. Accumulating research on
vertebrate neural development has enabled us to gener-
ate specific subtypes of human neurons or glial cells
from human pluripotent stem cells (PSCs) by regulating
developmentally relevant signaling pathways. During
embryonic development, the neural plate (embryonic
neuroectoderm) is firstly specified to the forebrain, sub-
sequently to the midbrain/hindbrain, and then to the
spinal cord by caudalization signals that include retinoic
acid (RA). Similarly, human PSCs can be directed to dif-
ferentiate into forebrain-like neurons by inhibiting
Wingless/Int proteins (Wnt) and bone morphogenic
protein (BMP) signaling [82], midbrain/hindbrain by
sonic hedgehog (SHH) and fibroblast growth factor 8
(FGF8) treatment [83, 84], and spinal cord by the action
of RA in vitro [85, 86].

Two-dimensional neural differentiation
For disease modeling using iPSC-derived neurons, specific
subtypes of neurons differentiated from iPSCs should be
carefully chosen since the affected cell types and brain
areas are different. A variety of subtype-specific neural dif-
ferentiation protocols have been developed based on em-
bryonic developmental studies. There are three general
methods currently used for neural induction: (i) through
embryoid body (EB) formation [85–90], (ii) cultivation on
stromal (or mesenchymal) feeder cells [83, 91, 92], and (iii)
direct conversion into neural lineage by lineage-specific
factors [93–97] or small molecules [98–100] (Fig. 2).

Fig. 2 Neural differentiation from iPSCs. To study the pathophysiology of ASD using iPSCs-derived neurons, iPSCs need to be differentiated into
the disease-relevant neuronal subtype such as cortical neurons. There are general methods currently used for neural induction through embryoid
body (EB) formation, cultivation on stromal feeder cells, direct differentiation of iPSCs into neural lineage by lineage specific factors such as Ngn2
or NeuroD1, or direct conversion of somatic cells into neurons by expression of BAM factors and/or microRNAs
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Table 3 Phenotypic analyses of ASD iPSC-derived neurons : Rett, Phelan-Mcdermid, Timothy, Fragile-X, and Angelman Syndromes

Diseases Related genes Neural
differentiation
methods

Identity of
neurons

Electrophysiological proterties Neurodevelopmental phenotypes References

Rett syndrome Methyl CpG binding
protein 2 (MECP2)

Embryoid body
formation

Gluramatergic
& gabaergic
neurons

Reduced sEPSC and sIPSC Fewer synaptic conracts; reduced cell
soma size and dendritic branching
and spine density

Marchetto et al. 2010
[104]; Cheung et al. 2011
[105]; Kim et al. 2011
[106]

Phelan-McDermid
Syndrome (PMDS)
(22q13 deletion
syndrome)

Shank3 Dual smad
inhibition

Forebrain
neurons

Reduced excitatory synaptic
transmission

Reduced glutamatergic receptors;
decreased number of synapses

Shcheglovitov et al. 2013
[117]

Timothy syndrome (A
member of the long
QT syndromes)

CACNA1 (alpha-1
subunit of the L-type
calcium channel
CaV1.2)

Embryoid body
formation

Cortical-
enriched
neuronal
populations

Increase in the sustained intracellular
calcium rise following membrane
depolarization; wider action
potentials

Decreased expression of lower
corticallayers-related genes; increases
in TH (tyrosine hydroxylase)-, norepinephrine-
and dopamine-positice cells; activity-dependent
dendrite retraction

Pasca et al. 2011 [107];
Krey et al. 2013 [108]

Fragile X syndrome Fragile X mental
retardation 1 (FMR1)

Embryoid body
formation

Tuj1-, MAP2-
or GFAP-
positive cells

Poor spontaneous synaptic activity
and no glutamate reactivity

Reduced neurite numbers and neurite lengths;
reduced PSD95 protein expression and reduced
synaptic punctadensity; poor neuronal maturation
and high gliogenic development

Sheridan et al. 2011
[109]; Telias et al. 2013
[110]

Angelman syndrome Ubiquitin protein
ligase E3A (UBE3A)

Embryoid body
formation

Tuj1-positive
cells

Normal electrophysiological
properties

Intact imprinting of UBE3A Chamberlain et al.
2010 [111]
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EB-dependent differentiation
In vivo neural tissue is differentiated from a germ layer
called the ectoderm. Similarly, stem cells in vitro can de-
velop three germ layers within aggregates called EBs,
including ectoderm under appropriate stimulating con-
ditions. Neural induction of stem cells can be commenced
via EB formation by low basic fibroblast growth factor
(bFGF) and subsequent induction of EBs into neural ro-
settes, which are a polarized organization of neuroepithe-
lial cells and neural differentiation is achieved by a
combination of specific sets of morphogens such as Wnt,
SHH, BMPs, RA, and FGFs [85–88, 101–103]. Motor neu-
rons having spinal lateral column phenotypes and midbrain
dopaminergic neurons were differentiated from hESCs or
hiPSCs with the EB formation method [84, 101, 102]. Most
in vitro ASD-related disease modeling has been used this
method (Table 3). For example, GABA (γ-amino butyric
acid) and vGlut1 (vesicular glutamate transpoter-1)-positive
neurons were differentiated through EB formation [104,
105] and by blocking the BMP pathway [106] in in vitro
Rett syndrome modeling. In addition, Dolmetsch group
used this method to obtain vGlut1/2-, GAD65/67-positive
and lower cortical layer-enriched neurons from syndrome
patient-derived iPSC for investigation of Timothy syn-
drome [107, 108]. Tuj1-, MAP2- or GFAP-positive
cells from Fragile-X syndrome patient-derived iPSCs
[109, 110] and Tuj1-positive cells from Angelman
syndrome patient-derived iPSCs [111] were also differ-
entiated with this method. In vitro neuronal induction
through EB formation, however, is time-consuming
and requires multiple steps for generation of neural
epithelial cells, neuronal progenitors, neuronal differ-
entiation, and synaptic connection and maturation.
Furthermore, it is hard to obtain a homogenous
population of desired neuronal subtypes with high
purity due to the difficulty in controlling specific
lineage differentiation from EBs [112]. Therefore, the
general neural induction method from EB formation
was recently modified to improve induction efficiency
and purity of desired neuronal cell types as well as
reduce multiple steps for neural induction, although
the neural induction method through EBs in vitro is
ideal to mimic in vivo neural induction and neuronal
differentiation. For example, inhibition of TGFβ and
BMP pathways (dual SMAD inhibition: noggin and
SB431542) have been used for efficient neural induction
from stem cells without an EB formation step [113–116].
For in vitro modeling of Phelan-Mcdermid syndrome,
Dolmetsch group used this method, with some modifica-
tions, to generate cortical neurons [117] (Table 3).

Cultivation on stromal (or mesenchymal) feeder cells
As the other neural induction method, stromal feeder-
based differentiation system, which is a serum-free system

without the use of either RA or EBs, has been widely used,
although the molecular basis of the neural-inducing activ-
ity of stromal cells remains unclear [83, 92]. An initial
study suggested that stromal cells induce midbrain neur-
onal fate by default [91].

Direct conversion: somatic or pluripotent stem cells to neurons/
somatic cells to neural progenitor or neural stem cells
The other approach to generate human neurons is to
convert human stem cells or somatic cells directly into
neurons by defined specific factors [93–96] or small
molecules [98–100]. Wernig’s group reported a simpler
and direct neural conversion method from human PSCs
by forced expression of only a single transcription factor,
Neurogenin 2 (Ngn2), NeuroD1 [97] or ASCL1 [118]. In
human neurons induced via this method, functional
synapses are rapidly formed within only 2 weeks after
neural induction so that the time required to obtain ma-
ture human neurons in vitro is significantly reduced.
Moreover, the most attractive point of using this method
is to obtain a homogeneous cell population (~100 % of
cortical neurons) differentiated from hESCs and hiPSCs
[97]. As an alternative approach to generate induced
neurons, a combination of three transcription factors -
BRN2 (also called Pou3f2), ASCL1 (also known as
MASH1), and MYT1L (so called BAM factors) - could
convert adult mouse fibroblasts directly into functional
neurons without iPSC generation [93, 119]. The neurons
generated by this method are also able to fire spontan-
eous action potentials and make functional synapses
within as early as 2 weeks after induction in vitro. The
same three transcription factors also could differentiate
human stem cells and fibroblasts into neurons when
combined with a transcription factor, NeuroD1 [94],
microRNAs [95, 120], or small molecules [121]. In
addition, very recently, it has been reported that only
small-molecule cocktails were sufficient to directly con-
vert mouse and human fibroblasts to functional neurons
without exogenous genetic factors [98–100]. Likewise,
rapid generation of specific subtypes of neurons directly
from somatic cells makes this method an effective strat-
egy for in vitro ASD modeling. However, a key limitation
of this method is that a large number of fibroblasts
might be required for reliable experiments due to their
low reprogramming efficiency (at most 10–30 %), and
skin biopsy cannot be conducted many times on a single
patient. Therefore, in some cases, it would be desirable
to convert fibroblasts into self-renewing multipotent
neural progenitor cells (NPCs) or neural stem cells
(NSCs), which enables us to overcome the limitations
associated with low reprogramming efficiency and
thereby perform high-throughput drug screening. Kim
et al. [122] described the generation of NPCs from
mouse fibroblasts by transient expression of Yamanaka’s
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factors (Oct4, Sox2, Klf4, and c-Myc), followed by cul-
turing in neural induction media. However, NPCs gener-
ated by this method could be expanded for only a few
passages. Thier et al. [123] have generated induced NSCs
with the same classical factors (Oct4, Sox2, Klf4 and
c-Myc) by strictly limiting Oct4 expression and optimiz-
ing culture conditions. In addition, forced expression of
four transcription factors (BRN4/Pou3f4, SOX2, KLF4
and c-MYC) [124] or even a single transcription factor
SOX2 [125] could also directly convert mouse or
human fibroblasts into NSCs without generating a
pluripotent cell state. Therefore, this direct conversion
method is considered a promising method for prevent-
ing teratoma formation, which is a disadvantage of
iPSCs for regenerative medicine, as well as for greatly
improving low conversion efficiency from fibroblasts to
neurons [126].

To study the pathophysiology of ASD using iPSC-
derived neurons in vitro, it is important to obtain desired
homogeneous neurons associated with ASD, as mentioned
above. Cortical neurons have been suggested to be appro-
priate cell types since potential mechanisms underlying
ASD include defects in cortical connectivity and neural
migration to the cerebral cortex [127]. Moreover, despite
the heterogeneity of ASD, common pathways involved in
synaptic development and plasticity have been proposed
to be deregulated in ASD. Thus, to study developmental
synaptopathy in ASD, among several protocols for neural
induction, rapid generation of human cortical neurons
using defined factors could be one of the best strategies
for in vitro ASD modeling due to their high induction effi-
ciency of homogenous neuronal subtype and short induc-
tion time. However, if human neurons are directly
generated from stem cells or somatic cells for modeling

Fig. 3 Phenotypic analyses of iPSC-derived neurons. Patient-specific iPSCs are generated from human somatic cells. After characterization, expansion,
and stabilization of iPSCs, ASD patient-derived human neurons are induced. These differentiated neurons can be characterized by changes in neuronal
differentiation, morphological properties, electrophysiological properties, or gene expression network to elucidate molecular pathogenic mechanisms
associated with ASD such as synaptopathy
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neurodevelopmental disorders such as ASD, it might be
difficult to detect developmental phenotypes during
neural differentiation. Furthermore, continuous forced
expression of defined factors could also mask disease phe-
notypes [20, 128]. Therefore, differentiation efficiency or
stability of human neurons induced by defined factors
should be improved, and comparable systematic analysis
of neuronal properties such as gene expression, electrical
properties, or synaptic connections in human neurons
differentiated either through EB formation or by defined
factors needs to be carried out.

Three-dimensional neural differentiation: cerebral organoids
Magnetic resonance imaging (MRI) studies and post-
mortem analysis of individual patients with ASD have
consistently demonstrated anatomical abnormalities in
several brain regions, which cannot be recapitulated by
two-dimensional (2D) iPSC-derived neuronal culture
[129]. An iPSC-derived three-dimensional (3D) culture
system termed cerebral organoid has been developed
[130, 131]. Cerebral organoids, which develop through
intrinsic self-organizing properties, can be generated
from EBs grown initially in ESC medium with low bFGF
and Rho kinase (ROCK) inhibitor [131], and they have
been shown to recapitulate the complex interplay of dif-
ferent regions and structures of the brain [130]. There-
fore, 3D cerebral organoids derived from ASD patient-
specific iPSCs would be the best in vitro model to un-
cover defects in cortical connectivity and neuronal mi-
gration of ASD. Indeed, Mariani et al. recently generated
idiopathic ASD patient’s iPSC-derived brain organoids
and showed increased production of inhibitory neurons
by increased FOXG1 gene expression [132]. However,
more standardized protocols need to be developed, and
further characterization and identification of neuronal
cell types in specific regions of cerebral organoids should
be carried out to study cortical development and for dis-
ease modeling of ASD patients.

Analyses of human iPSC-derived neurons
To use iPSC technology in modeling of various neurode-
velopmental disorders including ASD in vitro, it is
important to characterize disease phenotypes in disease-
specific iPSC-derived neurons and validate well-known
disease phenotypes to determine whether or not iPSC-
derived cellular disease models could recapitulate disease
phenotypes in mouse models and human patients. Be-
cause of this reason, ASD research using this technology
primarily includes several studies on monogenic cases,
such as Rett Syndrome, Fragile X Syndrome, and Timothy
Syndrome [104–108, 133, 134]. However, these initial
studies on cellular disease phenotypes in iPSC-derived
neurons from monogenic cases of ASD could be di-
rected towards the identification of disease-relevant

cellular characterization in both monogenic and idio-
pathic forms of ASD with high heterogeneity. In this
section, we describe what phenotypic analyses of human
iPSC-derived neurons can be performed to characterize
and validate iPSC-derived cellular disease models.
There are general phenotypic analyses of human neurons

derived from iPSCs based on (i) neural differentiation and
neuronal morphologies (neurite outgrowth, synapse struc-
ture), (ii) electrophysiological properties (basic electrical
properties, synaptic properties), and (iii) gene expression
network (transcriptome analysis) (Fig. 3).

Neural differentiation and neuronal morphologies: neurite
outgrowth/synapse structure
Fully differentiated neuronal cells have a distinct
morphology, including distinct polarity, and extend
one axon and dendritic arbors from their cell body.
Therefore, the earliest phenotypes of hiPSC-derived
neurons are morphological changes such as neural
differentiation, neurite/axon/dendritic growth (number
or length of neurite process), and synapse formation,
which can be used for analysis of disease-relevant
morphological phenotypic changes. During the early
stages of neurogenesis, newborn neurons are NeuN-
positive [135] and PSA-NCAM-positive [136]. These
markers, together with neuronal cytoskeletal proteins
Tuj1, Tau, and MAP2, can be used for measuring
neural maturation efficiency or morphological changes
in ASD iPSC-derived neurons [137]. Specific neuronal
gene expression as a subtype-specific marker can be
also used to confirm neuronal identities. For example,
glutamatergic neurons can express vGlut1 and vGlut2
[138], GABAergic neurons express GAD65/67 [139],
and mature dopaminergic neurons express tyrosine
hydroxylase (TH) [140].
Moreover, disease phenotypes such as cortical connect-

ivity and neural migration in ASD-derived cerebral orga-
noids would be characterized using various markers for a
specific subtype of neurons in cortical regions. In rodents,
cortical glutamatergic neurons can be defined by their ex-
pression of different transcription factors [17, 141–148].
Layer 6 corticothalamic projection neurons are Tbr1-posi-
tive [144, 145], layer 5 subcortical projection neurons are
Ctip2-positive [143], layers 2–4 neurons are Cux1/2-posi-
tive [146], and layers 2–4 callosal projection neurons are
Satb2-positive [147, 148].

Electrophysiological properties
Electrophysiological characterization for basic electrical
properties such as membrane potential, generation of
action potentials by current injection, and synaptic pro-
perties such as appearance of spontaneous synaptic events
can be applied to verify and characterize hiPSC-derived
neurons. As neurons mature, resting membrane potentials
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(Vm) become negative (more hyperpolarized) and capaci-
tance (Cm) increases due to increased branch numbers,
leading to increased cell volume. In contrast, input resist-
ance (Ri) decreases as channel protein expression in-
creases. In addition, action potential-like responses
induced by depolarization are resemble the mature shape
of the action potential. Since neurons are able to make
synapses with other neurons, synaptic properties could be
also characterized as a cellular phenotype in iPSC-derived
disease models. hiPSC-derived neurons from many syn-
dromic ASD patients have defects in synaptic connectivity
such as spontaneous excitatory and inhibitory currents
[104], AMPA/NMDA current ratio [117], as well as intrin-
sic neuronal excitability [107] (Table 3).

Gene expression network
Similar to the phenotypic analyses, transcriptional changes
based on gene expression network could be characterized
in ASD iPSC-derived neurons. This analysis based on a
systems biology approach allows us to understand alter-
ations of the gene network involved in neural development
and functions associated with ASD. Recent studies using
genome-wide weighted co-expression network analysis
(GWCNA) on Timothy Syndrome (TS)-derived neural
cells have shown that altered Ca2+ signaling in TS patients
leads to dysregulation of calcium-dependent transcriptional
regulators such as NFAT, MEF2, CREB, and FOXO as well
as its downstream signals [149]. Gene expression analysis
of hiPSC-derived neurons carrying copy number variants
of chromosome 15q11-q13.1 using RNA-Seq has revealed
that common neuronal pathways may be disrupted in both
Angelman and Dup15q syndromes [150].

Phenotypic analyses of ASD iPSC-derived neurons: Rett,
Phelan-Mcdermid, Timothy, Fragile-X, and Angelman
Syndromes
In Rett syndrome (RTT), a neurodevelopmental ASD due
primarily to mutations in the methyl-CpG binding protein
2 (MECP2) gene, hiPSC-derived neural cells show reduced
soma size, dendrite spine density, differentiation, and re-
duced spontaneous Ca2+ transient frequency in neurons
and premature astroglial [104–106, 151, 152], as shown in
human postmortem analyses. In addition, reduced fre-
quency and amplitude of mEPSCs and mIPSCs [104] have
been observed in RTT hiPSC-derived neurons, suggesting
fewer production of synapses and reduction of postsynaptic
receptors [104]. HiPSC-derived cellular disease models
could be also used as a system for screening candidates for
disease therapy since iPSC-derived neurons can recapitu-
late disease phenotypes in human and mouse models.
Indeed, insulin-like growth factor 1 (IGF-1) was applied to
hiPSC-derived RTT neurons and showed rescue of reduc-
tion in excitatory glutamatergic synaptic connections [104]
as in mouse models of RTT, in which reduced excitatory

synaptic connections in RTT neurons could be reversed by
IGF-1 application [153]. IGF-1 is currently in clinical trials
for RTT.
hiPSC-derived neurons from Phelan-Mcdermid syn-

drome (PMDS) patients, carrying a deletion of Shank3 pro-
tein, have significant deficits in excitatory synaptic
transmission [117]. These deficits were rescued by either
wild-type Shank3 expression or IGF-1 treatment as in
hiPSC-derived RTT neurons [117], suggesting that a com-
mon signaling pathway might be involved in the patho-
physiology of ASD. Therefore, hiPSC-derived neurons
could be useful as a potential drug-screening platform, as
mentioned above.
Timothy syndrome (TS) is caused by a point mutation in

the voltage-gated calcium channel encoded by the
CACNA1 gene. TS patients iPSC-derived neurons show
wider action potentials, suggesting a loss of CaV1.2 channel
inactivation, abnormal expression of tyrosine hydroxylase
(TH), and increased production of norepinephrine and
dopamine [107]. Activity-dependent dendritic retraction by
RhoA activation independent of Ca2+ influx through CaV1.2

has also been reported in TS iPSC-derived neurons [108].
Neurons from Fragile-X syndrome patients-derived

hiPSCs show reduced neurite numbers and lengths
[109], poor spontaneous synaptic activity, and lack
reactivity to glutamate [110].
In Angelman Syndrome (AS), which is caused by

reduced expression of the maternal copy of the Ube3A
gene in CNS, patient-derived iPSCs show retained
genomic imprinting. In addition, electrophysiological
recordings have detected AMPA receptor-mediated spon-
taneous activity in AS iPSC-derived mature neurons, sug-
gesting that normal functional neurons can be generated
from AS iPSCs [111].
Recently, Muotri’s group have generated an iPSC model

of a nonsyndromic ASD patient carrying a de novo bal-
anced translocation transient receptor potential channel 6
(TRPC6) [154]. TRPC6-mutant iPSC-derived neurons
showed reduced neuronal arborization, fewer dendritic
spines and synapses, and impaired calcium dynamics
[154]. They also found that MECP2 occupied the TRPC6
promoter region and regulated TRPC6 expression, raising
the possibility of interactions among common pathways
affected in nonsyndromic and syndromic ASD.

Conclusions
Perspectives: limitations and future directions
iPSC research
Despite numerous studies underlying the pathophysio-
logical mechanism of ASD using iPSCs, several concerns
should be addressed before iPSC research [155, 156].
Current advances in iPSC technology have allowed us to
successfully derive patient-specific iPSCs regardless of
their reprogramming methods. Furthermore, a recent
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study showed that a modular, robotic platform for iPSC
reprogramming enabled automated, high-throughput
conversion of skin fibroblasts into iPSCs and their
characterization/differentiation with minimal manual
intervention [157]. However, it still remains unknown
how to obtain qualified iPSCs and improve the quality of
patient-specific iPSCs under suitable and cost-effective
cultivation conditions for diverse applications, including
disease modeling, drug screening, and customized ther-
apy. As mentioned above, although iPSCs are similar to
ESCs in terms of pluripotent marker gene expression,
self-renewal potency, differentiation potential, and their
morphology, they are not identical. Recent extensive
genetic analysis using high-throughput sequencing tech-
nology or generation of single-nucleotide genome-wide
maps of DNA methylation has demonstrated the gen-
omic/epigenetic differences between iPSCs and ESCs.
However, the functional consequences of their differ-
ences in vitro or in vivo are largely unknown. Moreover,
iPSCs and ESCs show a wide range of clonal variations
in terms of proliferation and differentiation potential.
Furthermore, iPSCs derived from even the same parental
somatic cells have different potential in terms of expan-
sion or differentiation [158–160]. Considerable somatic
coding mutations occurring in hiPSC lines have also
been reported by extensive exome analysis [161]. The
other main concern is the instability of iPSCs during
passaging of clones. It has been reported that early pas-
sages of iPSCs display de novo copy number variations
(CNV) during the reprogramming process [162]. Thus,
to obtain a more reliable outcome from iPSC research,
generation of isogenic iPSCs using recent gene engineer-
ing technology or by establishment of at least 2–3 iPSC
clones from the same parental somatic cells has been
suggested. However, it remains unknown how these gen-
etic/epigenetic alterations occur during reprogramming
or expansion of iPSCs as well as how these alterations
can be managed for iPSC generation or its application.
Further, it remains unknown whether there is any repro-
gramming method to reduce or exclude these possible
alterations as well as how to select the qualified iPSC
clone from a variety of iPSC lines. To address these
questions, further intensive works at the genetic/epigen-
etic/cellular levels are needed, and in vivo functional
characterization of iPSC-derived cells needs to be carried
out. Thus, the most important issue in iPSC generation
is to establish more stable and standard protocols for
safer and easier iPSC generation in diverse applications.
Although there are some differences between ESC and

iPSCs, iPSCs are still the most promising choice for
modeling with human cells. In mouse, iPSCs have the
same potential as ESCs because a mature organism can
be generated from iPSCs via blastocyst injection or tetra-
ploid complementation [163]. Although human iPSCs

cannot be tested using these embryological methods
owing to ethical issues and hiPSCs appear to be ‘primed’
PSCs as mouse Epi-stem cells, naïve human PSCs might
be used as another human cellular model.

Current limitations of studies on pathophysiology using
ASD iPSC-derived neurons
Besides iPSC line-to-line variations, limitations of study-
ing ASD with hiPSC-derived neurons include phenotypic
variations between neurons derived from the same
iPSCs, which are based on differences between individ-
ual hiPSC-derived neurons from even a single patient
due to heterogeneity of neuronal subtypes differentiated
from each iPSC line [164] even with well-defined differ-
entiation protocols. In addition, different differentiation
methods such as usage of small molecules or genes, EB
formation vs. monolayer culture, concentration of small
molecules and growth factors, differentiation time can
also generate variations in the neuronal population. The
use of cell type-specific promoters to drive expression of
fluorescent markers for purification by cell sorting or
identification of desired cell types would be a powerful
tool to reduce variation. The surrounding environment
of cells may also significantly affect the phenotypes. For
example, the presence of neural progenitor cells in neur-
onal culture could mask disease-associated phenotypes
by continuous production of newborn neurons [112].
Therefore, to obtain reliable data using hiPSC-derived
neurons from ASD patients, each experiment should be
performed with multiple neuronal differentiation proto-
cols from at least two or three independent hiPSC lines
with the same mutation from multiple patients. In
addition, forced expression of a transcription factor like
Ngn2 would be a good method to overcome the above
described issues, in which almost ~100 % of cortical
neurons at a similar maturation stage could be gener-
ated, and the neurons showed their synaptic phenotypes
as early as 3 weeks after forced Ngn2 expression [97].
As mentioned above, widespread genetic variations could

exist between iPSC lines themselves derived from unrelated
individuals. Therefore, genetically related family member-
derived control lines could possibly be used to reduce
variability of phenotypes, although it would not completely
remove the possibility that even a single genetic difference
could potentially affect observable phenotypes. Another
possible way is to use gene correction methods since the
ideal controls would be those that have the same genetic
background except only the specific genetic defect found in
the patient. Many well-known syndromic ASD-related
genetic variants can be modeled with “isogenic” cell lines,
where a patient-derived iPSC line could be gene-corrected
using ZFNs, TALENs, or CRISPR-Cas9 technologies,
reverting a mutant line to wild-type or vice versa
[165, 166].
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As iPSCs are an in vitro culture system, they lack many
characteristics of a developing and mature brain physi-
ology in vivo. Therefore, it is difficult to study neuronal
circuitry and organization using iPSC-derived neurons
under 2D conditions, particularly when investigating phe-
notypes unique to specific neuronal circuits of the adult
brain. One way to avoid these problems is to xenograft
iPSC-derived neural progenitor cells (NPCs) into embry-
onic rodent brains to allow them to integrate into devel-
oping neural networks and mature in vivo. Cerebral
“organoids” [130] is another possible way to study disease
phenotypes in a specific cell type or group of cell fates in
the context of 3D model of human neurodevelopment
[130, 167], as reported by Mariani et al. [132].
In summary, we can generate hiPSC-derived neurons

from fibroblasts and other somatic cells of ASD patients
to investigate alterations of neuronal connectivity, synap-
tic maturation, and functions. In addition, direct conver-
sion of fibroblasts from ASD patients into neurons or
NPC/NSCs would be used as an alternative in vitro
model of ASD in the near future. However, we need to
realize that hiPSC-based studies of ASD pathophysiology
will not completely replace human postmortem and
mouse genetic studies. Nevertheless, disease modeling
with hiPSC-derived neurons combined with their com-
prehensive molecular and functional characterization
will be a new and strong tool for understanding complex
neurodevelopmental disorder, ASD.
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