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The role of 5-HT receptors in depression
Christine N. Yohn, Mark M. Gergues and Benjamin Adam Samuels*

Abstract: Depression is a polygenic and highly complex psychiatric disorder that remains a major burden on
society. Antidepressants, such as selective serotonin reuptake inhibitors (SSRIs), are some of the most commonly
prescribed drugs worldwide. In this review, we will discuss the evidence that links serotonin and serotonin receptors to
the etiology of depression and the mechanisms underlying response to antidepressant treatment. We will then revisit
the role of serotonin in three distinct hypotheses that have been proposed over the last several decades to explain the
pathophysiology of depression: the monoamine, neurotrophic, and neurogenic hypotheses. Finally, we will discuss
how recent studies into serotonin receptors have implicated specific neural circuitry in mediating the antidepressant
response, with a focus being placed on the hippocampus.
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Introduction
Major depressive disorder (MDD) is a ubiquitous illness
that plagues more than 300 million people worldwide
across all races and socioeconomic groups [1, 2]. MDD
often strikes early in life and remains a chronic or recur-
ring lifelong illness, and is therefore responsible for
more years lost to disability than any other illness [1].
Since MDD is characterized by diverse etiologies and an
overlapping symptomology with highly comorbid disorders
(i.e. anxiety), understanding the neurobiological basis of
MDD is currently a major challenge for modern psychiatry
and neurobiology [3, 4]. Overall, the underlying pathology
of depression is extremely heterogenous and complex,
which hinders the development of treatments that are
effective for all depressed individuals.
Historically treatments have ranged from psychoanalysis

and electroconvulsive therapy to modern medications
such as antidepressants. The earliest drugs found to suc-
cessfully treat depression were monoamine oxidase inhibi-
tors (MAOIs). Iproniazid, the first MAOI, was actually
developed to treat tuberculosis, but in the early 1950s it
was found to elevate mood and stimulate patient activ-
ity [5]. MAOIs inhibit the oxidation of monoamines
and ultimately result in increased extracellular levels of
serotonin (5-HT), norepinephrine (NE), and dopamine
(DA) throughout the brain. Tricyclics (TCAs), developed
in the 1950s, were also found to be moderately effective

antidepressants that increased monoamine levels mainly
by blocking 5-HT and NE reuptake [6–8]. However, the
acceptance and usage of these drugs were hindered by
both pervasive public stigma and potentially severe side
effects. By the late 1980s, second-generation antidepres-
sants that were more pharmacologically specific, such as
selective serotonin reuptake inhibitors (SSRIs), were devel-
oped and found to have improved side effect profiles.
SSRIs inhibit 5-HT reuptake into raphe nuclei neurons,
and chronic treatment results in increased 5-HT levels
throughout the brain [9, 10]. The development of SSRIs
resulted in adult use of antidepressants tripling between
1988 and 1994 and increasing an additional 48% from
1995 to 2002 [11]. Although developed several decades
ago, SSRIs currently remain some of the most prescribed
drugs in the world today.
The efficacy and actions of both first- and second-

generation antidepressants are the principal basis of the
monoamine hypothesis, which suggests that an imbalance
in 5-HT, NE, and/or DA neurotransmission underlie the
pathophysiology of depression [12, 13]. This hypothesis
may also be supported by clinical observations dating back
to the 1950s that reserpine, which depletes central stores
of monoamines, can induce depression in a subset of pa-
tients [14, 15]. As for 5-HT specifically, acute tryptophan
depletion induces the recurrence of mild depression
symptoms in patients that demonstrated remission with
5-HT antidepressants [16–18]. Furthermore, cerebrospinal
fluid levels of the primary metabolite of 5-HT (5-HIAA)
appear to be lower in a subset of patients with MDD,
especially those exhibiting suicidal behavior [19–21].
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However, approximately 33% of MDD patients do not re-
spond to treatment with a commonly used SSRI and 67%
of patients do not remit to this first line treatment [22, 23].
Underscoring the diverse etiologies of MDD, in recent years
some research has shifted focus to potential new therapies
such as noncompetitive NMDA receptor antagonists [24,
25], anticholinergic agents [26], and opioid modulators
[27–29]. Therefore, it will ultimately be critical to stratify
patients into distinct subsets so that they can be treated
with the most appropriate and effective medications.
This review addresses the roles that both different

gene polymorphisms involved in 5-HT signaling and the
different 5-HT receptors (i.e. 5-HT1A, 5-HT1B, 5-HT4,
and 5-HT7) may have in the pathophysiology of depression
and the antidepressant response. A streamlined knowledge
of these 5-HT signaling-related polymorphisms and recep-
tors may ultimately prove instructive in determining which
patients will be responsive to SSRIs. Furthermore, the
determination of specific spatial populations of 5-HT
receptors involved in mediating the beneficial effects of
antidepressant treatment will yield a window into the
neural circuitry that modulates mood-related behaviors.
Therefore, we will also discuss the location of the 5-HT
receptors that mediate the antidepressant response and
the neural circuitry that is directly affected by altered
levels of 5-HT.

SERT polymorphism
Within humans, variants that affect serotonergic function
can affect disease susceptibility and response to anti-
depressant treatment. The most prominently studied poly-
morphism occurs in the promoter of the gene encoding
the Serotonin Transporter (SERT), the protein that is the
main target for many currently prescribed antidepressants.
The promoter contains a polymorphism that results in a
short (14 repeats) or long (16 repeats) allele. Individuals
homozygous for the short SERT allele have decreased
levels of SERT and enhanced susceptibility to stressful
events and depression relative to individuals homozygous
for the long SERT allele [30]. Additionally, aside from de-
pression, the SERT polymorphism was originally proposed
to account for 7–9% of the inherited variance in
anxiety-related disorders [31]. However, recent genome-
wide association data has found poor replication of candi-
date genes for MDD, including the SERT polymorphism
[32]. In preclinical work, SERT deficiency is associated
with increased anxiety and negative valence related behav-
iors in adulthood and a complete lack of responsiveness to
SSRIs [33, 34].

Serotonin receptors
5-HT1A
Accumulating evidence indicates a role for at least 5 of
the 14 5-HT receptor subtypes: 5-HT1A, 5-HT1B, 5-HT4,

5-HT6, and 5-HT7. 5-HT1A receptors (5-HT1ARs) exist
in two distinct populations: 1) as somatodendritic
autoreceptors on the raphe nuclei neurons that pro-
duce 5-HT, and 2) as postsynaptic heteroreceptors
that mediate local neuromodulatory effects in several
brain areas innervated by serotonergic projections
[35–38]. 5-HT1ARs are Gi/o-coupled metabotropic re-
ceptors that, when activated, suppress cyclic adenosine
monophosphate (cAMP) levels and ultimately inhibit
neuronal activity [39]. Activation of 5-HT1A autoreceptors
decreases the firing rate of raphe nuclei neurons resulting
in limited 5-HT release through a negative feedback
mechanism [40]. 5HT1A autoreceptors are associated with
the etiology of anxiety behavior, as mouse studies suggest
that specific modulation of 5-HT1A autoreceptor levels on
raphe nuclei neurons during discrete developmental win-
dows can alter anxiety behavior in adulthood [38, 41–43].
In addition to SERT, a polymorphism also exists in

the promoter region of the gene encoding the 5-HT1AR
[44, 45]. This single nucleotide C(−1019) G polymorph-
ism in the 5-HT1AR promoter alters binding of the
transcriptional repressors NUDR/DEAF-1 and Hes5
such that repression is greatly reduced with the
G(−1019) allele [46]. Presumably the lack of repression re-
sults in increased 5-HT1AR expression in the raphe nuclei
of persons homozygous for the G(−1019 allele) and
subsequently decreased serotonergic neuron firing.
Indeed, preclinical work finds that mice deficient for the
transcriptional repressor NUDR/DEAF-1 have upregula-
tion of 5-HT1A autoreceptors specifically in the raphe nu-
clei [47]. In humans, the G/G genotype is related to an
increased risk of anxiety and MDD as well as a reduction
in response to SSRI treatment [45, 48, 49].
With chronic SSRI treatment, the negative feedback

mechanism that limits 5-HT release ultimately inacti-
vates due to desensitization of the raphe 5-HT1A autore-
ceptors and subsequent alterations in the firing rates of
the serotonergic neurons, but this process can take weeks
[40, 50, 51]. Through generation of transgenic mice, a pre-
clinical study found that specifically altering levels of
raphe 5-HT1A autoreceptors could lead to the develop-
ment of antidepressant responders and non-responders.
Mice exhibiting lower levels of 5-HT1A autoreceptors
were more resilient to stress and more responsive to SSRI
treatment than mice containing high levels of 5-HT1A

autoreceptors [38]. Importantly, the mice with the lower
levels of 5-HT1A autoreceptors also demonstrated a sub-
chronic response to SSRIs in novelty suppressed feeding
(NSF), a behavioral paradigm that usually requires chronic
treatment of at least 14 days before an antidepressant re-
sponse can be observed [38, 52]. Thus, raphe 5-HT1A

autoreceptors actually temporarily limit or inhibit the be-
havioral SSRI response due to their negative feedback on
5-HT release.
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In addition to acting as an autoreceptor, 5-HT1A is
also a postsynaptic heteroreceptor that mediates responses
to released 5-HT in several areas of the brain including
the septum, hippocampus, amygdala, thalamus, and
hypothalamus [53–55]. Several lines of evidence indicate a
critical role for 5-HT1A heteroreceptors in mediating the
behavioral response to antidepressant treatment. Mice
that are germline deficient (lacking both 5-HT1A autore-
ceptors and heteroreceptors) do not respond to SSRIs in
the NSF test, hinting at a potential role for the
5-HT1Aheteroreceptors in mediating the behavioral re-
sponse to antidepressants [56]. Additionally, chronic sys-
temic treatment with the 5-HT1AR agonist 8-OH-DPAT
mimics the behavioral effects of antidepressant treat-
ment in the NSF test in wild-type but not 5-HT1A

receptor-deficient mice [56].
Chronic antidepressant treatment also results in in-

creased adult hippocampal neurogenesis (discussed at
length below), and this increase is necessary for the be-
havioral effects of antidepressants [56, 57]. Correlating
with the behavioral effects, mice that are germline defi-
cient for 5-HT1A receptors do not show an increase in
adult hippocampal neurogenesis with chronic SSRI
treatment [56]. Furthermore, chronic treatment with
the 5-HT1AR agonist 8-OH-DPAT also mimics the ef-
fects of antidepressants by increasing adult hippocam-
pal neurogenesis [56].
In a recent study, Samuels and colleagues (2015) found

that specific deletion of 5-HT1A heteroreceptors from ma-
ture granule cells (GC) in the dentate gyrus (DG), a sub-
field of the hippocampus, abolished the effects of SSRIs in
a variety of behavioral tasks (including NSF) and atten-
uated the effects of SSRIs on adult neurogenesis and
hippocampal neurotrophic factor expression (BDNF and
VEGF) [54]. By contrast, if 5-HT1ARs were deleted from
the young adult born granule cells (abGCs) in the DG,
then the effects of SSRIs on behavior and neurogenesis
remained intact. Furthermore, expressing 5-HT1ARs in
DG GCs on a 5-HT1A deficient background demonstrated
that this population of 5-HT1ARs is sufficient to mediate
the behavioral and neurogenic effects of SSRIs. Overall,
the results from the series of experiments conducted by
Samuels and colleagues (2015) indicate that dentate gyrus
5-HT1A heteroreceptors on mature granule cells are a
potential target for clinical therapeutics [54].
Previous clinical trials with drugs that target 5-HT1ARs,

such as pindolol, have yielded disappointing results likely
because these drugs targeted both the autoreceptor and
heteroreceptor populations, which can have somewhat op-
posing effects [58]. Future attempts at targeting 5-HT1ARs
should focus on specifically modulating the activity of ei-
ther autoreceptors or heteroreceptors (but not both) in
order to yield faster acting and/or improved antidepres-
sants. To this end, recent pharmacological studies have

reported a new generation of agonists that preferentially
target 5-HT1AR subpopulations [53, 59].

5-HT1B
Levels of 5-HT1BRs are also a key determinant of stress
reactivity, and therefore 5-HT1BRs may be a potential
pharmacological target for antidepressant development
[60, 61]. Unlike somatodendritic 5-HT1A autoreceptors,
5-HT1B Gαi-coupled autoreceptors are located on both
serotonergic and non-serotonergic presynaptic terminals
throughout the brain where they inhibit neurotransmit-
ter release [39, 50, 62–66]. Following the administration
of SSRIs, mice lacking 5-HT1B autoreceptors exhibit in-
creases in 5-HT levels in the ventral hippocampus
(vHPC) and decreases in anxiety-like behaviors [66].
Furthermore, chronic antidepressant treatment increases
5-HT release through decreasing the expression and effi-
cacy of the 5-HT1BRs in the dorsal raphe nuclei (DRN)
[66–68]. However, data regarding whether 5-HT1BRs fa-
cilitate the antidepressant response remain somewhat
contradictory as some labs have found augmenting anti-
depressant effects of 5-HT1BRs antagonists, while others
have not [69–72]. Similar to the case with 5-HT1ARs, the
inconsistent pharmacological findings may be attributed
to the dual function of 5-HT1BRs as both heteroreceptors
and autoreceptors. Additionally, due to the diffuse loca-
tion of 5-HT1B autoreceptors that overlap with 5-HT1B

heteroreceptors throughout the brain, it is difficult to de-
lineate between the two distinct populations [63, 65, 66].
Similar to 5-HT1A heteroreceptors, 5-HT1B heterorecep-
tors on DG GCs may play a role in the SSRI-mediated in-
crease in adult hippocampal neurogenesis [73, 74].

5-HT2C
5-HT2CRs are Gαq-coupled heteroreceptors that are
expressed in several limbic structures including the hippo-
campus (especially enriched in CA3), amygdala, anterior ol-
factory and endopiriform nuclei, and cingulate and piriform
cortex. Overactivity of 5-HT2CRs may contribute to the
etiology of depression and anxiety as some suicide victims
have abnormally high expression of 5-HT2CRs in the pre-
frontal cortex [75]. Agomelatine, a mixed melatonergic
agonist/5-HT2CR antagonist is an effective anxiolytic and
antidepressant in both preclinical and clinical populations
[76–80]. Furthermore, acute administration of SSRIs can
lead to negative side effects (such as increased anxiety) pre-
sumably through activation of both 5-HT1AR autoreceptors
and 5-HT2CR heteroreceptors [81–85].
Interestingly, a recent study from Marcinkiewcz et al.

showed that 5-HT release from the dorsal raphe nucleus
enhances fear and anxiety through activation of 5-HT2CRs
on a subpopulation of corticotropin-releasing factor (CRF)
neurons in the bed nucleus of the stria terminalis (BNST)
[86]. Ultimately, activation of these CRF neurons in the
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BNST engages an inhibitory microcircuit that silences
outputs to the ventral tegmental area and lateral hypo-
thalamus. Furthermore, Marcinkiewcz et al. demonstrated
that acute SSRI treatment potentiates anxiety-like behav-
ior and that this effect was blocked by specific chemoge-
netic inhibition of CRF neurons in the BNST [86]. Taken
together, these results suggest that 5-HT2CRs in the BNST
underlie the negative effects of acute SSRI administration.

5-HT4
5-HT4Rs are Gαs-coupled receptors that increase intra-
cellular cAMP levels via adenylyl cyclase function to in-
crease neuronal activity [39]. 5-HT4 heteroreceptors are
widely expressed in limbic regions, including the amyg-
dala, septum, and hippocampus as well as the mesolim-
bic system [39, 55].
The C-terminal tail of the 5-HT4R is subject to com-

plex diversity due to alternative splicing of the mRNA
resulting in several different variants [39]. Within this
splice variant region are polymorphisms that are associ-
ated with susceptibility to unipolar depression [87]. In
addition, a postmortem study revealed alterations in
both 5-HT4R binding and cAMP concentration levels in
several brain regions of depressed violent suicide victims
[88]. One report also suggests that lower striatal 5-HT4R
binding in humans may contribute to the etiology of
MDD [89]. Together these results implicate a role for
5-HT4Rs in mood disorders.
5-HT4R expression is also associated with the develop-

ment of some behavioral features of depression, since
the deletion of or pharmacological blockade of 5-HT4Rs
results in increased depressive and anxiety-like behaviors
in rodents [74, 90, 91]. Interestingly, the 5-HT4R agonist
(RS67333) produces rapid antidepressant effects after
only three days of administration in rodents [92]. This
short treatment window appears to be enough to both
desensitize 5-HT1A autoreceptors and increase hippo-
campal neurogenesis. A more recent study comparing
RS67333 to fluoxetine (FLX) found that RS67333 in-
duced anxiolytic-like effects in several behavioral tests
after only 7 days, confirming that 5-HT4R agonists
provide more rapid effects than currently used antide-
pressants [93]. Interestingly, administration of a 5-
HT4R antagonists do not block the behavioral effects
of SSRIs, indicating that 5-HT4R activation likely medi-
ates anxiolytic-like effects via a distinct mechanism
[94]. Thus, more research is needed to determine the
therapeutic potential of 5-HT4Rs as a target for treating
anxiety and depression.

5-HT6
5-HT6Rs are postsynaptic Gαs-coupled heteroreceptors
that are enriched in the striatum, nucleus accumbens
(NAc), and cortex, with moderate expression in the

hippocampus, amygdala, and hypothalamus [39]. A recent
study found that two distinct agonists that are selective
for 5-HT6Rs both produce antidepressant and
anxiolytic-like effects in rodents [95]. Somewhat para-
doxically, 5-HT6R antagonists also can induce anti-
depressant- and anxiolytic-like effects in rodent models
[96–99]. It is currently unclear whether these similar
behavioral outcomes are due to diverse neurochemical
effects associated with 5-HT6R agonists and antagonists
or whether distinct actions are being mediated in differ-
ent brain regions [74, 98]. Future studies are necessary
to further explore the role of 5-HT6R receptor subtypes
in antidepressant-like responses.

5-HT7
5-HT7 are Gαs-coupled heteroreceptors located in the
limbic and cortical regions of the brain [39]. Hippocampal
5-HT7Rs appear to be involved in the interaction between
the serotonergic system and the hypothalamus-pituitary-
adrenal (HPA) axis since 5-HT7R agonists increase gluco-
corticoid receptor expression in hippocampal cell cultures
[100]. Acute but not chronic, restraint stress increases
5-HT7R mRNA in hippocampal subregions CA2 and
CA3 [101]. Antidepressant administration downregu-
lates 5-HT7 in the hypothalamus [102]. Mice lacking
5-HT7Rs exhibit antidepressant-like behaviors in stressful
environments and pharmacological blockade of 5-HT7Rs
results in a faster antidepressant responses in rats
[97, 103–107]. Furthermore, the atypical antipsychotic,
amisulpride, also acts as an antidepressant that is a
high affinity 5-HT7R antagonist. Interestingly, the
antidepressant-like behavioral effects of amisulpride
are abolished in mice lacking 5-HT7Rs [108]. Therefore,
5-HT7Rs antagonists may also represent a new class of an-
tidepressants that could have faster therapeutic action in
treating depression.

Serotonin and Neurotrophic factors
Since the original development of the monoamine hy-
pothesis of depression, more recent data has expanded
this theory to the non-mutually exclusive neurotrophic
and neurogenesis hypotheses. These hypotheses speculate
that decreases in neurotrophic factors such as brain-
derived neurotrophic factor (BDNF) or decreases in adult
hippocampal neurogenesis are respectively involved in the
pathophysiology of depression, and that their restoration
is critical for the therapeutic efficacy of antidepressant
treatment [109–113]. 5-HT signaling and 5-HT receptors
are heavily involved in regulating the levels of both neuro-
trophic factors and adult hippocampal neurogenesis.
The neurotrophic hypothesis is supported by the idea

that stress and/or depression decrease expression of
various neurotrophic factors (i.e. BDNF) in limbic areas
and this decrease correlates with neuronal atrophy
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[110, 111, 114]. Specifically, following exposure to
stressful experiences researchers have observed decreases
in BDNF in rodent hippocampus and prefrontal cortex
[109, 111, 115, 116]. Similarly, in humans, postmortem
studies find reduced levels of BDNF in these regions of
depressed patients [111, 117, 118]. In both humans and
rodents, chronic SSRI treatment increases BDNF levels
[111, 119, 120] with BDNF signaling required for adult
hippocampal neurogenesis, synaptic plasticity, and neur-
onal remodeling [121, 122]. In mice lacking BDNF in the
forebrain or the BDNF receptor Tropomysin receptor kin-
ase B (TrkB) in adult DG neural precursor cells (NPCs),
the behavioral and adult neurogenic response to SSRI
treatment is eliminated [121, 123]. SSRI administration in-
creases the maturation of young abGCs, as measured by
dendritic arborization complexity [124]. BDNF and activa-
tion of its receptor TrkB have similar effects on matur-
ation of young adult born neurons, suggesting that BDNF
may mediate some of the effects of SSRIs on neurogenesis
[125–128]. Interestingly, direct infusions of BDNF into
the DG of rodents results in antidepressant-like behavioral
effects [129].
In addition to BDNF, other neurotrophic factors such as

vascular endothelial growth factor (VEGF), fibroblast
growth factor 2 (FGF2), insulin-like growth factor 1 (IGF1),
and Activin-A are also increased by antidepressant treat-
ment. Unlike the established association between BDNF
levels and adult hippocampal neurogenesis, these neuro-
trophic factors are implicated to varying degrees in me-
diating effects on neurogenesis and synaptogenesis
[127, 130–136]. Similar to BDNF, direct cerebral infusions of
any one of these growth factors can result in antidepressant-
like behavioral responses [127, 129, 130, 134, 136, 137].
In humans, a common single nucleotide polymorphism

(SNP) that results in a methionine substitution for valine
at codon 66 (Val66Met) in the 5′ pro-domain of the
BDNF coding region occurs in 25–32% of the Caucasian
population and in 40–50% of the Asian population
[138–140]. In the Caucasian population, the Val/Val al-
lele is associated with higher neurotic scores and higher
levels of trait anxiety than subjects with the Val/Met or
Met/Met genotypes. By contrast, in Asian populations,
the Met/Met allele is associated with expression of sui-
cidal and psychotic symptoms and depression in the
elderly [141, 142]. Chen and colleagues (2006) recreated
this SNP in mice and observed that the BDNF variant
(Met/Met) mice had increased anxiety related behaviors
when placed in a stressful environment [143]. Further-
more, antidepressants were ineffective in treating this
increased anxiety [143].
Some recent studies suggest that there may be epistatic

interactions between the C(−1019)G polymorphism in the
promoter of the gene encoding 5-HT1AR and other gene
polymorphisms such as the SNP found in the gene

encoding BDNF [144–146]. As an example, subjects with
both the G/G genotype in the 5-HT1AR promoter and at
least one copy of the Met allele of the BDNF Val66Met
polymorphism had a greater than three times higher risk
of treatment resistant depression [144].
Several studies attempt to directly link the role of BDNF

and other neurotrophic factors with 5-HT receptors and
signaling [54, 147–149]. For instance, in vitro studies show
that BDNF dose-dependently decreases 5-HT reuptake,
suggesting a direct effect on the function of SERT [150].
Since expression of BDNF and other neurotrophic factors
are positively regulated by activity, activation of 5-HT re-
ceptors positively coupled to cAMP levels (such as 5-HT4

and 5-HT7) should yield enhancement of neurotrophic
factor levels. The 5-HT4R agonist RS67333 increases
BDNF mRNA expression in the hippocampus [151]. Fur-
thermore, in vitro studies show that the 5-HT7R agonist
LP12 increases expression of the BDNF receptor TrkB
[152]. By contrast, specific deletion of 5-HT1ARs, which
are negatively coupled to cAMP levels, from mature DG
GCs attenuates the chronic SSRI-induced increase in
BDNF and VEGF levels [54]. While there is precedent for
5-HT1AR mediated regulation of VEGF levels in the
dentate gyrus, this data is surprising given that 5-HT1ARs
receptors are inhibitory and both BDNF and VEGF activ-
ity are induced by activity [39, 153]. However, since find-
ings from Samuels and colleagues (2015) are based on
chronic, not acute, SSRI administration, it is possible that
the effects are mediated through an indirect downstream
mechanism that has yet to be resolved [54].
The FGF receptor FGFR1 can form heteroreceptor

complexes with 5-HT1ARs in the hippocampus and
raphe nucleus [131, 154, 155]. Treatment with 5-HT1AR
agonists or SSRIs results in activation of FGFR1 signaling
[131, 156]. Additionally, transactivation of these receptor
complexes results in synergistic increases in neurite
density and protrusions, suggesting a combined role of
FGFR1 and 5-HT1ARs in synaptogenesis [156]. Further-
more, formation of FGFR1–5-HT1AR heterocomplexes
may cause uncoupling of GIRK-5-HT1AR heterocom-
plexes in the raphe nuclei [154]. Theoretically would
decrease 5-HT1AR autoreceptor function, so direct tar-
geting of FGFR1–5-HT1AR heterocomplexes could result
in faster acting antidepressants. Overall, 5-HT receptors
and neurotrophic factors appear to be synergistically in-
volved in both the pathophysiology of depression and the
antidepressant response.

Serotonin and Neurogenesis
Over the last two decades, it has become accepted that
new neurons are produced in mammals in two discrete
locations, the subventricular zone (SVZ) of the lateral
ventricle and the subgranular zone (SGZ) of the DG in
the hippocampus [157]. The neurons born in the SVZ
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migrate through the rostral migratory stream into the
olfactory bulb and become interneurons, while those
born in the SGZ migrate into the granular layer of the
DG and eventually develop into mature granule neurons.
The process of adult neurogenesis involves several steps,
which include proliferation and fate specification of neural
progenitors, neuronal migration and maturation, as well
as synaptic integration of young neurons into the existing
neuronal circuitry. Various well-established molecular
markers are used to identify cells at distinct points, with
electrophysiological cell membrane properties well under-
stood throughout the neurogenesis process [157, 158].
Chronic, but not acute, antidepressant treatment in-

creases proliferation of dividing NPCs in the SGZ, dif-
ferentiation of precursor cells into young abGCs, and
the rate by which young abGCs mature and integrate
into the DG circuitry [57, 124]. Furthermore, the effects
of chronic antidepressants seem to be specific to the
SGZ as they do not increase neurogenesis in the SVZ
[57, 159]. Critically, ablation of the adult hippocampal
neurogenic niche, by focal radiological approaches, re-
sults in a loss of the behavioral antidepressant response,
suggesting a necessary role for adult neurogenesis in
mediating the behavioral effects of chronic antidepressant
treatment [56, 160, 161]. These studies directly resulted in
the neurogenesis hypothesis [112, 113]. However, it is im-
portant to note that ablation of adult hippocampal neuro-
genesis in rodents does not result in increases in anxiety-
and depression-related behaviors [56, 161]. Similarly,
while decreases in the number of DG GCs have been
found in postmortem samples of untreated depressed pa-
tients, there does not appear to be a decrease in the num-
ber of progenitor cells [162]. Furthermore, specifically
enhancing neurogenesis via a genetic approach does not
result in an antidepressant-like phenotype under baseline
conditions [163]. Therefore, while increasing adult hippo-
campal neurogenesis is necessary for the antidepressant
response, it is not sufficient to mediate an antidepressant
response and there is limited data to suggest that de-
creases in adult hippocampal neurogenesis may underlie
the pathophysiology of depression.
The mechanisms by which SSRIs increase adult hip-

pocampal neurogenesis is likely mediated by several
different 5-HT receptors. Administration of the 5HT1AR/
5-HT7R agonist 8-OH-DPAT increases neurogenesis in
both the SGZ and SVZ [56, 73]. Furthermore, SSRIs
do not increase neurogenesis in mice that are germ-
line deficient for 5-HT1ARs [56]. Interestingly, the
recent study by Samuels and colleagues demon-
strated that specific deletion of 5-HT1ARs from ma-
ture DG GCs, but not from young abGCs, abolished
the behavioral response to SSRI treatment and atten-
uated the neurogenic response [54]. Taken together,
these data indicate that 5-HT1ARs are likely a major

target for SSRI-induced increases in adult hippocam-
pal neurogenesis.
Similar to 5HT1ARs, 5-HT4Rs appear to be associated

with adult neurogenesis, since 5-HT4R agonists increase
neurogenesis in the DG and in the enteric nervous sys-
tem [92, 93, 151, 164–166]. By contrast, 5-HT4R antag-
onists reduce differentiation of NPCs with minimal
effect on cell proliferation, maturation, or morphology
[93, 164]. Furthermore, the beneficial effects of 5-HT4R
agonists are not only rapid acting on behavior but also
on adult hippocampal neurogenesis. Three days of
treatment with the 5-HT4R agonist RS67333 significantly
increases adult hippocampal neurogenesis [92, 151]. How-
ever, recent data suggests that the rapid behavioral effects
of 5-HT4R agonists are mediated by a neurogenesis-inde-
pendent mechanism [93]. Importantly, similar to 5-
HT1AR, mice that are 5-HT4R germline deficient also
show an attenuated neurogenic response to chronic SSRI
treatment [167].
One interesting alternative to the traditional neuro-

genesis hypothesis is that SSRI treatment may also cause
mature GCs in the DG to undergo a dematuration
process that yields cells with properties more similar to
young abGCs. Chronic SSRI treatment causes a decrease
in expression of the mature granule cell marker calbin-
din in the DG [167, 168]. Therefore, it is possible that
what is commonly measured to be maturation of young
adult born granule cells (assessed by dendritic complex-
ity of Dcx-positive cells) could also be dematuration of
previously mature granule cells. Furthermore, this dema-
turation phenomenon is attenuated in mice germline de-
ficient for the 5-HT4R [168]. Further studies have found
that chronic SSRI treatment can also induce dematura-
tion of parvalbumin-positive interneurons in the baso-
lateral amygdala and the frontal cortex in adult mice
[169, 170]. Thus, the antidepressant response may rely
on both increases in neurogenesis and dematuration. It
would be particularly interesting to determine whether
signaling via distinct serotonin receptors can result in
either increases in neurogenesis or dematuration. Fur-
ther work using both spatially restricted 5-HT1AR and
5-HT4R deficient mice is required to further address
this hypothesis.
In addition, while not nearly as well established as

SGZ and SVZ adult neurogenesis, several studies have
suggested that adult neurogenesis can occur in other
brain regions such as the cortex and hypothalamus
[171–173]. A recent study by Ohira and colleagues (2013)
found that SSRI treatment increased cortical inhibitory
neuron proliferation [173]. Some have speculated that
GABAergic interneurons are involved in the etiology of
depression [174], so it will be interesting to determine
whether cortical neurogenesis plays a role in mediating
the beneficial effects of antidepressants on behavior.
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Serotonin and the neural Circuity of the
hippocampus
The results from Samuels and colleagues (2015) suggest
that 5-HT1ARs on mature DG GCs are critical mediators
of the effects of SSRIs on behavior, neurotrophic factors,
and neurogenesis [54]. We propose that chronic activa-
tion of 5-HT1ARs on mature DG GCs activate signaling

cascades that ultimately result in secretion of neuro-
trophic factors, such as BDNF and VEGF, which in turn
stimulate proliferation of NPCs as well as differentiation
and maturation of young abGCs (Fig. 1). The young
abGCs, which have distinct plasticity properties from the
mature DG GCs, can then activate local GABAergic in-
terneurons to evoke strong inhibitory input to the

Fig. 1 A proposed model of the hippocampal microcircuit underlying the effects of increased serotonin on the dentate gyrus. First, chronic SSRI
administration increases 5-HT levels, which results in activation of 5-HTRs on dentate gyrus granule cells. Activation of 5HT-1ARs on mature
granular cells ultimately results in release of downstream growth factors such as BDNF, VEGF, and others, which bind to receptors on neural
precursor cells (NPCs) in the subgranular zone. NPCs then proliferate and differentiate into young adult born granule cells (abGCs), which will
begin to migrate, mature, and finally integrate into the granule cell layer. However, the young abGCs have distinct plasticity properties from
the mature dentate gyrus granule cells and activate local GABAergic interneurons to evoke strong inhibitory input to the mature granule cells

Fig. 2 The expression of 5-HT1A receptors along the dorsoventral axis of the hippocampus in a rodent brain. 5-HT1AR expression is highest in
dorsal CA1 and ventral dentate gyrus. The dorsal and ventral hippocampus participate in distinct circuitry, with the ventral hippocampus projecting
to limbic structures. Therefore, 5-HT1ARs on dentate gyrus granule cells are well positioned to exert an influence on mood related behaviors
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mature GCs [175–178] (Fig. 1). In this model inhibition
of mature GCs via direct activation of 5-HT1ARs or via
the local microcircuitry is therefore critical for the anti-
depressant response.
Interestingly, 5-HT1ARs show a unique expression pat-

tern in the rodent DG as expression levels dramatically
increase along the dorsoventral axis to the point that the
vast majority of DG 5-HT1ARs are expressed in the ventral
pole [55]. Several studies imply that the dorsal hippocam-
pus (dHPC) and vHPC may serve different functions,
where the dHPC is more involved in cognitive functions,
while the vHPC is important in regulating emotional
affective states [179]. For instance, dHPC lesions reduce
spatial memory in Morris water maze and radial arm maze
whereas by vHPC lesions do not impair spatial memory
[180, 181]. More modern approaches demonstrate that
specific optical stimulation (via channel rhodopsin 2, ChR2)
of basolateral amygdala (BLA) to vHPC projections or
vHPC projections to NAc increases anxiety-related behav-
iors [182, 183]. By contrast, inhibition of vHPC projections
to medial prefrontal cortex (mPFC) decreases anxiety-
related behavior [184]. Directly activating granule neurons
in the dorsal DG with acute stimulation of ChR2 reduces
freezing behavior and recall in the contextual fear condi-
tioning paradigm, however, this effect is not seen when
stimulating the vHPC [181]. Furthermore, acute optoge-
netic inhibition (using halorhodopsin) of dorsal DG, but
not ventral DG, leads to reductions in freezing behavior
when photoillumination occurs during encoding and mice
are tested 24 h later. By contrast, acute optogenetic in-
hibition of ventral DG but not dorsal DG results in
anxiolytic-like behavioral effects.
The different roles dorsal and ventral DG have in me-

diating diverse behaviors is likely due to a distinct con-
nectivity. Dorsal DG receives inputs from dorsolateral
and caudomedial entorhinal cortex, and medial septal
nucleus, which relay inputs from V1, S1, and thalamic
nuclei. Efferent outputs from dorsal DG are sent to the
mammillary complex, dorsal lateral septum, lateral ento-
rhinal cortex, and anterior cingulate cortex [179, 185]
(Fig. 2). Many of these regions are critical for memory,
locomotion, and exploration, thereby demonstrating the
importance of the dHPC in cognitive rather than mood
related tasks. Conversely, the ventral DG receives inputs
from rostromedial entorhinal cortex and medial septal
nucleus that convey information from auditory and piri-
form cortices. Unlike dorsal DG, ventral DG projects to
areas important for regulating emotional affect, with
outputs extending to the prefrontal cortex, NAc, hypo-
thalamus, amygdala, medial entorhinal cortex, BNST, as
well as rostral and ventral lateral septal nuclei (Fig. 2)
[179, 185].
Aside from circuit connectivity, there are electrophysio-

logical, molecular, and anatomic differences between the

dHPC and vHPC [179]. The vHPC has higher levels of
5-HT and 5-HT innervation relative to the dHPC, dem-
onstrating the importance of 5-HTR signaling within
the vHPC in potentially mediating emotional affect and
antidepressant response [186]. In the hippocampus, 5-
HT1ARs are highly expressed in the ventral DG and
dorsal CA1, two distinct hippocampal subfields [55]
(Fig. 2). Given that dentate gyrus 5-HT1ARs are necessary
and sufficient for mediating the behavioral effects of
SSRIs, their location in the ventral pole positions these
receptors to directly influence limbic circuitry in order
to regulate mood-related behavior. Future work is ne-
cessary to determine whether specific pharmacological
or electrical manipulations of ventral DG may be a
novel therapeutic avenue for the treatment of depres-
sion and anxiety.
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