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Abstract

Microglia are the principal resident immune cells in the central nervous system and are believed to be versatile players in
both inflammatory and physiological contexts. On the one hand, in order to safeguard the microenvironment microglia
can be rapidly activated by contact with microbial products or cell debris, thereby exerting the functions of innate
immunity via phagocytosis and secretion of cytokines and chemokines. Conversely, microglia can also assist in brain
development, synaptic plasticity and neural repair through the production of neurotrophic factors and clearance of
myelin debris. It is now well accepted that the dysfunction of microglia and microglia-induced neuroinflammation are
implicated in the occurrence and progression of many neurological diseases. Although the past decade has witnessed
major progress in understanding of multi-tasking microglia, what remains largely enigmatic is the relative importance of
microglia at different disease stages and how microglia should be targeted for optimal therapeutic efficacy. Notably,
microglia depletion through genetic targeting or pharmacological therapies can be viewed as effective tools to stimulate
new microglia to repopulate the central nervous system. Microglia depletion and subsequent repopulation at defined
stages in various experimental animal model disorders allow us to extend our knowledge of molecular mechanisms, thus
holding promise for designing strategies to resolve neuroinflammation and promote recovery. Herein we highlight the
highly plastic and diverse phenotypes of microglia and outline the lessons learned from microglia depletion approaches.

Keywords: Microglia, Depletion, Neuroinflammation

Introduction
Microglia were first identified and named in 1919 by Pio
del Rio-Hortega who is considered ‘the father of micro-
glia’ by many neuroscientists [1]. Despite being identified
100 years ago our knowledge about microglial ontogeny
and functions have only considerably advanced recently.
Microglia are highly specialized and dynamic brain resi-
dent macrophages representing approximately 10% of
the total cells within the adult central nervous system
(CNS) [2, 3]. Microglial density varies in distinct brain
locations, with a higher density being evident in grey
matter in rodents [4].
Microglia are known as multi-tasking effectors and

regulators in the CNS, capable of playing both patho-
genic and protective roles during various phases of

neurological diseases [2, 5–13]. During physiological
conditions, as the first housekeeper of the microenviron-
ment against pathogens, resting microglia are character-
ized by a small cell body and ramified morphology with
multiple branches that actively and efficiently scan the
surrounding environment, ensuring CNS homeostasis
and impacting neural development [14, 15]. Upon stimu-
lation microglia withdraw their processes, rapidly con-
vert into a so-called amoeboid activated morphology
state and release bioactive molecules, thus contributing
to active inflammatory responses and combating foreign
invasion at damaged sites [16, 17]. Activated microglia
are thus quite plastic cells that may adopt diverse
phenotypes in response to different stimuli and various
microenvironmental changes [18, 19].
Newly emerging neurobiological functions of micro-

glia are currently being investigated [20–23]. Microglia
appear to influence synaptic development and connect-
ivity, regulate other immune cells and refine the neural
circuits, thereby properly determining overall brain
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function [24, 25]. So appropriate functioning of micro-
glia is of major importance for CNS in both health and
disease conditions.
Similarly to tissue macrophages in the periphery, microglia

are also commonly subdivided into two functional categor-
ies: the classically activated pro-inflammatory M1 phenotype
characterized by production of pro-inflammatory and neuro-
toxic mediators; and the alternatively activated M2 pheno-
type involved in tissue repair and remodeling characterized
by secretion of anti-inflammatory mediators [26, 27].
Currently, abundant experimental evidence indicates
that the dysregulation of microglia and the imbalance
of these functional activation states can give rise to
many autoimmune diseases [26, 28]. So targeting
microglia and adjusting the balance of functional phe-
notypes is an attractive therapeutic strategy for inflam-
matory disorders [6, 29, 30]. In a previous study we
have demonstrated that adoptive transfer of specifically
pre-activated immunomodulatory adult microglia stim-
ulated with a combination of interleukin (IL)-4/IL-10/
transforming growth factor-β (TGF-β) could efficiently
suppress the development of experimental autoimmune
encephalomyelitis (EAE) in DBA/1 mice [31, 32]. How-
ever, the precise cellular involvement in this paradigm
and how microglia should be specifically targeted to
perform an optimal therapeutic efficacy are still poorly
understood.

Microglia origins: from the yolk sac or non-yolk
sac sources?
We should first understand the origin of microglia be-
fore we discuss their functions as potential therapeutic
targets. Although microglia have been studied for more
than 100 years, the precise origin of microglial cells dur-
ing natural development and experimental intervention
has historically been controversial [33]. Some experts in-
cluding Pio del Rio-Hortega himself argued that micro-
glia originated from hematopoietic stem cells (HSCs)
because of their phenotypical and morphological resem-
blance to peripheral tissue macrophages and monocytes.
Indeed, HSCs are the founders of meningeal macro-
phages and monocytes. In addition, circulating mono-
cytes can enter the brain and then differentiate into
microglia-like cells [34, 35]. However, a new wave of
studies has demonstrated that microglia have distinct or-
igins and tissue-specific functions in comparison to
other tissue macrophages [36–38]. In general, microglia
can enter the embryonic brain and take up residence be-
fore the differentiation of other cell types. HSCs can be
detected at around embryonic day 10.5 (E10.5), while
F4/80+CD11b+ microglia during embryogenesis can be
found as early as E8.0 and yolk sac progenitors begin to
migrate to the brain at around E9.5 [39–41]. The pres-
ence of primitive microglial precursors in the developing

brain earlier than definitive hematopoiesis indicates that
microglia in fact exist independently of HSCs [39].
This concept has been strengthened using cutting-

edge genetic fate mapping tools [37, 42]. Using this ele-
gant tool Ginhoux et al. reported for the first time that
microglia exclusively derive from progenitors outside the
CNS in the yolk sac during early development, and can
be constantly self-renewed throughout adult life with no
input from peripheral cells in the healthy situation [37].
Additionally, microglial development does not require
transcription factor Myb which is important in control-
ling HSC differentiation, but depends on several others
such as Runx1, Pu.1 and IRF8 [43].
During development, Pu.1 is responsible for the transi-

tion from microglial precursors to the A1 state (CD45
+C-kitloCX3CR1−F4/80−), while IRF8 is essential for the
maturation from the A1 to A2 state (CD45+C-kit
−CX3CR1+F4/80+) [38]. Notably, the number of micro-
glia in mice is sharply reduced through pharmacological
blockade or genetic defects in colony-stimulating factor
receptor (CSF1R), a critical factor that controls microglia
proliferation [17]. Conversely, over-expression of CSF1
increases the number of microglia by promoting micro-
glial proliferation in vivo [44]. Furthermore, IL-34 and
TGF-β are also essential for microglial development [45].
A recent study presents an exciting report that human
pluripotent stem cells can differentiate into microglia-like
cell subsets, high concentrations of CSF-1 and IL-34 being
necessary in this protocol [46, 47]. Collectively, these in-
vestigations showed that microglia arise exclusively from
yolk sac in the steady state and have different tissue-
specific functions.
However, later studies challenged this single source

viewpoint by using temporal-spatial resolution fate map-
ping [48]. This study indicated that two different origins
of microglia could be identified in zebrafish. Specifically,
it was demonstrated that embryonic microglia arise from
the rostral blood island in zebrafish, while adult micro-
glia originate from the ventral walls of the dorsal aorta
instead. Although these different results may simply re-
flect the different animal species involved, this study
raises the question as to whether there are potential hid-
den progenitors in mice and human that have as yet not
been identified. Potential non-yolk sac sources such as
fetal-liver progenitor cells may also give rise to micro-
glia. A recent study showed that fetal-liver progenitor
cells could contribute to the resident microglial pool
only at early postnatal stages due to rapid depletion by
apoptosis [49] (Fig. 1).
When it comes to certain conditions such as whole

body irradiation and global depletion of microglia, how-
ever, the repopulation of CNS local dying or depleted
microglia by bone marrow-derived macrophages that
adopt a microglia-like phenotype has also been reported
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to occur [34]. Following direct body irradiation, circulat-
ing Ly-6ChiCCR2+ monocytes were shown to traffic to
the brain and then to differentiate into microglia, and
could thus serve as direct precursors of microglia [34].
Subsequent studies reported that global depletion of
microglia by administering a CSFR1 inhibitor did not
destroy the blood brain barrier, but could trigger
mobilization of latent microglia progenitors expressing
the stem cell marker nestin throughout the CNS, result-
ing in rapid repopulation within 14 days [50, 51]. Fur-
ther studies are needed to reveal the precise origin and
molecular mechanisms of repopulated microglia.

How to specifically distinguish microglia from
other myeloid cells?
As mentioned above, microglia in fact have distinct ori-
gins and tissue functions compared with related cell
types. However, microglia share many surface markers
such as F4/80, CD11b and CX3CR1 with peripheral
tissue macrophages. In addition, macrophages can also
infiltrate the brain in inflammatory contexts. So it is crit-
ically important to distinguish microglia from other
myeloid cells in order to have a better understanding of
the roles of microglia in both health and disease states.
It is generally thought that the level of CD45 on the

CD11b positive population is an effective way to

distinguish microglia from macrophages [52–54]. In
accordance with this notion, the CD45int (or CD45low)
expressing cells in the CD11b positive population are
usually considered to be microglia, while the CD45hi

expressing cells are commonly viewed as being blood-
derived macrophages. However, this method relies on
relative surface marker expression as assessed by flow
cytometry and has the serious limitation that CD45
expression can change in the context of inflammation
[52, 55]. More recently, generation of knock-in mice
based on high microglial expression of the fractalkine re-
ceptor CX3CR1 have advanced the cellular phenotyping
[56]. Nonetheless, this method also has a limitation be-
cause circulating monocytes and other myeloid cells can
also express CX3CR1 [52]. Morphological features of
microglia are also widely used together with immuno-
histological staining for ionized binding adaptor
molecule-1 (Iba-1) [53].
Ongoing transcriptional studies have identified some

potential markers that are selectively expressed in micro-
glia, such as P2RY12, Siglec-H, olfactomedin-like 3 and
Sal1, and that thus distinguish microglia from other re-
lated cells [17, 40, 57]. Recent reports identified the
transmembrane protein 119 (Tmem119) as a potential
microglia-specific marker in both the mouse and human
CNS [52, 58]. Tmem119 mRNA expression is specific to

Fig. 1 Overview of microglial ontogeny in mice and zebrafish. a Microglia in mice derive from the immature erythromyeloid progenitors (EMPs)
outside the central nervous system in the yolk sac during around embryonic day 8.0. During development, EMPs can enter the embryonic brain
and take up residence, which is regulated by factors Pu.1, IRF8 and Runx1. During further development, IL-34 and CSF-1 are needed to promote
microglia proliferation. Microglia can be constantly self-renewed throughout adult life. However, whether there are potential hidden progenitors
besides the yolk sac have not been identified as yet. Potential non-yolk sac sources may also give arise to microglia in mice. b Two different
origins of microglia can be found in zebrafish. Specifically, embryonic microglia arise from rostral blood islands in zebrafish, while adult microglia
originate from ventral walls of dorsal aorta instead.
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all microglia and is highly enriched within the CNS,
while bone marrow-derived cells in the adult CNS do
not express Tmem119 [52]. Consistent with mRNA
expression, immunostaining indicated that Tmem119 is
limited to parenchymal CX3CR1−GFP+ and Iba1+ cells,
and was not detected in the meninges and choroid
plexus. Tmem119 only specifically labeled parenchymal
resident microglia, allowing for the visualization of
microglia in the context of diseases and providing a clear
distinction between microglia and other related myeloid
cells [52, 58].
As we have previously proposed, it is function rather

than form that is critical in defining myeloid cell sub-
populations [59, 60]. In vitro functional responses can
thus also be used as another tool to distinguish microglia
from other myeloid cells. Microglia were demonstrated
to respond differently to the same stimulus depending
on if another stimulus precedes or follows it [61]. To
discover potential discriminatory differences between
microglia and other myeloid cells, researchers have
exploited a total of five polarity phenotypes based on the
responsiveness of microglia and macrophages to an in-
flammatory polarization gradient [61, 62]. Lipopolysac-
charide (LPS) and IL-4 were applied alone, sequentially
in a reversible fashion, or simultaneously to microglia
and macrophages. The results revealed that primarily
cultured microglia could not counteract the initial M1
and M2 states first induced with LPS or IL-4 (as
assessed by the expression of tumor necrosis factor-α
(TNF-α) and mannose receptor C, type 1 (MRC-1))
while macrophages could. One interpretation is that
microglia appear less prone than peripheral macro-
phages to phenotypic redirection, which provides an-
other novel way to distinguish microglia from other
myeloid cells in vitro [61]. Further molecular evaluation
is needed to characterize if these observations are still
valid in the in vivo setting.

Pharmacological treatment for microglia
elimination
In order to specifically deplete microglia in the CNS
many pharmacological strategies have been developed
(Table 1). Microglia are the only type of immune cells
expressing CSF-1 in the CNS under physiological condi-
tions [56] and as described before, the survival and de-
velopment of microglia critically depends on CSF-1R
signaling [51, 63]. Administration of a dual CSF-1R in-
hibitor can thus effectively wipe out microglia without
harmful effects to mice [51, 64]. By using mice that ex-
press yellow fluorescent protein under the control of the
Rosa26 locus in CSF-1R expressing cells, it has been
confirmed that CSF-1R inhibition can effectively deplete
microglia in the CNS instead of down-regulating micro-
glial markers [65]. Such CSF-1R inhibition has been
widely used to investigate the effects of microglial deple-
tion with a subsequent analysis of the consequences in
different disease animal models.
Microglia can be repopulated within a short time after

cessation of this treatment [51]. Of note, microglia deple-
tion could be sustained when mice received continuous
treatment. This point was confirmed by recent studies
showing that approximately 90% of CD11b+CD45int

microglia in mice can be depleted by administration of
CSF-1R inhibitor for 21 consecutive days [66, 67].
PLX3397, a small molecule CSF-1R inhibitor, can cross
the blood brain barrier and thus rapidly deplete microglia
in the CNS [51]. Similarly to microglia in the brain, micro-
glia in the spinal cord can also repopulate rapidly follow-
ing depletion with Mac-1-saporin, a selective microglia
immunotoxin which can induce the breakdown of the
blood spinal cord barrier and the production of pro-
inflammatory mediators [68].
However, contradictory findings about the effects of

microglial depletion have been reported in different ani-
mal models. More specifically, microglia elimination by

Table 1 Overview of pharmacological microglia depletion studies

Pharmacological intervention Efficiency Time window Physiological effects References

CSF-1R inhibitor (PLX3397) 99% 21 days has no cognitive or behavioral impairments [63]

CSF-1R inhibitor (PLX3397) ~90% 21 days promotes brain recovery in intracerebral hemorrhage [66]

CSF-1R inhibitor (PLX3397) ~90% 21 days exacerbates brain recovery in brain ischemia [69]

CSF-1R inhibitor (PLX3397) 97% 21 days increases infarct size and brain injury after stroke [67]

CSF-1R inhibitor (PLX5622) ~90% 2 or 6 weeks ameliorates radiation-induced cognitive deficits [70]

CSF-1R inhibitor (PLX5622) ~90% 7 days ameliorates inflammation induced by neuronal lesion [64]

CSF-1R inhibitor (PLX5622) ~80% 28 days prevents neuronal loss and contextual memory in Alzheimer’s [65]

CSF-1R inhibitor (GW2580) Not shown 6 weeks attenuates depression-like behavior and kidney function [71]

Liposomal clodronate 70% 2 weeks decreases anxiety and despair behaviors throughout life [76]

Liposomal clodronate ~80% 1 or 5 days alters spatial learning performance and social behavior [75]

Mac-1-saporin 50% 1 day triggers bone marrow derived-cell infiltration into spinal cord [68]
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PLX3397 was shown to exert neuroprotective functions
by preserving blood brain barrier integrity and thus re-
ducing leukocyte infiltration into the CNS in the context
of intracerebral hemorrhage [66]. By contrast, microglia
elimination by PLX3397 was shown to exacerbate neuro-
inflammation and brain injury in the context of brain
ischemia [67, 69]. Moreover, other pharmacological
approaches to specifically deplete microglia have also
been used recently. PLX5662 treatment, a more brain-
penetrant CSF-1R inhibitor than PLX3397, can cause a
rapid and significant depletion of IBA-1 and CD68 posi-
tive microglia in the CNS within 3 days [70]. Elimination
of microglia by PLX5662 can ameliorate cranial radiation-
induced cognitive deficits in mice, when tested by a bat-
tery of behavioral tasks 4–6 weeks after irradiation [70].
These findings, along with others, indicate that acute

microglia depletion by using PLX5662 and then subse-
quent repopulation can resolve neuroinflammation and
promote brain recovery, despite extensive neuronal loss in
the hippocampus [64]. Importantly, recent studies have
confirmed that GW2580, another CSF-1R inhibitor, can
deplete both microglia and macrophages at the same time
[71]. On the one hand, daily treatment of GW2580 can at-
tenuate neurobehavioral deficits such as depression-like
behavior in murine lupus. Conversely, GW2580 treatment
can also deplete IBA+ macrophages within the kidney,
contributing to protection of kidney function [71]. In this
regard, CSF-1R inhibitors may not be specific for micro-
glia in the CNS. Indeed, both tissue macrophages and
microglia express this receptor, and treatment with CSF-
1R inhibitor can also inhibit other kinases and suppress
immune responses [71–73]. Some experts argue that
microglial progenitors in the bone marrow and tissue
macrophages may therefore be equally affected and that
secondary effects are elicited by employing CSF-1R inhibi-
tors [56, 72]. Another disadvantage using CSF-1R inhibi-
tor during neurodevelopment is that microglial death may
alter neuronal activity and synaptic physiology [74], and
so these potential adverse effects on development must be
considered for clinical applications of microglial depletion.
Further studies are still needed to specifically ablate
microglia in the brain (using GW2580) with little effects
on other tissues.

Liposomal clodronate injection can be regarded as
another method to specifically deplete microglia. Hippo-
campal injection of clodronate provides specific anatom-
ical depletion of Iba-1+ microglia, leading to alterations
in spatial learning and sociability [75].
In addition, the timing of microglia depletion is an-

other important factor that needs further investigation.
Previous studies have indicated that there were no obvi-
ous behavioral consequences in adult mice following
microglial depletion, despite extensive neuronal loss in
the brain [51]. In contrast, microglia depletion in early
life using liposomal clodronate can lead to increased
locomotion and decreased anxiety and despair behaviors
throughout life, confirming that microglia are important
in facilitating proper brain development [76, 77].

Genetic manipulation of microglia depletion
Although depletion of microglia can be achieved in mice
carrying gene mutations that are important for the sur-
vival and development of microglia, mice can suffer
from severe developmental defects and rarely survive
into adulthood [45, 56]. With the advent of novel genetic
manipulation methods, microglia ablation is more ac-
cessible and specific than pharmacological strategies
(Table 2). The main advantages of genetic microglial de-
pletion using cell type promoters that are coupled with
suicide genes are that they have few side-effects on other
peripheral tissues and that the efficiency is relatively
higher than pharmacological approaches [72].
To achieve the depletion of microglia, transgenic

mice that express the suicide gene herpes simplex
virus thymidine kinase (HSVTK) and mutant form
HSVTKmt-30 under the specific CD11b promoter were
generated [78–80]. HSVTK is a commonly used sui-
cide gene that can be activated and becomes toxic
(inducing apoptosis and inhibition of DNA) after ad-
ministration of the pro-drug ganciclovir with >90%
microglia being depleted in CD11b-HSVTK transgenic
mice [79]. Heppner et al. reported that elimination of
microglia in these transgenic mice could repress neuroin-
flammation as well as clinical signs of EAE [81]. In addition,
microglia ablation in mutant form HSV-1 TKmt-30 mice
had little effect on motor neuron degeneration in the

Table 2 Overview of genetic microglia depletion studies

Depletion strategy Efficiency Time window Physiological effects References

CD11b-HSVTK 56% 7 days little effect on axonal degeneration in concussive brain injury [80]

CD11b-HSVTK >90% 7 days represses EAE-associated neuroinflammation [81]

CD11b-HSVTK >90% 2 weeks circulating monocytes occupy brain after microglia depletion [79]

CD11b-HSVTKmt-30 51% 30 days has no effect on motor neuron degeneration in ALS [82]

CX3CR1CRE DTR 80% 3 days causes a cytokine storm and astrogliosis [85]

CX3CR1CRE DTR 99% 1 day reduces synaptic structural plasticity associated with learning [84]
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context of amyotrophic lateral sclerosis (ALS), showing that
microglia-expressing mutant genes may not contribute to
the neurodegenerative process in ALS [78, 82, 83].
As an alternative genetic approach, diphtheria toxin

(DT) is another widely used immunotoxin to deplete
many cell types [72]. Recently, tamoxifen-induced
CX3CR1CreER mouse models that drive diphtheria toxin
receptor (DTR) expression upon Cre-mediated recom-
bination were established to specifically deplete micro-
glia from the brain by systemic administration of DT
[84, 85]. The efficiency of microglia depletion can reach
~90% and CX3CR1+ cells in the periphery remained un-
affected using this method [84–86]. Microglia depletion
in CX3CR1CreER mice significantly reduced synaptic
structural plasticity associated with multiple learning
tasks via brain-derived neurotrophic factor signaling
[84]. Moreover, specific and massive depletion of
microglia can cause a rapid repopulation from novel in-
ternal pools expressing the stem cell marker nestin+ via
IL-1 signaling without the contribution from peripher-
ally circulating cells [85]. Previous studies of genetic
microglial depletion have reported a rapid repopulation
within 5 days, but these new cells are not fully charac-
terized as yet [72].

Concluding remarks and future directions
Despite remarkable major recent advances in our under-
standing of microglial biology regarding origins, develop-
ment, phenotypes and functions over the past century, we
are just beginning to decipher the enigmatic nature of
these versatile players in order to best harness or modu-
late them in CNS disorders. Thanks to novel and cutting-
edge manipulation tools to investigate microglia we are
much closer to achieving these goals for therapeutic
interventions. Herein we have discussed several microglia
depletion systems including genetic targeting and pharma-
cological therapies. Among these, oral drug strategies may
equally affect other cell types expressing the targeted re-
ceptors in the periphery, generally suppressing all immune
response and eliciting secondary effects. For this reason,
clinical translation of pharmacological strategies should be
considered with caution.
Looking to the future, we would suggest further investi-

gation of the relative importance of microglial subpopula-
tion depletion at different disease stages. Only when we
are sufficiently knowledgeable should we consider using
microglia depletion as a clinical intervention to resolve
neuroinflammation and to promote recovery. It would
also be vital to take advantage of knowledge learned from
microglia-specific genetic tools such as the tamoxifen-
inducible CX3CR1CreER mice and other microglia-specific
knockdown strategies.
Finally, the relative merits of microglial depletion con-

tra microglial functional inhibition should be thoroughly

investigated, as the latter should theoretically allow for
microglial functional repolarization in vivo, even if this
has proven difficult in vitro. A prerequisite for this will
be to ascertain whether the published reports of micro-
glial depletion actually reflect inhibition instead with as-
sociated down-regulation of microglial surface receptor
expression, and this should be re-analysed using the
newest described microglia-specific markers. One caveat
with all potential clinical applications of microglial de-
pletion will be whether the myeloid cells repopulating
the empty niche in the CNS, be they fast-proliferating
microglia or infiltrating peripheral monocytes, will
assume the full functionality of homeostatic CNS micro-
glia, and this will be a critical issue to address. In con-
clusion, with improved and intricate cell type-specific
targeting approaches, we are optimistic that future re-
search will bear exciting new discoveries in this field.
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