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Abstract

Human immunodeficiency virus (HIV) infection induces neuronal injuries, with almost 50% of infected individuals
developing HIV-associated neurocognitive disorders (HAND). Although highly activate antiretroviral therapy (HAART)
has significantly reduced the incidence of severe dementia, the overall prevalence of HAND remains high. Synaptic
degeneration is emerging as one of the most relevant neuropathologies associate with HAND. Previous studies
have reported critical roles of viral proteins and inflammatory responses in this pathogenesis. Infected cells, including
macrophages, microglia and astrocytes, may release viral proteins and other neurotoxins to stimulate neurons and cause
excessive calcium influx, overproduction of free radicals and disruption of neurotransmitter hemostasis. The dysregulation
of neural circuits likely leads to synaptic damage and loss. Identification of the specific mechanism of the synaptic
degeneration may facilitate the development of effective therapeutic approaches to treat HAND.

Introduction
There are almost 37 million HIV-infected people world-
wide, with over 1 million in U.S in 2015 (https://
www.hiv.gov/hiv-basics/overview/data-and-trends/statis-
tics). No cure is currently available. HIV attacks the im-
mune system, especially CD4 T cells, leading to immune
dysfunction. Soon after the infection, HIV enters the
central nervous system (CNS) and causes neurological
dysfunction. Even with the effective anti-retroviral ther-
apy that suppresses viral replication and transmission,
about 70% of HIV patients still develop neurological
complications [1]. Multiple neurological disorders are
manifested in HIV patients.
HIV-associated neurocognitive disorder (HAND) is a

common primary neurological disorder associated with
HIV infection of the CNS. Patients with HAND often
develop cognitive impairment, motor dysfunction and
speech problems. Clinical severity of HAND ranges from
asymptomatic neurocognitive impairment and mild neu-
rocognitive disorder to HIV-associated dementia (HAD)
[2]. Due to the success of HAART, HAD has declined,
with a prevalence of less than 5% of HIV patient who
are on the treatment [3]. However, the mild forms of
HAND are still common and significantly affect a pa-
tient’s quality of life.

Neuropathy of the peripheral nerves often develops in
HIV patients. With the improved survival of HIV pa-
tients on HAART, the prevalence of HIV-associated
neuropathy has increased, with about 42% of HIV pa-
tients showing neuropathy symptoms [4]. The clinical
symptoms include unusual sensation, numbness and se-
vere pain. However, pathological analysis of autopsies in-
dicate that almost all patients with AIDS develop
peripheral neuropathy, including those who did not
show clinical symptoms [5].
HIV-associated vacuolar myelopathy (VM) is com-

monly associated with late stages of HIV infection. Of
AIDS patients, 20–55% exhibit symptoms of VM [6].
Vacuolization in dorsal and lateral tracts in the thoracic
spinal cord is a common pathological characteristic. Pa-
tients with VM manifest progressive weakness of legs
and sensory abnormalities, and VM may ultimately lead
to paralysis of lower limbs [6].
In addition to HIV infection, anti-retroviral therapy may

also contribute to neurological disorders. HAART is the
current standard treatment for HIV infection. It is a cus-
tomized combination of different classes of antiretroviral
agents, including nucleoside reverse transcriptase inhibi-
tors (NRTIs), non-nucleoside reverse transcriptase inhibi-
tors, protease inhibitors, integrase inhibitors and entry
inhibitors. For example, patients treated with NRTIs are
prone to develop neuropathy and/or myopathy in a dose-
dependent manner [7–9]. A major side effect of protease
inhibitors on the CNS is lipodystrophy syndrome, which
is characterized by peripheral fat wasting and central
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adiposity [10]. NRTIs have also been linked to lipodystro-
phy [11]. HAART was also reported to increase the inci-
dence of encephalitis [12] and induce neuropathy [13].
In this review, we will focus on HAND. In particular,

we will critically consider the current understanding of
HAND neuropathogenesis from three related aspects:
the neuropathogenic underpinnings, the model systems
for mechanistic studies, and potential mechanisms of
HAND-associated synapse degeneration.

Neuropathology of HAND
Early stages
Although 70% of people with HIV have neuropatho-
logical abnormalities in the era of HAART [1], only a
few studies have reported neuropathology in HIV-
infected individuals before the onset of AIDS due to the
limited availability of postmortem brains. Most HIV-1
patients remain neurologically unimpaired during early
pre-AIDS stages. It generally takes 3 to 6 weeks to be-
come seropositive after HIV infection, and this period is
known as seroconversion. During seroconversion, 50–
70% of HIV-infected people experience transient “acute
HIV syndrome”, such as symptomatic meningitis [14],
encephalopathy [15, 16] or myelopathy [17]. Some clini-
copathological studies revealed that the CNS entry of
HIV-1 might also induce demyelination in the white
matter during seroconversion [18, 19].

Asymptomatic period
After the seroconversion period, HIV infection enters a
latency phase called the asymptomatic period, which
usually lasts for 8–10 years. Neurological pathologies are
noted during this stage, especially in the white matter,
although the pathological changes are not consistent.
Vascular inflammation is frequently observed in the
white matter and basal ganglia, and microglial activation,
astrocytosis and myelin pallor are observed in the white
matter during this stage [20–22]. Although microglial
activation is observed in the cerebral cortex [23], neuronal
loss and astrocyte proliferation are rarely seen there [22].

AIDS stage
Autopsies found that 80–100% of AIDS patients had
neuropathological changes in the CNS [24–27]. HIV- as-
sociated encephalitis (HIVE) was also observed in some
patients at this stage. The neuropathological characteris-
tics of HIVE include microglial nodules, multinucleated
giant cells, reactive astrocytosis, microglial proliferation,
myelin pallor, and infiltration of peripheral monocytes
[28–31]. In contrast to the pre-AIDS stages, when
neuronal loss is not seen, neuronal death is frequently
observed in AIDS patients [32]. Significant neuronal
loss has been reported in the frontal cortex [32–34].
Neuronal death via apoptosis occurs in AIDS patients

[35, 36]. Non-apoptotic neuronal injuries, including re-
traction of dendritic spines, dendritic pruning or aberrant
sprouting, axonal disruption and synaptic degeneration,
were also observed. Immunostaining analysis of postmor-
tem brain tissues using synaptic and dendritic markers re-
vealed dendritic beading, synaptic degeneration and
dendritic spine loss in the brain of HIV patients [37–39].
Axonal injury indicated by elevated neurofilament protein
in CSF is also detected in HIV patients [39–41]. Loss of
synaptodendritic structures in HIV patients is corre-
lated with reduced volume of neuropil and white
matter [41, 42].

Synaptic degeneration and HAND
Multiple studies have been carried out to identify the
neuropathological underpinnings of HAND. Both HIV
encephalitis and neuronal loss are observed in the brain
after HIV infection, and they appear to associate with se-
vere dementia. However, they do not correlate well with
milder forms of cognitive impairment [43]. HIV en-
cephalitis occurs in some but not all HIV-infected indi-
viduals. Its presence and severity do not correspond to
the degree of cognitive deficits [44–46]. In addition, dif-
ferent from other neurocognitive conditions such as
Alzheimer’s or Parkinson’s diseases, the early dementing
process in HIV patients is not associated with substantial
neuronal apoptosis. Weis et al. reported that AIDS pa-
tients with clinical signs of progressive dementia showed
no significant difference in neuronal densities compared
to patients lacking dementia, indicating that neuronal loss
was not causally linked to the development of dementia
[33]. Nonetheless, synaptic alteration and degeneration in
the brains of HIV patients appear to correlate well
with the presence and severity of cognitive impairment
[38, 47, 48]. Inhibition of synaptic degeneration may
provide an attractive therapeutic target to prevent
HAND pathogenesis.

Animal models of HAND
To investigate the neuropathogenic mechanism of
HAND-related pathologies observed in human patients,
relevant animal models are essential. Several animal
models develop specific aspects of cognitive defects and
neuropathological key features of HAND.

Non-human primate models
The simian immunodeficiency virus (SIV)-infected ma-
caque is an established relevant model for studying the
pathogenesis of HAND. In monkeys, SIV can enter the
brain shortly after infection and causes brain abnormali-
ties. SIV infection recapitulates the main features of im-
mune response of HIV infection [49–53]. Additionally,
HIV-associated neuropathologies in the brains of HIV
patients are also developed in the SIV-infected macaque.
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For example, pre-synaptic damage was reported in SIV-
infected macaques, as indicated by elevated levels of
neuronal damage marker 14-3-3 protein in the CSF
[54, 55]. SIV-infected macaques developed various
types of behavioral impairments, similar to those
observed in HIV patients, as shown by a number of be-
havioral and neurophysiological testing modalities
[56–60]. This model is particularly useful to study the
pathogenesis of HAND in the era of HAART, because
the infected macaque can be treated with HAART reg-
imens to mimic the clinical settings [61]. It is also very
helpful for the investigation of the synergized effects of
drug abuse and HIV infection during neuropathogen-
esis [62–65]. In addition, because of the multi-time ac-
cessibility of CSF, plasma and CNS samples during the
progression of infection, this model allows the investi-
gation of the development of HAND through the pro-
gressive stages.
Although studies with SIV-infected macaques provide

valuable insights into the pathogenesis of HIV infection,
it is important to keep in mind that SIV and HIV are not
the same. For example, CCR5-preferred HIV can gain
the ability to use CXCR4 to enter into monocyte-derived
macrophages [66, 67], while CCR5-preferred SIV uses
other co-receptors such as CXCR6, GPR15 and GPR but
not CXCR4 to enter host cells [68]. To address these
limitations, simian-human immunodeficiency virus
(SHIV) was constructed, in which the env gene of SIV
was replaced by HIV-1 env. Therefore, the hybrid viruses
are biologically more similar to HIV than SIV.
Macaques infected with SHIV89.6P (CXCR4/CCR5
virus) developed encephalitis characterized by multinu-
cleated giant cells, astrogliosis, microglial nodules, acti-
vated macrophages and astrocytes, and perivascular
cuffing with mononuclear cells in the white matter
[69]. CCR5 (R5)-tropic SHIVSF162P3N virus caused
giant cell SIV encephalitis in approximately 30% of in-
fected rhesus macaques that developed AIDS [70].
Giant cell SIV encephalitis lesions included white
matter damage, necrosis, and astroglial and microglial
activation [70]. SHIVKU, a CXCR4 virus, also could
productively replicate in the CNS of rhesus macaques
and caused pathological changes [71–73]. Despite the
significant contributions of non-human primate models
to understanding HIV-1-associated neuropathogenesis,
these models are limited by their availability and high
cost of maintenance.

Rodent models
For reasons that are not completely defined, rodents can-
not be productively infected by HIV-1. To circumvent this
drawback, transgenic mice are generated to express HIV-1
proteins such as the envelope protein gp120 and the trans-
activator of transcription (Tat), both of which are

neurotoxic. In a gp120 transgenic mouse (gp120Tg) model,
the gp120 transgene is controlled by the glial fibrillary
acidic protein promoter, and thus gp120 is restricted to as-
trocytes [74]. The release of astrocytically expressed gp120
protein can affect nearby neurons. Confocal imaging of
brain sections labeled with dendritic and synaptic markers
revealed the dendritic vacuolization, loss of dendritic
spines and presynaptic termini in the neocortex and the
hippocampus [74]. This gp120Tg mouse also showed
reaction of glial cells [74] and impaired proliferation and
differentiation of neuronal progenitor cells [75, 76]. Addi-
tionally, aging (12 months) gp120Tg mice developed defi-
cits in motor and cognitive performance [74, 77].
In another transgenic mouse model, the Tat transgene

is expressed in astrocytes in a Dox-regulated manner
[78]. The inducible expression of Tat provides the ability
to study the temporal effect of Tat released from astro-
cytes. This transgenic mouse displays degeneration of
neuronal dendrites, neuron death, astrocytosis and en-
hanced infiltration of activated monocytes and T lym-
phocytes, and these alterations are largely observed in
the cerebellum and cortex [78]. Other studies described
more subtle neuronal injuries such as spine loss and syn-
aptic degeneration in hippocampal pyramidal CA1 neu-
rons and striatal neurons [79–81]. The Tat transgenic
mice develop impairments in spatial memory and novel
object recognition memory [78, 81, 82].
Transgenic mice with full-length [83, 84] or gag-pol-

deleted HIV-1 genomic DNA [85] have been reported.
The integrated HIV-1 genome in the transgenic mouse
somewhat resembles HIV-1 provirus. In addition, the
transgenic HIV-1 genome has the potential to express
multiple HIV-1 proteins. These strengths of this trans-
genic strategy, however, also complicate the result
interpretation for determining the causal relationship be-
tween specific HIV-1 proteins and observed phenotypes.
Despite low levels of viral protein expression, the full-
length transgenic mouse model shows impaired nerve
conduction, axonal degeneration and decreased nerve
fiber density in the peripheral nervous system. They are
also impaired in motor function [83], and show hyper-
reaction of microglia and astrocytes [84, 86].
The HIV-1 transgenic rat has been studied by multiple

groups as a model of HIV-associated neurological
diseases. It contains a gag-pol-deleted HIV-1 genome
that is controlled by the viral promoter. Since without
gag and pol genes that are responsible for viral replica-
tion, it cannot produce infectious virions [87]. This rat
model expresses multiple viral proteins. In particular,
the expression of Tat, gp120, nef and vif RNAs show
age-dependent profiles, shifting from peripheral immune
organs to the CNS at 10–11 months of age. These features
of HIV-1 gene expression indicate that the HIV-1 trans-
genic rats can model specific aspects of HIV-1-infected
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individuals on HAART [88]. The 7-to-9-month-old ani-
mals show up-regulated expression of neuroinflammation
markers such as interleukin-1β (IL-1β), tumor necrosis
factor α (TNF-α) and microglial/macrophage marker
CD11b [89], which may contribute to the observed
synapto-dendritic injury [89]. The transgenic rats develop
spatial learning deficits [90, 91] and are impaired in motor
performance [92].
The HIV-1 transgenic rodent models described above

provide useful tools to study the contribution of viral
proteins to the pathogenesis of HAND. However, they
have significant limitations. Foremost, they do not ac-
quire HIV-1 infection and thus cannot faithfully model
the initial infection stages or the AIDS progression,
which are key events associating with HAND develop-
ment. Understandably, efforts continue to create add-
itional rodent models to mimic HIV infection. One
strategy is to introduce human HIV-1 receptors and co-
receptors in transgenic rodents [93]. However, it appears
that HIV-1 replication was defective in CD4 or CCR5
transgenic rodents [94, 95].
Potash et al. designed a creative approach to generate

a novel mouse model of HIV-1 infection. They con-
structed a chimeric HIV-1 virus by replacing the HIV-
gp120 coding region with the gp80 envelope gene from
the ectotropic murine leukemia virus. This chimeric
virus, called EcoHIV, can enter to the host cells by bind-
ing to cationic amino acid transpoter-1 (mCAT) [96].
Despite the widespread expression of mCAT in the
mouse tissues, persistent infection seems to be restricted
to splenic lymphocytes, peritoneal macrophages and
brain [96, 97]. EcoHIV infection by stereotactic inocula-
tion into the mouse basal ganglia caused pre-clinical
brain pathology such as microglia and astrocyte activa-
tion [96, 98]. However, the lack of gp120 in the chimeric
virus presents specific limitations in this model. First, it
is unclear to what degree the chimeric virus mimics the
HIV-1 infection. For example, it may not target the same
populations of cells as HIV-1. In addition, because
gp120 is a major HIV-1 neurotoxic protein, this model
may not recapitulate some of the neuropathological phe-
notypes related to HAND.
HIV-infected humanized mice are the exciting new ro-

dent models. One strategy is to generate humanized
mice with CNS HIV infection by direct injection of in-
fected human cells. HIV-infected human monocyte-
derived macrophages or HIV-infected human microglia
cells are injected into the brain of severe combined im-
munodeficiency deficient (SCID) mice [99, 100] or
reconstituted SCID mice with human peripheral blood
leukocytes (PBLs) (huPBL/SCID) [101, 102]. SCID and
huPBL/SCID mice with the infected human cells recap-
itulate the several neurological pathologies observed in
HIV patients with HIVE, including multinucleated giant

cells, astrogliosis, microglial activation and neuronal
damage [99–102]. The SCID-HIVE mouse model also
develops cognitive deficits. Morris water maze tests re-
vealed their learning and memory impairments, regard-
less of HAART treatment [103]. Using these models,
isolate-specific cognitive deficits and neuropathology
were reported. Intracranial injection of macrophages in-
fected with a clade B HIV-1 isolate (HIV-1(ADA)) into
SCID mice caused worse performance in cognitive tests
and more severe pathological changes than a clade C
HIV-1 isolate (HIV-1(Indie-C1)) [104].
Another strategy to generate humanized mice is sys-

temic transplantation of human hematopoietic stem cells
(CD34+ cells) or adult human peripheral blood mono-
nuclear cells into various immunodeficient mice so that
the mice host the human target cells for HIV-1 infection
[105–110]. Various neuropathologies were reported in
HIV-infected humanized mouse models. For example,
NOD/SCID-IL-2Rγc

nul (NSG) mice with engrafted hu-
man CD34+ stem cells (NSG-hCD34+) developed a
functional human immune system containing T lympho-
cytes, monocytes and macrophages could be efficiently
infected with HIV [111–114]. Neuronal and synaptic
damages were detected by immunohistochemical stain-
ing of various neuronal and synaptic markers such as
microtubule associated protein-2, neurofilament and
synaptophysin. The neuropathologies appeared to cor-
relate with glial cell activation [112, 113]. The animals
also showed memory deficits and persistent anxiety
[112, 113]. Although less used for CNS infection, other
humanized mouse models (e.g. humanized bone mar-
row/liver/thymus mouse models) have been used for
studies on HIV pathogenesis, transmission, replication
and prevention.

In vitro models
Primary neuron cultures are useful for studying the
neurotoxicity of HIV-1 proteins such as gp120 and Tat.
Confocal imaging of cultured rat hippocampal neurons
revealed that gp120 application caused a dramatic de-
crease in the number of synapses [115]. Similarly, Tat
treatment also induced synaptic loss [116–118]. In
addition, gp120 was shown to cause dendritic damage in
human primary neurons [115, 119]. Mixed primary cul-
tures that have neurons and glia cells provide an in vitro
experimental setting for investigating the interaction
between neurons and other cell types (e.g. microglia and
astrocytes) during the HIV-induced neuropathogenesis.

Mechanisms of synaptic degeneration induced by
HIV-1 infection
As HIV-1 cannot infect neurons, HIV-associated syn-
aptic degeneration is likely a bystander effect of the
infected cells, including perivascular macrophages,
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microglia and astrocytes. The infected cells may elicit
neurodegenerative responses by releasing viral pro-
teins and other toxic factors such as chemokines and
cytokines. The neurotoxins may induce arrays of cel-
lular and molecular cascades that eventually lead to
synaptic loss, including Ca2+ overload, energy hemostasis
disturbance, neurotransmitter (e.g. glutamate) metabolism
perturbation, oxidative stresses and excitatory toxicity. In
the following sections, we discuss potential mecha-
nisms regulating HIV-induced synaptic degeneration
(Fig. 1).

Neurotoxicity of viral proteins
Viral proteins, particularly gp120 and Tat, are released
from infected microglia/macrophages and astrocytes.
Gp120 is thought to induce synaptic degeneration via
multiple mechanisms. One suggested pathway is glutam-
ate receptor activation-mediated excitotoxicity such as
the hyperactivation of N-methyl-D-aspartate receptor
(NMDAR) and its associated excessive Ca2+ influx [120].
Gp120 can activate NMDARs by binding to their glycine
binding sites [121]. Gp120 may also enhance synaptic
activity by potentiating the phosphorylation and synaptic
trafficking of NMDARs [122]. In addition to stimulating

NMDARs, gp120 can bind to its chemokine co-receptor
CXCR4 or CCR5 on the neurons to mediate neuronal
damage [123, 124]. M-tropic HIV-1 strains preferably
bind to CCR5 [125–127], and T-tropic strains use
CXCR4 to gain entry into the cells [128]. After binding
to its co-receptor, gp120 may facilitate NMDAR activa-
tion and intracellular Ca2+ increase to induce neuronal
damage [129–134] and/or activate signaling cascacades
(e.g. ERK and p38 MAPK signaling pathways) that are
asssociated with cell damage and death [135–137]. Alter-
natively, gp120 might cause neurotoxicity via indirect
mechanisms. Gp120 can potentiate NMDAR activity
by inducing release of proinflammatory cytokines from
glial cells [138, 139]. For instance, after binding to the
interleukin-1 receptor, IL-1β can stimulate the phos-
phorylation of NR2B at tyrosine 1472 to potentiate
NMDAR activation [138]. In addition, gp120 may
cause glial dysfunction and impair extracellular glu-
tamate reuptake. Accumulated extracellular glutamate
and NMDAR hyperactivation will induce synaptic
damage [140–143]. Furthermore, the neurotoxicity of
gp120 may be mediated by down-regulating release of
neurotrophic factors (such as BDNF) from activated
glia cells [144–148].

Fig. 1 Potential mechanisms of HIV-induced synaptic degeneration. (1) HIV-1 infection of the CNS initiates from transmigration of HIV-1-infected
peripheral blood monocytic cells/macrophages across the blood-brain barrier (BBB). Subsequently, microglia and astrocytes become infected and
reactivated. (2) The immune-activated and HIV-1-infected microglia/macrophages release viral proteins (e.g. gp120, Tat, Vpr), cytokines (e.g. IL-1β,
IL-6, TNF-α), chemokines (e.g. CXCL12, MCP1) and other neurotoxic factors. (3) Infected/reactivated astrocytes can also release neurotoxic substances
and pathogenically enhance synaptic activity with increased transmitter release and impaired glutamate re-uptake. (4) The released neurotoxins and
extracellular glutamate can cause excessive Ca2+ influx, disturbance of energy metabolism and production of reactive oxidative species, which then
lead to the disruption of normal neuronal function. On the other hand, the released viral proteins, cytokines, chemokines and free radicals can activate
more glial cells and macrophages. (5) These damaged neurons may mark the abnormal synapses with some kind of “eat-me” signals, which can be
recognized and eliminated by microglia and/or astrocytes through phagocytotic pathways such as the complementary and FKN/CX3CR1 pathways in
microglia or the MerTK, Megf10 and APOE pathway in astrocytes
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By binding to the low-density lipoprotein receptor-
related protein (LRP), Tat protein can cause NMDAR
activation, excessive Ca2+ influx [118, 149–151] and
mitochondrial dysfunction [152, 153]. These Tat effects
trigger downstream events that contribute to synaptic
loss, including the activation of the ubiquitin–prote-
asome pathway [116, 117], the disturbance of energy
metabolism [154] and the production of reactive oxida-
tive species [152, 155]. Tat also stimulates glial cells and
macrophages to release cytokines, chemokines and other
neurotoxic factors that cause neuronal injury [156–158].

Neuroinflammation
HIV-1 enter the CNS soon after peripheral infection of
blood monocytes and circulating T cells, mainly through
a “Trojan horse” mechanism [159] as well as other
routes such as “transcytosis” or infection of BBB endo-
thelial cells [160–164]. The viral proteins, inflammatory
cytokines and chemokines released from infected and/or
activated cells can lead to disruption of BBB integrity
and hence exacerbation of the entry of infected cells
[165]. As a key component in the BBB structure, astro-
cytes that become infected can directly cause the in-
crease of BBB permeability [166].
Microglia and perivascular macrophages are CNS-

resident immunocompetent cells that can be product-
ively infected by HIV-1. After HIV infection, substantial
pro-inflammatory cytokines (e.g. TNF-α, IL-6 and IL-1β)
are released from infected/reactivated microglial cells/
macrophages [138, 139, 167, 168]. Cytokines in periph-
eral circulation may also traffic to the CNS [169–171].
The cytokines are elevated in the CSF of HIV patients
with cognitive impairments [172, 173]. They may con-
tribute to the pathogenesis of synaptic degeneration via
multiple pathways, including NMDAR hyperactivation.
For instance, TNF-α and IL-1β can stimulate L-cysteine
release from macrophages, which then activates
NMDARs to cause neuronal damage [174]. In addition,
cytokines may also induce synaptic abnormalities by ab-
errantly activating cytokine receptors [175–177]. After
binding to its receptors on neurons, TNF-α activates
multiple pathways that are implicated in neuronal dam-
age, including the nuclear factor-kappa B (NF-κB), ERK,
p38 MAPK, the c-Jun N-terminal kinase, and caspase
pathways [133, 178].
HIV-infected microglia and macrophages may also re-

lease chemokines, which can stimulate neurons via che-
mokine receptors to induce synaptic degeneration. For
example, CXCL12/SDF-1α is elevated in the brain and
CSF of HIV patients with HAD [179, 180]. By binding to
its receptors, CXCL12 can function as either neuropro-
tective or neurotoxic mediator [148, 181, 182]. When
CXCL12 is cleaved, it switches its preferred receptor
from CXCR4 to CXCR3, leading to enhanced neurotoxic

effects [183]. Another chemokine, CXCL10, promotes
neuron injury by stimulating Ca2+ flux [184–186]. Chemo-
kines may also cause neuronal damage by inducing mono-
cyte infiltration. For instance, monocyte chemoattractant
protein-1 (MCP1, a.k.a. CCL2) increases in the CSF of HIV
patients with cognitive impairment [187], and the MCP-1
increase is implicated in neuronal injury by promoting
migration and infiltration of monocytes/macrophages
[188–191]. The neuron-released chemokine fractalkine
(FKN; a.k.a. CX3CL1), which is also up-regulated in HIV
patients [192–195] and has been implicated in HIV-
associated dementia [196–198], may also modulate mono-
cyte migration and neuron damage [195, 199–201].
Besides cytokines and chemokines, reactive microglia

can also release other neurotoxic substances such as ex-
citatory amino acids, platelet-activating factor and free
radicals [202–206]. These neurotoxins may cause
NMDAR-mediated excitotoxicity by excessive Ca2+ in-
flux and oxidative stress.
Reactive microglia assume diverse phenotypes, which

are roughly categorized into the “classical” activation
(M1) and “alternative” activation (M2) phenotypes. M1
microglia secrete pro-inflammatory cytokines (e.g. TNF-
α, IL-1β, interleukin-6 (IL-6)) and reactive oxygen spe-
cies [207–209], which are implicated in synaptic damage.
On the other hand, M2 microglia play a role in repairing
neuronal injuries and clearing debris, and they produce
anti-inflammatory cytokines and substances such as IL-10,
arginase-1 (Arg-1), chitinase 3-like 3 (Chi3l3) and trans-
forming growth factor-β (TGF-β) to facilitate the repair
processes [207–209]. Therefore, M1-M2 polarization may
play a crucial role in determining the potential neurotoxic
or neuroprotective activity of microglia in neurodegenera-
tion disorders [210]. It is currently unknown if dysregula-
tion of M1/M2 polarization of microglia is involved in the
pathogenesis of HIV-associated synaptic degeneration.
Although only a small population of astrocytes can be

infected by HIV [211–214], the infected astroglia play
a critical role in the HIV-associated synaptic injury
[213, 215]. Astrocytes are a potentially important
reservoir for HIV persistence. In autopsy brain tissues
of HIV patients, up to 20% of astrocytes contain inte-
grated HIV-1 [214]. The infected astrocytes produce
and secrete viral protein such as gp120, Tat, Vpr, Rev. and
Nef, although viral replication is restricted [3, 216–219].
Tat and gp120 can activate astrocytes to produce proin-
flammatory cytokines such as TNF-α, IL-6 and IL-1β
[168, 220], the chemokine CCL5 [221], and neurotoxic
nitric oxide (NO) [222], which, as described above, can
cause synaptic damage. More recent studies showed
that HIV-infected astrocytes could spread the toxic sig-
nals to neighboring neurons or un-infected glial cells
through gap junctions [223]. The infected astrocytes
also increase secretion of CCL2 and glutamate, which
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may contribute to the dysregulation of the integrity of
the BBB as well as defects in monocyte recruitment
and immune responses in the CNS [166, 223]. In
addition, HIV-infected and/or reactivated astrocytes are
probably impaired for glutamate re-uptake, resulting in
increased extracellular glutamate and excitotoxicity-
induced synaptic degeneration [224–226].

A role of glia-mediated phagocytosis of synapses?
The discovery of microglial phagocytosis in developmen-
tal synaptic pruning [227–229] presents an intriguing
possibility of similar mechanisms in synaptic degeneration
induced by HIV-1 infection. Microglial phagocytosis is
mediated by the classical complement system [229, 230].
More recent work indicates that this microglia-based
mechanism is implicated in synaptic loss in Alzheimer’s
disease [229, 231] and West Nile virus-induced synaptic
loss [232]. Although a role of the complement system was
suggested in the immune defense for HIV infection
[233, 234], little is known about its involvement in
HIV-associated neurodegeneration in the CNS. Com-
plement proteins C1q and C3 are significantly increased
in the brains and CSF of HIV patients, and the increase
is associated with the up-regulation of the neuronal in-
jury marker neurofilament protein in the CSF and with
cognitive impairments [235]. It will be interesting to inves-
tigate if complement-mediated microglial phagocytosis
contributes to HIV-associated synaptic degeneration.
Moreover, the FKN/CX3CR1 pathway also regulates the
phagocytosis of microglia [236–238], but its potential con-
tribution to HIV-induced synaptic degeneration has not
been tested.
Astrocytes have numerous processes that intimately

interact with synapses and monitor synaptic activity.
Recent studies indicate that astrocytes can eliminate
synapses by phagocytosis [239–241]. Astrocytes express
critical regulators of phagocytotic pathways, including
Megf10 and MerTK, which play important roles during
elimination of synapses in the developing and adult
brain [239]. In addtion, the synaptic phagocytic capacity
of astrocytes is highly controlled by an APOE isoform in
Alzheimer’s disease brains. APOE2 enhances the phago-
cytic activity of astrocytes; whereas APO4 decreases the
rate of synaptic phagocytosis by astrocytes [242]. It is in-
triguing to conceive that astrocyte dysfunction might
contribute to pathogenic synaptic degeneration in the
neuropathogenesis of HAND.

Conclusion
It is clear that HIV-associated synaptic degeneration is a
result of cascades of neuropathogenic processes initiated
by HIV-1 infection (and often in combination with re-
lated comorbidities). The progression of the pathogenesis
is determined by the interaction between HIV-1 and the

host. The high prevalence of HAND in patients with
HAART, which successfully suppresses HIV-1 replication,
indicates that intact virions are probably not the major
pathogenic agent. Instead, individual HIV-1 toxic proteins
such as gp120 and Tat released from infected cells in the
CNS may play a major role in inducing the synaptic de-
generation. This view posits an interesting and relevant
possibility that infected cells that do not productively as-
semble infective virions, thanks to HAART, may still
synthesize pathogenic HIV-1 proteins. The scenario of
replication-independent production of HIV-1 protein is
superficially counterintuitive, and the underlying mechan-
ism is still poorly understood. Mounting evidence is docu-
menting the neurotoxic effects of individual HIV-1
proteins. Published studies have mainly focused on spe-
cific HIV-1 proteins such as gp120 and Tat in different ex-
perimental systems, and they have found that more than
one HIV-1 protein may elicit complicated molecular path-
ways that potentially contribute to synaptic degeneration.
When these proteins are co-released from the infected
cells in the CNS, they likely act in conjunction to cause
synaptotoxicity. The conceived interaction of multiple
HIV-1 proteins would dramatically increase the com-
plexity of the pathogenic cascades. At the cellular level,
in addition to the excitotoxicity from direct stimulation
of neurons, reactive microglia and astrocytes likely also
attack the neurons at synaptic regions to contribute to
the concerted processes of synaptic degeneration.
These intrinsically complicating interactions at the mo-
lecular and cellular levels in vivo indicate a potential
heterogeneity of the pathogenesis among HIV patients,
and synaptic degeneration may result from different
molecular and cellular pathways elicited by HIV infec-
tion in different patients. These conceived complexities
and heterogeneity present a daunting task for defining
the relevant pathogenic mechanisms in patients for
years to come.
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