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Abstract

Cav3.2 T-type calcium channels are important mediators of nociceptive signaling, but their roles in the transmission
of itch remains poorly understood. Here we report a key involvement of these channels as key modulators of itch/
pruritus-related behavior. We compared scratching behavior responses between wild type and Cav3.2 null mice in
models of histamine- or chloroquine-induced itch. We also evaluated the effect of the T-type calcium channel
blocker DX332 in male and female wild-type mice injected with either histamine or chloroquine. Cav3.2 null mice
exhibited decreased scratching responses during both histamine- and chloroquine-induced acute itch. DX332 co-
injected with the pruritogens inhibited scratching responses of male and female mice treated with either histamine
or chloroquine. Altogether, our data provide strong evidence that Cav3.2 T-type channels exert an important role in
modulating histamine-dependent and -independent itch transmission in the primary sensory afferent pathway, and
highlight these channels as potential pharmacological targets to treat pruritus.
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Introduction
Acute itch (pruritus) serves a protective function in re-
sponse to events such as insect bites, allergic reactions,
or skin borne parasites [1, 2]. On the other hand,
chronic itch reflects pathogenic, maladaptive, and debili-
tating conditions found in multiple systemic and skin
diseases in pathologies such as diabetes, cancers, psoria-
sis and atopic dermatitis [3]. Akin to the detection of
painful stimuli by nociceptors, itch related information
is detected by pruriceptive sensory neurons that have
their nerve endings in the skin, and is then transmitted
to the brain via synaptic connections in the spinal cord
and then through the spinothalamic tract [4–6]. Even
though pruritus and pain are distinct sensations, they
display anatomic similarities. Both are transmitted by

unmyelinated C fibers and lightly myelinated Aδ fibers
[6]. These smaller diameter neurons express voltage
gated calcium channels (VGCC) including members of
the T-type calcium channel family that are essential for
pain signaling [7]. The latter belong to the family of the
low voltage activated calcium channels [8] and are fur-
ther subdivided into Cav3.1, Cav3.2, and Cav3.3 sub-
types, with expression in both the central and peripheral
nervous systems. The Cav3.2 subtype is prominently
expressed in somatosensory afferent fibers and spinal
cord neurons and is a fundamental regulator of sensory
signalling to the spinal cord [9, 10]. While the involve-
ment of Cav3.2 in the transmission of pain is clearly
established, the roles of these channels in the transmis-
sion of itch is only emerging. Indeed, it was reported
that Cav3.2 is important for hydrogen sulfide (H2S)-in-
duced itch responses in mice [11]. More recently, it was
also demonstrated that Cav3.2 channels are upregulated
in the skin of uremic itch sufferers and may thus con-
tribute to itch transmission in these patients [12].
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Altogether, these findings suggest that T-type calcium
channels may also be important for the activity of pruri-
ceptive neurons, thus we sought to determine whether
Cav3.2 calcium channels are involved in chloroquine-
and histamine-induced itch. We show that itch re-
sponses are reduced in Cav3.2 knockout mice and by
pharmacological intervention with the T-type calcium
channel blocker DX332 [13].

Materials and methods
Animals
All experiments were performed following approval by
the Animal care committee of the University of Calgary.
Adult (7–10 weeks old) male or female C57BL/6 J wild-
type or male CACNA1H knockout (Cav3.2 null) mice
were used and purchased from Jackson laboratories.
Mice were housed at a maximum of five per cage (30 ×
20 × 15 cm) with free access to food and water. They
were kept on a 12-h light/dark cycle (lights on at 7 am)
with the room maintained at a temperature of 23 ± 1 °C.
Experiments were carried out between 9 am-3 pm. For
each condition, separate randomized groups of mice
were tested on three different days. Drugs were delivered
subcutaneously (s.c.) and standard volumes of 20 μl were
injected. DX332 was dissolved in dimethyl sulfoxide
(DMSO), and control animals received phosphate buff-
ered solution (PBS) + 1% DMSO, which was the max-
imum DMSO concentration in the highest dosage of
DX332 tested. Different cohorts of mice were used for
each test and each mouse was used only once. Chloro-
quine diphosphate (Tocris) and histamine (Sigma-Al-
drich) were dissolved in PBS. The selective Cav3.2
blocker DX332 [13] was dissolved in DMSO 2% and was
co-injected subcutaneously (s.c.) with the pruritogens.

Histamine-induced itch
Histamine (100 μg in 20 μl) or PBS were injected sub-
cutaneously at the back of the neck of wild-type or
CaV3.2 null mice using a BD insulin syringe with a 31-
gauge needle. A volume of 20 μl was injected. Animals
had the fur on their back trimmed 48 h before the exper-
iments. After receiving an injection of a solution of his-
tamine or PBS, mice were placed into individual
plexiglass holding containers and the time spent scratch-
ing was scored for 30 min. In a different series of experi-
ments, either male or female wild-type mice were
treated with DX332 (100 μg/s.c.) or vehicle (20 μl/s.c.) in
association with histamine.

Chloroquine-induced itch
In the same manner as above, injections of 20 μl of
chloroquine (200 μg) were performed using a BD insulin
syringe with a 31-gauge needle. Injections occurred in
the back of the neck 2 days after having the fur trimmed.

Following an injection with chloroquine or PBS, animals
were placed and kept in plexiglass holding containers
and the time spent scratching was scored for 30 min.
Male and female wild-type mice were treated with
DX332 (10.0–100.0 μg/s.c.) or vehicle (20 μl/s.c.) in asso-
ciation with chloroquine.

Statistical analysis
Data were analyzed with Graphpad Prism 6.0 and are
presented as the mean ± SEM. One- or two-way analysis
of variance (ANOVA) with Tukey’s post hoc correction
was used. Statistical significance was accepted at the
level of p < 0.05.

Results and discussion
We first determined whether deletion of Cav3.2 channels
in mice affects scratching behavior induced by histamine
or chloroquine injection. Subcutaneously injected hista-
mine (100 μg in 20 μl) into the nape of the neck of wild-
type mice elicited robust scratching behavior (Fig. 1), in
agreement with previous works [14]. In contrast, Cav3.2
null mice were resistant to histamine induced itch as seen
by a dramatic reduction in the time spent scratching
(Fig. 1). In a similar manner, injections of chloroquine
(200 μg in 20 μl) into the nape of the neck of wild-type
mice produced strong and sustained scratching responses
that were greatly depressed in Cav3.2 null mice (Fig. 2).
Together, these data indicate that the expression of
Cav3.2 channels is required for acute itch.
In a separate series of experiments, we evaluated the

effect of the T-type channel blocker DX332 (a.k.a. com-
pound 9 in Ref [13]) in male and female wild-type mice.
DX332 is a potent inhibitor of Cav3.2 channels and has
been shown by us to mediate analgesia in mouse models
of inflammatory and neuropathic pain in a Cav3.2
channel-dependent manner [13]. Treatment with DX332
(10.0–100.0 μg in 20 μl, co-injected) produced dose-
dependent inhibition of itch responses in male (Fig. 3)
mice injected with chloroquine. A similar effect was ob-
served in female mice (Fig. 4). Again, DX332 (100.0 μg
in 20 μl, co-injected) produced a significant decrease of
histamine–induced scratching behaviors in male (Fig. 5)
and in female (Fig. 6) mice. We did not observe any
flinching or vocalization in mice injected with either
chloroquine or histamine, thus indicating an absence of
behaviors that are a typical indication of nociceptive or
nocifensive responses rather than itch [15]. Collectively,
our data indicate that local inhibition of Cav3.2 channels
in tissues exposed to histamine or chloroquine prevents
the development of itch. Previous work suggested that
Cav3.1 and Cav3.3 channels, but not Cav3.2, are deter-
minants for itch signal transmission to the spinal cord
[16], however, these experiments were based on intra-
dermal injection of zinc which (although being a

Gadotti et al. Molecular Brain          (2020) 13:119 Page 2 of 7



Fig. 1 Histamine elicits scratching behavior in wild type but not in Cav3.2 null mice. a Time course of scratching behaviors, b total time
scratching, and c area under the curve of the effect of a single subcutaneous injection of histamine (100 μg/20 μl) either wild type or Cav3.2 null
mice. Each symbol/bar represents the mean ± S.E.M. Numbers reflect mice tested. Two-way ANOVA reveals behavioural abnormalities # P < 0.05,
### P < 0.001 PBS vs histamine and * P < 0.05, ** P < 0.01 and *** P < 0.001 WT vs. Cav3.2 null mice

Fig. 2 Chloroquine evokes scratching behavior in wild type but not in Cav3.2 null mice. a Time course of scratching behaviors, b total time
scratching, and c area under the curve of the effect of a single subcutaneous injection of chloroquine (200 μg/20 μl) either wild type or Cav3.2
null mice. Each symbol/bar represents the mean ± S.E.M. Numbers reflect mice tested. Two-way ANOVA reveals behavioural abnormalities # #P <
0.01, ### P < 0.001 PBS vs chloroquine and ** P < 0.01, *** P < 0.001 WT vs. Cav3.2 null mice or PBS vs histamine in Cav3.2 null mice
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Fig. 3 DX332 reduces acute itch-related behavior induced by chloroquine in male mice. a Time- and dose- dependence, b total time scratching,
and c area under the curve of the of anti-pruritogenic activity caused by DX332 (10.0–100.0 μg/co-injected). Each symbol/bar represents the
mean ± S.E.M. Numbers reflect mice tested. Two-way ANOVA reveals drug induced inhibition of behavioural abnormalities * P < 0.05, ** P < 0.01,
*** P < 0.001

Fig. 4 DX332 reduces acute itch-related behavior induced by chloroquine in female mice. a Time-dependence, b total time scratching, and c
area under the curve of the of anti-pruritogenic activity caused by DX332 (100.0 μg/co-injected). Each circle/bar represents the mean ± S.E.M.
Numbers reflect mice tested. Two-way ANOVA reveals drug induced inhibition of behavioural abnormalities * P < 0.05, ** P < 0.01, *** P < 0.001
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Fig. 5 DX332 reduces acute itch-related behavior induced by histamine in male mice. (a) Time-dependence, (b) total time scratching, and (c) area
under the curve of the of anti-pruritogenic effect caused by DX332 (100.0 μg/co-injected). Each circle/bar represents the mean ± S.E.M. Numbers
reflect mice tested. Two-way ANOVA reveals drug induced inhibition of behavioural abnormalities * P < 0.05, ** P < 0.01, *** P < 0.001

Fig. 6 DX332 reduces acute itch-related behavior induced by histamine in female mice. a Time dependence, b total time scratching, and c area
under the curve of the of anti-pruritogenic effect caused by DX332 (100.0 μg/co-injected). Each circle/bar represents the mean ± S.E.M. Numbers
reflect mice tested. Two-way ANOVA reveals drug induced inhibition of behavioural abnormalities * P < 0.05, ** P < 0.01, *** P < 0.001
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preferential inhibitor of Cav3.2 among the T-type cal-
cium channel family) also enhances the activity of
Cav3.1 and Cav3.3 channels by slowing inactivation kin-
etics [17]. By contrast, our use of Cav3.2 null mice al-
lows us to clearly attribute a role of Cav3.2 in the
processing of peripheral itch signals.
Itch is transmitted by diverse afferent sensory neurons lo-

cated in the dorsal root ganglia (DRG) and trigeminal gan-
glia (TG) which detect nociceptive and pruritogenic stimuli
and can be modulated by pruritogens as well as algogens
[1, 18, 19]. Despite the neurophysiological similarities be-
tween pain and itch, there is accumulating evidence that
itch involves unique cellular and molecular mechanisms as
well as distinct peripheral and central neuronal circuitry
[20]. There are two well characterized types of chemical
itch, one known as histamine-dependent and another as
histamine-independent itch, both of which are mediated by
unmyelinated C fibers and lightly myelinated Aδ fibers [21].
In fact, while some lines of evidence argue that pathways
for histamine- and non histamine-mediated itch may al-
most completely overlap, in more recent studies others
have suggested that distinct neuronal pathways mediate his-
tamine and non-histamine itch [14, 22, 23]. Our data sug-
gest that irrespective of these details, Cav3.2 channels are a
common feature to both histamine-dependent and
histamine-independent itch.
Histamine and chloroquine activate distinct cellular sig-

nalling pathways to give rise to itch [24]. This is under-
scored by the notion that histamine receptor antagonists
are effective in histamine mediated pruritus [25] and aller-
genic itch, whereas they are ineffective against most types
of chronic itch conditions such as eczema and dry skin
itch [17, 26, 27]. Histamine-mediated itch is initiated by
activation of the histamine type 1 receptor (H1) expressed
in TRPV1+/phospholiphase-β-3 (PLCB3) positive neurons
[14], and requires co-activation of the transient receptor
potential cation channel subfamily V member 1 (TRPV1)
and H1 receptors to elicit behavioral responses [28]. On
the other hand, itch produced by chloroquine is mediated
by the Mas-related G-protein-coupled receptor (Mrgpr)
A3 or C1, and with co-activation of Transient receptor
potential cation channel subfamily A member 1(TRPA1)
channels [23, 29]. Both groups are members of the GPCR
superfamily and are coupled to various G-proteins,
through which they transduce their signals via second
messengers such as phospholipase Cbeta 3 (PLCB3) and
inositol triphosphate (IP3) [14]. It is possible that Cav3.2
channels are direct downstream targets of these signalling
pathways, thus leading to increased T-type channel activ-
ity and increased neuronal firing. Alternatively, it is con-
ceivable that histamine may directly act on Cav3.2
channels. Finally, it is possible that the activity of pruricep-
tive sensory neurons is increased by receptor-mediated ac-
tions on other types of ion channels, and that

pharmacological inhibition or depletion of Cav3.2 chan-
nels expressed in nerve endings simply serves to compen-
sate for this increase in activity. At this point we cannot
distinguish among the alternatives. The Cav3.2 channel is
widely expressed in TRPV1 positive sensory fibers where
it is known to participate in the transmission of pain sig-
nals from the nerve endings to the spinal cord [30]. It was
demonstrated that mechanical hyperalgesia and allodynia
caused by hydrogen sulfide (H2S) require activation of
both Cav3.2 channels and TRPA1 receptors [31]. Of inter-
est, TRPV1- and TRPA1- positive fibers participate in dif-
ferent modalities of pain, including inflammatory
mechanical hyperalgesia, mechanical allodynia and visceral
pain [32], in which Cav3.2 channels have also emerged as
potential therapeutic targets [33, 34]. The Cav3.2 channel
is also considered as a selective marker for low (C-)
threshold mechanoreceptors (LTMRs) that express Tyro-
sine hydroxylase/VGLUT3/TAFA4 and for the medium
(Aδ-) LTMRs that are positive for TrkB [7]. The precise
expression and distribution of Cav3.2 channels in pruri-
ceptive neurons is not known, however, given that itch re-
sponses were inhibited by local administration of DX332,
they must be functionally involved at the level of nerve
endings.
In conclusion, our findings reveal that the Cav3.2 T-

type channel subtype is involved in both histamine-
dependent and histamine-independent acute itch re-
sponses in mice of both sexes. While additional studies
are necessary to elucidate the role played by the Cav3.2
channel in chronic itch such as atopic dermatitis, our
findings strongly demonstrated that targeting Cav3.2
channels could be exploited for the development of
novel anti-pruritus therapies.
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