
Park et al. Mol Brain            (2021) 14:7  
https://doi.org/10.1186/s13041-021-00728-3

MICRO REPORT

Regulation of behavioral response to stress 
by microRNA‑690
Jungyoung Park, Joonhee Lee, Koeul Choi and Hyo Jung Kang* 

Abstract 

Psychiatric disorders are affected by genetic susceptibility and environmental adversities. Therefore, the regulation 
of gene expression under certain environments, such as stress, is a key issue in psychiatric disorders. MicroRNAs 
(miRNAs) have been implicated as post-transcriptional regulators of several biological processes, which can be dif-
ferentially controlled through the targeting of multiple mRNAs. However, studies reporting the functions of miRNAs 
in relation to stress are lacking. In this study, we identified a significant increase in the expression of miRNA-690 
(miR-690) in the medial prefrontal cortex (mPFC) of FK506-binding protein 51 knock-out (Fkbp5 KO) mice. In addition, 
the expression pattern of miR-690 was similar to the sucrose preference of the same group in WT and Fkbp5 KO mice. 
miR-690 was injected into the mPFC using a recombinant adeno-associated virus mediated gene delivery method. 
After recovery, miR-690 overexpressing mice were exposed to restraint stress for 2 weeks. In the sucrose preference 
test and forced swim test, the stressed miR-690 overexpressing mice showed higher sucrose preference and lower 
immobility time, respectively, than stressed mice injected with the control virus. In the novel object recognition 
test, the stressed miR-690 overexpressing mice interacted longer with the novel object than those injected with the 
control virus. These results showed that miR-690 might play a role in stress resilience and could provide new insights 
into the epigenetic regulation of stress-associated biological functions and diseases, such as depression and post-
traumatic stress disorder.
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Stress is a state in which homeostasis cannot be main-
tained, and both physical and psychological stressors 
have been reported to cause alterations in the endocrine 
system [1]. One of the major endocrine systems associ-
ated with stress response is the hypothalamic–pituitary–
adrenal (HPA) axis, which comprises the hypothalamus, 
pituitary gland, and adrenal gland [2]. The hypothalamus 
releases corticotropin-releasing hormone upon exposure 
to stress, which stimulates the anterior pituitary gland to 
release adrenocorticotropic hormone (ACTH). ACTH 
stimulates the adrenal cortex to produce glucocorticoids 
[2]. FK506-binding protein 51 (FKBP5), a co-chaperone 

of heat shock protein 90 (Hsp90), acts as a regulator of 
the HPA axis. FKBP5 also interacts with Hsp90 to inter-
fere with glucocorticoid receptor-mediated signaling [3, 
4]. In our previous study, we found that Fkbp5 knock-out 
(KO) mice exhibited significantly reduced depressive-like 
behaviors when exposed to stress, and transcriptomic 
analysis showed a distinct expression module associ-
ated with stress resilience in the medial prefrontal cortex 
(mPFC) [5]. The mPFC has been considered an impor-
tant region associated with stress responses because it 
connects to several brain regions, such as the amygdala 
and hypothalamus, which regulate neuroendocrine and 
autonomic functions and mediate circuit-specific effects 
of stress on neuronal remodeling [6].

Over the past few years, epigenetics has been con-
sidered in the pathophysiology of many stress-related 
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psychiatric disorders. Epigenetic modifications regulate 
gene expression without changing the original genetic 
code [7]. In particular, microRNAs (miRNAs) are highly 
expressed in the central nervous system and play impor-
tant roles in the development of neural structures and 
the regulation of gene expression [8]. In addition, abnor-
mal expression of miRNAs can lead to several neu-
ropsychiatric disorders [9]. Therefore, elucidating the 
role of miRNAs can provide clues toward determining 
the mechanisms underlying these disorders. However, 
epigenetic regulation of miRNAs has not yet been fully 
investigated.

We conducted small RNA sequencing (RNA-seq) anal-
ysis to explore key miRNAs in the mPFC associated with 
stress, using Fkbp5 KO mice, with wild-type (WT) mice 
as controls (Additional file  1). In the Fkbp5 KO mice, 
which showed significantly lower Fkbp5 expression levels 
(P < 0.0001, Additional file 3: Fig. S1), the expression lev-
els of 41 miRNAs were altered, of which, 18 were upregu-
lated and 23 were downregulated. Among the upregulated 
genes, the expression of microRNA-690 (miR-690) was 
significantly increased (fold change = 2.5128, adjusted 
P = 3.5 × 10−3) (Fig.  1a and Additional file  2: Table  S1). 
Studies have reported that miR-690 plays roles in myeloid 
cell, osteogenic, and induced pluripotent stem cell dif-
ferentiation and in the renin-angiotensin system [10–13]; 
however, the effects of miR-690 on stress response are 
unknown. We hypothesized that miR-690 could mediate 
the stress response. Therefore, to verify this hypothesis, 
miR-690 levels of Fkbp5 KO mice were assessed when 
subjected to restraint stress for 3  weeks [5]. Restraint 
stress, a widely used animal model of stress, can alter 
neurotransmission and gene regulation in the short term 
and can cause neuronal structure modifications over the 
long term [14]. The effect of the restraint stress was con-
firmed by the sucrose preference test (SPT), and the miR-
690 expression level was verified by quantitative PCR 
on total RNA extracted from the mPFC. The stressed 
WT (WT_ST) mice showed lower sucrose preference 
(P = 1.20 × 10−3) (Additional file  3: Fig. S2) and a lower 
level of miR-690 expression than the WT control (WT_
CT) mice (P = 2.80 × 10−3) (Fig. 1b). On the other hand, 
stressed KO (KO_ST) mice, which showed significantly 
reduced depressive-like behavior (P = 1.10 × 10–3) (Addi-
tional file 3: Fig. S2), exhibited upregulated expression of 
miR-690 compared with WT_ST mice (P = 3.00 × 10−4) 
(Fig. 1b).

We next infused either a control green fluorescent pro-
tein (GFP)-tagged recombinant adeno-associated virus 
(rAAV) or a viral construct containing miR-690 (rAAV-
GFP-miR-690) into the pre-limbic cortices of the mPFC 
of mice to evaluate the effects of miR-690 on behavioral 
responses induced by chronic restraint stress (Fig. 1c and 
Additional file 3: Fig. S3). After 2 weeks of recovery, mice 
were subjected to restraint stress for 2 weeks. Effects of 
stress and the influence of miR-690 expression were veri-
fied by the SPT, forced swim test, and novel object recog-
nition test (NOR), which are established models to assess 
mouse behavior (Fig. 1d). In the absence of stress, there 
was no significant influence on mice behavior by miR-690 
expression itself; however, the effects appeared when the 
mice were exposed to stressful conditions. Mice injected 
with the control virus (rAAV-GFP) showed significantly 
lower sucrose preference (P = 3.50 × 10−3), increased 
total immobility time (P = 2.60 × 10−3) and decreased 
interaction rate with a novel object (P = 3.40 × 10−3) fol-
lowing restraint stress for 2 weeks; however, anhedonia, 
despair, and cognitive dysfunction caused by stress were 
blocked by overexpression of miR-690 in the mPFC 
(Fig.  1e–g and Additional file  3: Fig. S4). Furthermore, 
we tested whether the overexpression of miR-690 in the 
mPFC is associated with anxiety using another stress 
paradigm, conditioned fear stress combined with single-
prolonged stress (CF + SPS). In the elevated plus maze 
test, overexpression of miR-690 did not prevent anxiety 
caused by CF + SPS (Fig.  1h). Although more detailed 
verification is required, miR-690 overexpression does 
not seem to have a significant effect on stress-induced 
anxiety. However, compared to the control virus, miR-
690 overexpression tends to alleviate anxiety some-
what by overexpression itself, although not statistically 
significant.

In this study, we suggest that miR-690 could prevent 
depressive-like behaviors and cognitive dysfunction fol-
lowing exposure to restraint stress. Although further 
and more elaborate behavioral and molecular studies are 
necessary to identify the precise role of miR-690 in stress 
biology, our results demonstrated that miR-690 may be 
an epigenetic regulator of behavioral responses induced 
by chronic restraint stress. Because miRNAs can target 
multiple mRNAs and regulate their expression, deter-
mining the exact roles of miRNAs is essential. Therefore, 
additional studies associated with miR-690 and putative 
target genes will contribute toward providing therapeutic 
interventions for stress-related disorders.
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Additional file 1. Materials and methods.

Additional file 2: Table S1. Normalized count values of differentially 
expressed microRNAs (miRNAs) in Fkbp5 knock-out (KO) mice

Fig. 1  Overexpression of miR-690 in the mPFC led to stress-resilient behaviors following restraint stress in mice. a Volcano plot representing 
the differentially expressed miRNAs in the mPFC of Fkbp5 KO mice, satisfying the criterion of P value < 0.05. Significantly altered miRNAs are 
indicated by blue (downregulated) and red (upregulated) dots. b The expression of mmu-miR-690 in the mPFC of mice subjected to the 
restraint stress. WT control mice (WT_CT, n = 9); stressed WT mice (WT_ST, n = 6); stressed Fkbp5 KO mice (KO_ST, n = 6). One-way ANOVA (F [2, 
18] = 10.65, P = 9.00 × 10−4); Fisher’s LSD (**P < 0.01, ***P < 0.001). c AAV-miR-690 and AAV-control vector design; ITR inverted terminal repeat, 
CMV cytomegalovirus; GFP green fluorescent protein, SV40 simian virus 40. d Schematic timeline of experimental procedures and behavioral tests. 
Restraint stress (above) and conditioned fear stress combined with single-prolonged stress (CF + SPS) (below). e–g Influence of overexpression 
of miR-690 in the mPFC on mouse behavior following restraint stress. Results of sucrose preference test (e). Non-stressed control mice (n = 5); 
stressed control mice (n = 8); non-stressed miR-690 mice (n = 5); stressed miR-690 mice (n = 8). Two-way ANOVA (stress × virus, F [1, 22] = 10.39, 
P = 3.90 × 10–3); Fisher’s LSD (**P < 0.01). Results of forced swim test (f). Non-stressed control mice (n = 8); stressed control mice (n = 8); non-stressed 
miR-690 mice (n = 8); stressed miR-690 mice (n = 8). Two-way ANOVA (stress, F [1, 28] = 9.97, P = 3.80 × 10–3); Fisher’s LSD (*P < 0.05, **P < 0.01). 
Results of novel object recognition test (g). Non-stressed control mice (n = 6); stressed control mice (n = 8); non-stressed miR-690 mice (n = 6); 
stressed miR-690 mice (n = 7). Two-way ANOVA (stress × virus, F [1, 23] = 5.81, P = 2.44 × 10−2); Fisher’s LSD (*P < 0.05, **P < 0.01). h Effects of 
CF + SPS and miR-690 on elevated plus maze test. Non-stressed control mice (n = 5); stressed control mice (n = 4); non-stressed miR-690 mice 
(n = 4); stressed miR-690 mice (n = 4). Two-way ANOVA (stress, F [1, 13] = 20.45, P = 6.0 × 10−4); Fisher’s LSD (*P < 0.05, **P < 0.01, ***P < 0.001). In all 
data, black dots and red dots indicate non-stressed mice and stressed mice, respectively. Bars represent group mean and error bars represent SEM
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Additional file 3: Figure S1. Fkbp5 expression level in the medial pre-
frontal cortex (mPFC) of Fkbp5 knock-out (KO) mice. Figure S2. Effects of 
Fkbp5 deletion and restraint stress on depressive-like behavior. Figure S3. 
The expression level of miR-690 after AAV-mediated gene transfer into the 
mPFC of mice. Figure S4. Novel and familiar objects interaction time in 
the novel object recognition test.
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