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Abstract 

Intelligence predicts important life and health outcomes, but the biological mechanisms underlying differences in 
intelligence are not yet understood. The use of genetically determined metabotypes (GDMs) to understand the role 
of genetic and environmental factors, and their interactions, in human complex traits has been recently proposed. 
However, this strategy has not been applied to human intelligence. Here we implemented a two-sample Mendelian 
randomization (MR) analysis using GDMs to assess the causal relationships between genetically determined metabo-
lites and human intelligence. The standard inverse-variance weighted (IVW) method was used for the primary MR 
analysis and three additional MR methods (MR-Egger, weighted median, and MR-PRESSO) were used for sensitivity 
analyses. Using 25 genetic variants as instrumental variables (IVs), our study found that 5-oxoproline was associated 
with better performance in human intelligence tests  (PIVW = 9.25 × 10–5). The causal relationship was robust when 
sensitivity analyses were applied  (PMR-Egger = 0.0001,  PWeighted median = 6.29 × 10–6,  PMR-PRESSO = 0.0007), and repeated 
analysis yielded consistent result  (PIVW = 0.0087). Similarly, also dihomo-linoleate (20:2n6) and p-acetamidophenylglu-
curonide showed robust association with intelligence. Our study provides novel insight by integrating genomics and 
metabolomics to estimate causal effects of genetically determined metabolites on human intelligence, which help to 
understanding of the biological mechanisms related to human intelligence.
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Introduction
Intelligence affects all aspects of human life [1]. During 
the school years, some individuals show higher intel-
ligence, attain better marks in exams, and have better 
prospects for further education [2, 3]. In the workplace, 
intelligence influences performance, efficiency, the abil-
ity to cope with difficulties, and career achievements [4]. 
Intelligence is also a predictor of higher quality of life 

and better health outcomes [5, 6]. Revealing the biologi-
cal bases of individual differences in human intelligence 
has become a central and enduring aim of psychological 
and brain sciences. During the past decade, advances in 
genetic research have greatly promoted our understand-
ing of intelligence [7–10]. However, further insight on its 
biological basis is needed.

Understanding the role of genetic characteristics and 
their interaction with environmental factors is the key to 
reveal the biological mechanisms underlying differences 
in human intelligence [11]. Currently, omics technolo-
gies (such as genomics, metabolomics, etc.) are widely 
used to provide a comprehensive characterization at the 
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molecular level of the human body as a biological system. 
These approaches have successfully identified a num-
ber of informative biomarkers and greatly advanced our 
knowledge of the molecular mechanisms responsible for 
many traits. However, most omics studies focus only on 
a single layer, and therefore fail to capture information 
across multiple omics assays [12]. Recently, researchers 
have linked metabolomics traits to genomic information 
through genome-wide association studies (GWAS) on 
non-targeted metabolic profiling [13–15]. A large data-
base of genetically determined metabotypes (GDMs) has 
been thus established to provide comprehensive insights 
of how genetic variation influences metabolism [16]. The 
established GDMs provide important intermediates to 
reveal the role of the interactions between genetics and 
metabolic traits in determining differences in human 
intelligence.

Mendelian randomization (MR) is a novel genetic epi-
demiology study design using genetic variants as instru-
mental variables (IVs) to investigate whether a modifiable 
exposure is causally related to a medically relevant dis-
ease risk [17]. The fundamental assumption utilized in 
the MR framework is that if genetic variants essentially 
affect the biological effects of a modifiable exposure, they 
should be also related to the exposure-related disease 
risk. Exploiting the fact that inherent genetic variants are 
not generally susceptible to environmental variables, the 
MR design can avoid the potential confounding factors 
that are common in conventional observational studies 
[18]. In recent years, the explosion in the number of pub-
lished GWAS summary data has increased the popular-
ity of MR approaches (and in particular of two-sample 
MR analysis) as tools to infer the causality of risk fac-
tors on complex health outcomes [19–21]. In this study, 
using GDMs and the results of GWAS on intelligence, 
we implement two-sample MR analysis to: (1) assess the 
causal effects of genetically determined metabolites on 
human intelligence; (2) investigate the genetic basis that 
may play a central role in determining the variation of the 
related metabolites and the differences in human intelli-
gence; (3) identify potential metabolic pathways involved 
in the biological processes related to intelligence.

Methods
GWAS scans with metabolomics traits
Shin et  al. reported the most comprehensive explora-
tion of genetic influences on human metabolism so far, 
by performing a GWAS of non-targeted metabolomics 
on 7824 healthy adults. [16]. Metabolic profiling was car-
ried out on fasting serum using high-performance liquid 
chromatography and gas chromatography separation 
coupled with tandem mass spectrometry. After qual-
ity control, 486 metabolites were retained for genetic 

analysis, among which 309 were chemically identified and 
could be further assigned to 8 metabolic groups (amino 
acids, carbohydrates, cofactors and vitamins, energy, 
lipids, nucleotides, peptides, and xenobiotics), while the 
other 177 were classified as ‘unknown’. The final genome-
wide association analyses were carried out on approxi-
mately 2.1 million single nucleotide polymorphisms 
(SNPs). Full summary statistics for the 486 metabolites 
can be found at the Metabolomics GWAS Server (http://
metab olomi cs.helmh oltz-muenc hen.de/gwas/).

IVs for the 486 metabolites
The foundational principle of MR relies on the existence 
of valid IVs. A genetic variant is a valid IV if it is (i) sig-
nificantly associated with the exposure, (ii) independent 
of confounders, and (iii) associated with the outcome 
only through the exposure [22]. To identify valid IVs, we 
first selected the SNPs with significance P < 1 × 10−5, so 
as to account for a proportion as large as possible of the 
variance explained for the corresponding metabolite. We 
next performed a clumping procedure (linkage disequi-
librium threshold of  r2 < 0.1 within a 500-kb window) to 
select the independent SNPs using the PLINK software 
(v1.9). To avoid the negative impact of weak IVs, we fur-
ther used the proportion of variation explained by each 
IV (R2) and the F statistics to select SNPs strong enough 
to be valid IVs. Typically, an F statistic > 10 is considered 
sufficient for MR analysis [23].

GWAS summary data on intelligence
GWAS summary statistics for intelligence were obtained 
from the study by Savage et al. [10]. Briefly, these authors 
performed a large GWAS meta-analysis of 269,867 indi-
viduals from 14 cohorts of European ancestry. Intel-
ligence was assessed using different neurocognitive 
tests and the general factor of intelligence (Spearman’s 
g). Although differences in assessment methods might 
reduce the power to detect associations in meta-analyses, 
this approach can at the same time reduce type I errors 
by removing measurement errors, and therefore iden-
tify SNPs with robust associations to the common latent 
factor underlying intelligence across different methods. 
Stringent quality control procedures were applied to the 
summary statistics for each cohort. Association analysis 
was conducted controlling for covariates of age, sex, gen-
otyping array, socioeconomic status for specific cohort, 
and twenty European-based ancestry principal compo-
nents. Finally, a total of 9,295,118 SNPs were included in 
the meta-analysis.

Statistical analysis
Primary two-sample MR analyses were performed 
using the standard inverse-variance weighted (IVW) 
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method. The IVW method provides a consistent esti-
mate of causal effects by combining the ratio estimates 
of each variant in a fixed-effect meta-analysis model 
[23]. The P-value was calculated with a standard nor-
mal cumulative distribution function on the ratio of 
the combined causal effect and its standard error. The 
significance threshold to declare a causal relation-
ship for the IVW-based MR estimate was set, using 
Bonferroni correction, at P < 1.03 × 10–4 (= 0.05/486). 
Associations with P < 0.05, but not reaching the Bonfer-
roni-corrected threshold, were reported as suggestive 
of association.

The IVW method provides an unbiased estimate 
under the assumption that all genetic variants are valid 
IVs. However, this assumption is easily violated, lead-
ing to inaccurate estimates, when horizontal pleiotropy 
occurs (some variants act on the outcome via a different 
intermediary) [24]. To avoid the effects of widespread 
horizontal pleiotropy in MR, we further performed sen-
sitivity analyses using three additional MR methods: the 
MR-Egger method, which provides a consistent causal 
effect estimate, even when all genetic variants violate the 
assumptions defining valid IVs, under a weaker assump-
tion (known as the InSIDE [instrument strength inde-
pendent of direct effect] assumption) [24]; the weighted 
median method, which introduces a weighted median 
estimator and provides a more precise estimate than 
MR-Egger regression without the InSIDE assumption 
[25]; and the MR-PRESSO method, a newly developed 
approach which can identify and correct for horizon-
tal pleiotropic outliers in MR [26]. We further used the 
MR-PRESSO global test as well as the intercept of the 
MR-Egger regression to test for pleiotropy, and we also 
evaluated heterogeneity with the I2 and the Cochran Q 
test. Typically, I2 > 25% or Cochran Q-derived P < 0.05 
were used as indicators of possible horizontal pleiotropy. 
Analyses were carried out using the packages Mendelian-
Randomization and MR-PRESSO in R (version 3.6.1).

Replication
We next used GWAS datasets of four other related out-
comes to replicate the findings of our MR estimates. 
The first dataset was obtained from another GWAS of 
intelligence with 248,482 samples from the UK Biobank 
[27]. Summary statistics of cognitive performance 
(n = 257,828) and educational attainment (n = 766,345) 
were obtained from the study of Lee et al. [28]. Genetic 
associations with income (n = 286,301) were extracted 
from the large publicly available Lothian Birth Cohorts 
of 1921 and 1936 data-sharing resource [29]. Notably, 
the Davies et al. reported another GWAS for intelligence 

with a larger sample size, but the summary data for full 
dataset is not available due to data permissions [30].

Metabolic pathway analysis
Metabolic pathway analysis was carried out using the 
web-based tool suite MetaboAnalyst 4.0 (https ://www.
metab oanal yst.ca/) [31]. For this analysis, we extracted 
all metabolites showing suggestive associations in the 
IVW estimates  (PIVW < 0.05). Two libraries of metabolic 
pathways or metabolite sets were selected for enrich-
ment analysis, namely the Small Molecule Pathway Data-
base (SMPDB, http://www.smpdb .ca) [32] and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG, https ://
www.kegg.jp/) database [33]. P-values < 0.05 were consid-
ered statistically significant.

Results
Causal effects of the metabolites on intelligence
We selected 3–675 independent genetic variants as 
IVs for each of the 486 metabolites (Additional file  4: 
Table  S1). On average, the IVs explained 4.7% (range 
0.8–83.5%) of the variance of their respective meta-
bolic traits. The minimum F statistic used to evaluate 
the strength of these IVs was 20.33. Using these IVs, 
IVW identified 16 known metabolites and 16 unknown 
metabolites that might have causal effects on human 
intelligence (Fig.  1, Additional file  4: Table  S2). Among 
the 16 known metabolic traits, 5-oxoproline was signifi-
cantly associated with intelligence after Bonferroni cor-
rection  (PIVW = 9.25 × 10–5). Using 25 SNPs as proxy, we 
observed a 0.24 increase in the score of the Spearman’s 
g test for an increase of one standard deviation (SD) in 
the level of 5-oxoproline (β = 2.10; 95% Confidence inter-
val [CI] 0.12 to 0.35). We also found 15 other metabolites 
to be suggestive for association, including indolelactate 
(β = − 0.09; 95% CI − 0.81 to − 0.01,  PIVW = 0.0313), man-
nitol (β = − 0.03; 95% CI − 0.06 to − 0.01,  PIVW = 0.0223), 
and 2-oleoylglycerophosphocholine (β = 0.18; 95% CI 
0.05 to 0.30,  PIVW = 0.0055).

Sensitivity analysis
Table  1 shows the results of the sensitivity analyses 
for the 16 IVW-identified known metabolites. The 
causal relationship between 5-oxoproline and intelli-
gence was robust when additional MR methods were 
applied  (PMR-Egger = 0.0001,  PWeighted median = 6.29 × 10–6, 
 PMR-PRESSO = 0.0007), and no horizontal pleiotropy was 
observed  (PIntercept = 0.09,  PGlobal test = 0.06, I2 = 25%, 
 PHeterogeneity = 0.13). Two other metabolites also 
showed robust associations with intelligence, namely 
dihomo-linoleate (20:2n6)  (PMR-Egger = 0.0494,  PWeighted 

median = 0.0236,  PMR-PRESSO = 0.0293,  PGlobal test = 0.16) 
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and p-acetamidophenylglucuronide  (PMR-Egger = 0.0075, 
 PWeighted median = 0.0060,  PMR-PRESSO = 0.0454,  PGlobal 

test = 0.0611), and there were no evidence of hori-
zontal pleiotropy  (PIntercept = 0.24,  PGlobal test = 0.17, 
I2 = 0%,  PHeterogeneity = 0.96 for dihomo-linoleate 
(20:2n6) and  PIntercept =0.06,  PGlobal test = 0.06, I2 = 17%, 
 PHeterogeneity = 0.13 for p-acetamidophenylglucuronide; 
Table 1). Funnel plots appeared generally symmetrical for 
all the three metabolites, also suggesting no evidence for 
horizontal pleiotropy (Additional file 1: Fig. S1). Dihomo-
linoleate (20:2n6) showed a negative association with 
intelligence (βIVW = − 0.14; 95% CI − 0.25 to − 0.04), 
while the association between p-acetamidophenylglucu-
ronide and intelligence was positive (βIVW = 0.01; 95% CI 
0.00 to 0.01). The causal association between 5-oxopro-
line and human intelligence is shown on Fig. 2, while the 
associations for dihomo-linoleate (20:2n6) and p-aceta-
midophenylglucuronide with intelligence are represented 
on Fig. 3. Notably, the very small effect size for p-aceta-
midophenylglucuronide on intelligence might limit its 
potential utility as a biomarker.

Associations with other relevant outcomes
We next repeated the main findings using summary 
statistics from other data sources. Figure  4 showed 
the results of causal effects of 5-oxoproline on human 
intelligence from another data source, cognitive perfor-
mance, educational attainment, and income. The effect 
of genetically determined 5-oxoproline on intelligence 
(Replication) was similar (β = 0.17; 95% CI 0.04 to 0.30, 
 PIVW = 0.0087) to the result of initial MR estimates, 
and the causal associations were robust when differ-
ent methods were performed  (PWeighted median = 0.0003, 
 PMR-Egger = 0.0035). The results also showed that 5-oxo-
proline was significantly associated with cognitive per-
formance  (PIVW = 0.0001,  PWeighted median = 1.44 × 10–6, 
 PMR-Egger = 0.0009). However, no evidences for associa-
tion were found between 5-oxoproline and educational 
attainment  (PIVW = 0.5595,  PWeighted median = 0.3417, 
 PMR-Egger = 0.4611), as well as income  (PIVW = 0.7854, 
 PWeighted median = 0.4287,  PMR-Egger = 0.6178). Besides, the 
effects of dihomo-linoleate (20:2n6) and p-acetamido-
phenylglucuronide on intelligence were also significant 

Fig. 1 Mendelian randomization associations of genetically determined metabolites on intelligence
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in the replication stage (Additional file 2: Fig. S2; Addi-
tional file 3: Fig. S3).

Genetic basis for the causal associations
We further investigated the genetic variants that 
affected both metabolite levels and intelligence. Table  2 
shows the 25 SNPs used as IV of 5-oxoproline. Among 
them, rs11986602 showed the most significant asso-
ciation with 5-oxoproline (β = − 0.0620; SE = 0.0029, 
P = 6.29 × 10–104). Notably, it also showed a strong asso-
ciation signal with intelligence (β = − 0.0196; SE = 0.0044, 
P = 9.53 × 10–6). Moreover, this SNP had the largest effect 
sizes on both 5-oxoproline and intelligence, suggesting 

that the related genetic locus might provide valuable 
information on the biological mechanisms of intelligence, 
and that 5-oxoproline might be an important func-
tional intermediate to understand the biological process 
through which genetics affects intelligence. The IVs for 
dihomo-linoleate (20:2n6) and p-acetamidophenylglucu-
ronide are shown in Additional file 4: Tables S3 and S4.

Metabolic pathway analysis
Table 3 shows the results of the metabolic pathway analy-
sis. Based on the 16 known metabolites identified by the 
IVW method, we detected only one significant metabolic 
pathway associated with intelligence, namely Alpha lino-
lenic acid and linoleic acid metabolism (P = 0.0062). Two 
metabolites identified by IVW, docosapentaenoate (n3 
DPA; 22:5n3) and linolenate (18:3n3 or 6), are involved in 
Alpha linolenic acid and linoleic acid metabolism accord-
ing to the SMPDB database. Importantly, many of the 
metabolites found by our analysis have not been assigned 
to any metabolic pathway currently recorded in the 
SMPDB or KEGG databases. Extensive further research 
will be needed to explore whether these metabolites are 
involved in biological processes relevant to differences in 
human intelligence.

Discussion
We implemented a two-sample MR analysis to assess 
the causal relationships between genetically determined 
metabolites and human intelligence. Using genetic 
variants as IVs, we found that the genetically deter-
mined levels of 5-oxoproline were associated with bet-
ter performance in human intelligence tests. This causal 

Fig. 2 Genetic associations between 5-oxoproline and intelligence

ba

Fig. 3 Genetic associations of two suggestive metabolites with intelligence. a Dihomo-linoleate (20:2n6); b p-acetamidophenylglucuronide
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association was not affected by confounders such as 
educational attainment and household income, and was 
well replicated using samples from other data source. 
Our study also identified other metabolites and meta-
bolic pathways involved in biological processes related 
to human intelligence, such as dihomo-linoleate (20:2n6) 
and p-acetamidophenylglucuronide. To the best of our 
knowledge, this is the first study combining information 
from genomics and metabolomics to assess the causal 
effects of metabolome traits on human intelligence.

5-Oxoproline, also known as pyroglutamic acid, is a 
cyclized derivative of l-glutamic acid that participates 
substantially in the glutamate and glutathione metabo-
lism [34]. Disturbances in glutamate and glutathione 
metabolism can lead to a series of neurologic phenotypes, 
including developmental delay, ataxia, seizures, and intel-
lectual disability [35]. Moreover, 5-oxoproline was also 
developed and sold as an over-the-counter “smart drug” 
for cognitive and memory improvement [36, 37]. How-
ever, it was also demonstrated that metabolic acidosis 
could be caused by excessive 5-oxoproline generation, 
with multiple adverse effects on many organ systems 
[38]. Our study found that elevated levels of 5-oxoproline 
were associated with a higher score in intelligence tests, 

supporting the potential usefulness of 5-oxoproline in 
improving intelligence-related performance. However, 
more work aimed at understanding the molecular mech-
anisms involved is needed to further clarify the role of 
this compound in human intelligence.

Genetic factors played a central role in our study of 
the causal relationship between metabolic traits and 
intelligence. The SNP rs11986602 (corresponding to 
the EXOSC4 gene) was the most significantly associ-
ated to both 5-oxoproline levels and human intelligence. 
Although rarely discussed in the past literature, EXOSC4 
is known to be related to the protein kinase R (PKR)-like 
endoplasmic reticulum kinase (PERK, encoded by the 
EIF2AK3 gene), which regulates gene expression [39]. A 
recent study reported that locally reduced PERK expres-
sion or activity could enhance neuronal excitability and 
improve memory and cognitive function in young mice 
[40]. Another study provided evidence that PERK is a key 
regulator of memory impairments and neurodegenera-
tion in Alzheimer’s disease [41]. Thus, EXOSC4 might be 
a causal risk gene participating in physiological processes 
important for human intelligence.

We further focused on the metabolic pathways that 
might be involved in the biological processes associated 

Fig. 4 Mendelian randomization associations of 5-oxoproline on other intelligence-related outcomes from other data sources
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to human intelligence. The only identified metabolic 
pathway in our study was Alpha linolenic acid and 
linoleic acid metabolism. Alpha linolenic acid and lin-
oleic acid are long-chain polyunsaturated fatty acids, 
which are essential nutrients in the development and 

functioning of the brain [42]. Many related compounds, 
such as alpha linolenic acid and docosahexaenoic acid, 
are involved in the rapid growth and development of 
the infant brain [43, 44]. Our study thus reinforced the 
importance of alpha linolenic acid and linoleic acid 

Table 2 Genetic predictors of 5-oxoproline and their association with Intelligence

SNP Gene CHR A1 A2 5-oxoproline Intelligence

Beta SE P value Beta SE P value

rs11986602 EXOSC4 8 A T − 0.0620 0.0029 1.07E−104 − 0.0196 0.0044 9.53E−06

rs9987070 – 7 C G − 0.0280 0.0059 2.43E−06 − 0.0083 0.0071 0.2381

rs10890517 – 2 T C − 0.0197 0.0043 3.45E−06 − 0.0139 0.0069 0.0427

rs5764925 – 22 A G − 0.0160 0.0031 1.91E−07 − 0.0021 0.0050 0.6782

rs13159409 – 5 T G − 0.0148 0.0032 2.74E−06 − 0.0075 0.0053 0.1535

rs12294182 MICAL2 11 T C 0.0140 0.0029 1.07E−06 0.0019 0.0041 0.6478

rs2068157 AACSP1 5 T C 0.0137 0.0031 8.99E−06 − 0.0037 0.0048 0.4362

rs9964014 DLGAP1 18 T C − 0.0132 0.0025 1.80E−07 − 0.0060 0.0078 0.4388

rs11605366 – 11 T C − 0.0122 0.0027 7.55E−06 − 0.0111 0.0043 0.0094

rs12143589 – 1 A G 0.0118 0.0023 3.38E−07 − 0.0024 0.0036 0.5034

rs13013224 LOC105369165 2 C G 0.0113 0.0023 7.04E−07 − 0.0031 0.0035 0.3781

rs306676 – 13 A G 0.0112 0.0024 2.48E−06 − 0.0027 0.0041 0.5047

rs9650466 MROH1 8 T C 0.0110 0.0020 3.80E−08 0.0046 0.0028 0.0938

rs1001210 ATXN1 6 T C − 0.0106 0.0023 3.80E−−06 − 0.0051 0.0037 0.1678

rs17017431 TRAF5 1 A T 0.0105 0.0023 3.80E−06 0.0022 0.0038 0.5628

rs10853533 SLC14A2 18 A C 0.0103 0.0023 6.09E−06 − 0.0068 0.0043 0.1133

rs2115151 SPATA5 4 A T 0.0103 0.0022 3.75E−06 0.0024 0.0041 0.5561

rs7015048 – 8 T C 0.0100 0.0015 3.16E−11 − 0.0015 0.0028 0.5864

rs9460424 – 6 T G − 0.0097 0.0022 9.16E−06 − 0.0053 0.0035 0.1328

rs4646693 LRRK1 15 T C − 0.0090 0.0020 6.80E−06 − 0.0001 0.0054 0.9909

rs8092658 SLC14A2 18 A C − 0.0090 0.0020 6.80E−06 0.0001 0.0028 0.9828

rs1578743 – 10 A C 0.0075 0.0016 1.70E−06 0.0026 0.0029 0.3664

rs7973508 – 12 A G − 0.0073 0.0016 5.40E−06 0.0007 0.0030 0.8245

rs12464424 – 2 T C − 0.0071 0.0016 7.47E−06 0.0055 0.0030 0.0651

rs12611788 GALNT14 2 T C − 0.0070 0.0015 5.51E−06 − 0.0062 0.0029 0.0301

Table 3 Results of metabolic pathway analysis

Metabolic pathway Involved Metabolites P value Database

Alpha linolenic acid and linoleic acid metabolism Docosapentaenoate (n3 DPA; 22:5n3);
Linolenate (18:3n3 or 6)

0.0062 SMPDB

Alpha-linolenic acid metabolism Linolenate (18:3n3 or 6) 0.0702 KEGG

Glutathione metabolism 5-Oxoproline 0.0912 KEGG

Beta oxidation of very long chain fatty acids Acetylcarnitine 0.0989 SMPDB

Fructose and mannose metabolism Mannitol 0.1140 KEGG

Oxidation of branched chain fatty acids Acetylcarnitine 0.1622 SMPDB

Tryptophan metabolism Indolelactate 0.1816 KEGG
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metabolism for human intelligence, providing valuable 
information for understanding the biological mecha-
nisms related to human intelligence.

The current study has several strengths. First, we 
implemented a novel MR study design to assess the 
causal relationships between genetically determined 
metabolites and human intelligence. By using genetic 
variants as IVs, the MR approach prevents confound-
ing, reverse causation, and various biases common in 
observational epidemiological studies. Second, our 
study provides, indirectly, a comprehensive assessment 
of the causal effects of metabolites assessed by non-
targeted metabolomics on human intelligence. Third, 
by integrating genomics and metabolomics, our study 
provides novel insight into the biological mechanisms 
underlying differences in intelligence.

There are also several limitations that should be 
noted. First, the GWAS data for intelligence was deter-
mined adjusting for socioeconomic status, which was a 
heritable and correlated secondary trait to intelligence 
[29, 45]. The adjustment for socioeconomic status 
might cause bias in genetic associations with intelli-
gence for some SNPs [46]. Second, our study could not 
avoid the bias of dynastic effect, which induced a corre-
lation between the environment a child is raised in and 
their genetic inheritance and almost certainly violated 
the independence assumption of MR [47, 48]. Within 
family GWAS data was useful in avoiding the issue of 
dynastic effects. However, such data was not available 
at this stage. Third, our study failed to perform the bi-
directional MR analysis which was useful in detecting 
false positive MR results arising from genetic correla-
tion between traits. The reason was that many of the 
IVs for intelligence were missing in datasets of metabo-
lites. Finally, the MR estimates from non-experimental 
date could not provide information towards molecular 
mechanism, further work should be done to determine 
the roles of metabolites or genetic variants in develop-
ment of intelligence.

In summary, our study identified multiple metabolites 
that might have causal effects on human intelligence, 
among which 5-oxoproline presented significant asso-
ciation signals after Bonferroni correction. The asso-
ciation was shown to be robust by sensitivity analyses. 
Our study also highlighted that genetic factors (e.g. the 
EXOSC4 gene) contributed substantially to the variation 
of metabolite levels and differences in human intelli-
gence. Moreover, our findings suggest that alpha linolenic 
acid and linoleic acid metabolism might be involved in 
the biological processes underlying intelligence. Though 
further evidence from experimental data is needed, 
our study provides novel clues that would improve our 

understanding of the biological mechanisms related to 
human intelligence.
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