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Abstract 

The nucleus of the solitary tract (NTS) plays a crucial role in integrating peripheral information regarding visceral 
functions. Glutamate decarboxylase 2 (GAD2) inhibitory neurons are abundant in the NTS, and are known to form 
local and short-range projections within the NTS and nearby hindbrain areas. Here we performed whole-brain map‑
ping of outputs from GAD2 neurons in the NTS using cell-type specific viral labeling together with ultrahigh-speed 
3D imaging at 1-μm resolution. In addition to well-known targets of NTS GAD2 neurons including the principle 
sensory nucleus of the trigeminal (PSV), spinal nucleus of the trigeminal (SPV), and other short-range targets within 
the hindbrain, the high sensitivity of our system helps reveal previously unknown long-range projections that target 
forebrain regions, including the bed nuclei of the stria terminalis (BST) involved in stress and fear responses, and the 
paraventricular hypothalamic nucleus (PVH) involved in energy balance and stress-related neuroendocrine responses. 
The long-range projections were further verified by retrograde labeling of NTS GAD2 neurons with cholera toxin B 
(CTB) injections in the BST and PVH, and by Cre-dependent retrograde tracing with rAAV2-retro injections in the two 
regions of GAD2-Cre mice. Finally, we performed complete morphological reconstruction of several sparsely labeled 
neurons projecting to the forebrain and midbrain. These results provide new insights about how NTS might partici‑
pate in physiological and emotional modulation.
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The nucleus of the solitary tract (NTS) is an important 
integrator of peripheral information regarding cardio-
vascular, respiratory, gastrointestinal and other visceral 
functions [1–3]. In the NTS, a significant portion of cells 
are known to be GABAergic neurons, forming an inter-
connected inhibitory network [4, 5]. Activation of this 
GABAergic network could cause cardiovascular activa-
tion and respiratory inhibition [6, 7]. Early anatomical 
studies using biocytin labeling suggest that GABAergic 
neurons in the NTS are interneurons, projecting only 
locally within the nucleus [8]. Using transgenic mice 

combined with cell-type viral tracing, more recent work 
found that GAD2-positive GABAergic neurons in the 
NTS also send projections to nearby regions, includ-
ing the medulla and pons [9]. Meanwhile, non-specific 
anterograde tracing using Phaseolus vulgaris‐leucoagglu-
tinin (PHA-L) has shown that NTS neurons can project 
to midbrain and forebrain structures [10]. However, it 
is unclear whether GAD2 neurons in the NTS can form 
long-range projections, which might have been over-
looked in previous studies due to limitations of imaging 
techniques. In this study, we combined cell type-spe-
cific viral tracing with newly-developed high-resolution 
3D fluorescence imaging to map the projections of the 
GABAergic NTS neurons at the scale of the entire brain.

We selectively labeled GAD2 neurons by local injection 
of AAV-EF1α-DIO-eGFP into the NTS of GAD2-Cre 
mice (Fig. 1a, a1-a3; Additional file 1: Fig. S1). Brain-wide 
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axonal projections of the eGFP-expressing neurons were 
examined four weeks after injection using our high-speed 
3D imaging system implementing Volumetric Imaging 
with Synchronized on-the-fly-scan and Readout (VISoR) 
technology (see “Methods”) [11]. We found that the 
majority of NTS GAD2 neurons had short-range projec-
tions targeting brain regions in the pons and medulla, 
including the principal sensory nucleus of the trigeminal 
(PSV), spinal nucleus of the trigeminal (SPV), parvicel-
lular reticular nucleus (PARN) and dorsal column nuclei 
(DCN) (Fig. 1a, a1, b). These observations are consistent 
with the descriptions in the Allen Brain Atlas [9].

From the low-resolution horizontal view of the brain, 
less dense yet significant projections of the infected 
GAD2 neurons are also found to project to the ven-
tral posterior complex of the thalamus (VP) (Fig.  1a), a 
sub-region of the ventral group of the dorsal thalamus 
(VENT) responsible for somatosensory response. How-
ever, further experiments using a retrograde tracer, 
cholera toxin B (CTB) revealed that these VP-target-
ing projections were not originating from the NTS, 
but from the adjacent parasolitary nucleus (PAS) and 
DCN (including the gracile nucleus (Gr) and cuneate 
nucleus (CU)) (n = 3 mice) (Additional file  1: Fig. S2a, 
b), that were inadvertently infected due to spillover of 
the injected viruses. This is consistent with the observa-
tions that neurons in the Gr projects to the VP as shown 
in the Allen Brain Atlas [12], although these previously 
observed projections were not specifically labeled for 
GAD2 neurons.

Surprisingly, higher-resolution views further revealed 
long-range projection targets in various subcorti-
cal regions in the forebrain that were not shown in the 
Allen Brain Atlas. Clusters of axonal fibers were found 
in the bed nuclei of the stria terminalis (BST) (Fig.  1c) 
and the paraventricular hypothalamic nucleus (PVH) 
(Fig.  1d), both known for their roles in stress-response 
and emotional regulation [13]. Furthermore, formation 
of axonal arborizations in these areas as well as the SPV 

was confirmed by the branching and termination struc-
tures of the labeled fibers (Fig.  1b, b1-b2, c1-c2, d1-d2, 
Additional file  2: Video S1, Additional file  3: Video S2, 
Additional file 4: Video S3). Thus, inhibitory neurons in 
the NTS appear to also send out long-range projections 
to distant targets, in addition to local or short-range pro-
jections within the hindbrain as indicated in previous 
studies.

To confirm the GAD2-driven expression of Cre recom-
binase in the transgenic mice used in this experiment, we 
cross-bred them with a reporter line Ai14 (Rosa-CAG-
LSL-tdTomato) and performed whole-brain imaging of 
tdTomato fluorescence (Additional file  1: Fig. S3). The 
brain-wide distribution pattern of fluorescent neurons 
was consistent with GAD2 expression shown in the Allen 
Brain Atlas [14], but with brighter fluorescence signals 
in corresponding areas, likely due to higher sensitivity of 
our 3D imaging approach.

To examine whether the long-range axonal projections 
to the BST and PVH originate from the NTS or the sur-
rounding regions, we injected CTB into the BST and 
PVH (see Methods). CTB-positive neurons were found 
in the NTS but not in any adjacent regions including the 
DCN and PAS (n = 4 mice) (Additional file 1: Fig. S2c–f). 
To examine the cell-type of these long-range projections, 
we performed more CTB tracing from the BST and PVH 
in GAD2-Cre::Ai14 transgenic mice, in which GAD2 
neurons expressed fluorescent protein tdTomato. Some 
of these CTB neurons in the NTS exhibited red fluores-
cence (13.0 ± 4.3% and 26.5 ± 7.7%, n = 20 and 14 slices 
from 3 mice for the BST and PVH respectively) (Fig. 1e–
h), indicating that the NTS GAD2 neurons could indeed 
target these forebrain regions.

As a more direct test, we retrogradely labeled GAD2 
innervations to the BST and PVH in GAD2-Cre mice 
with Cre-dependent rAAV2-retro expressing eGFP 
(Additional file  1: Fig. S4a, c) [15]. Similar to the CTB 
tracing results, sparse fluorescent somas were found 
in the NTS, but not the surrounding regions (Fig.  1i, j, 

Fig. 1  Long-range projections of NTS GAD2 neurons. a Horizontal view of the whole-brain projections from NTS GAD2 neurons. Brain regions 
labeled by dotted lines indicate the AAV injection site in the NTS and terminal-targeted regions in the BST, PVH, VP, PSV and SPV. A, anterior; P, 
posterior; L, left; R, right; D, dorsal; V, ventral. a1 Coronal section at the position in (a) showed infections of AAV-DIO-eGFP in the NTS, and axonal 
projections in the nearby regions such as the SPV, PARN, IRN and medullary reticular nucleus (MDRN); boxed regions are magnified to show the 
details (a2-a3). b–d Maximum-intensity projections of coronal sections showing axonal terminals originating from NTS GAD2 neurons in the SPV 
(b), BST (c) and PVH (d). Images are maximal projections of 128-μm z-stacks. b1, c1, d1 Magnification of axonal boutons in the SPV (b1), BST (c1) and 
PVH (d1) at the frames indicated in (b), (c) and (d), respectively. b2, c2, d2 Sagittal view of the frames indicated in (b1, c1, d1). e, g Representative 
images showing expressions of tdTomato fluorescence in GAD2 neurons and CTB-AF488 signal in neurons retrogradely traced from the BST (e1–e3) 
and PVH (g1–g3). Images are maximal projections of 100-μm z-stacks. f, h Magnified views of the boxed areas in e and g showing colocalizations 
of CTB and tdTomato signals. Arrows indicated GAD2-positve CTB neurons. i, j Fluorescent somas in the NTS indicated GAD2 neurons projecting to 
the BST (i) and PVH (j). i1–j1 Magnification of the frames indicated in the (i) and (j). Arrows indicated GAD2-positve neurons. Images are maximal 
projections of 100-μm z-stacks. k Horizontal and sagittal view of reconstruction of individual short-range and long-range neurons

(See figure on next page.)
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Additional file 1: Fig. S4b, d), confirming that the GAD2 
innervations to the BST and PVH did originate from the 
NTS.

Finally, we aimed to visualize the brain-wide mor-
phology of these long-range projecting GAD2 neurons 
in the NTS using a sparse labeling strategy (see “Meth-
ods”) [16]. Different projection patterns were observed 
in 3 reconstructed neurons, each targeting one or more 
forebrain and midbrain regions including the BST, the 
paraventricular nucleus of the thalamus (PVT) and the 
periaqueductal grey (PAG) (Fig.  1k, Additional file  5: 
Video S4). In the same brain, we also traced 2 short-range 
projecting cells, targeting the SPV, PSV or the intermedi-
ate reticular nucleus (IRN) in the hindbrain for compari-
son (Fig. 1k, Additional file 5: Video S4).

In summary, we have discovered previously unknown 
long-range projections of the NTS GAD2 neurons that 
target forebrain areas including the BST and PVH, which 
are involved in diverse brain functions from energy bal-
ance to stress-coping and emotional regulation. Although 
only a small number of NTS GAD2 neurons are found to 
make such long-range projections, they may play impor-
tant modulatory roles in these functions. It is noted that 
some cells might transiently express GAD2 during devel-
opment but not act as inhibitory neurons later, although 
our use of adult animals for viral injection makes this 
scenario less likely. Systematic studies with sparsely labe-
ling and reconstruction are expected to reveal a com-
plete projectome of the NTS GAD2 neurons, and more 
insights regarding their role in visceral physiology, emo-
tion and cognition.
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