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to the impairment of social recognition 
in Epac2−/− mice
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Abstract 

Autophagy is a lysosomal degradation pathway that regulates cellular homeostasis. It is constitutively active in 
neurons and controls the essential steps of neuronal development, leading to its dysfunction in neurodevelopmental 
disorders. Although mTOR-associated impaired autophagy has previously been reported in neurodevelopmental dis‑
orders, there is lack of information about the dysregulation of mTOR-independent autophagy in neurodevelopmen‑
tal disorders. In this study, we investigated whether the loss of Epac2, involved in the mTOR-independent pathway, 
affects autophagy activity and whether the activity of autophagy is associated with social–behavioral phenotypes 
in mice with Epac2 deficiencies. We observed an accumulation of autophagosomes and a significant increase in 
autophagic flux in Epac2-deficient neurons, which had no effect on mTOR activity. Next, we examined whether an 
increase in autophagic activity contributed to the social behavior exhibited in Epac2−/− mice. The social recognition 
deficit observed in Epac2−/− mice recovered in double transgenic Epac2−/−: Atg5+/− mice. Our study suggests that 
excessive autophagy due to Epac2 deficiencies may contribute to social recognition defects through an mTOR-inde‑
pendent pathway.
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Macroautophagy (hereafter autophagy) is a dynamic 
cellular pathway that regulates the lysosomal degrada-
tion of cytosolic components, including organelles, pro-
teins, lipids, DNA, RNA, or unwanted materials within 
cells  [1]. Autophagy is a tightly regulated process, con-
ducted by several autophagy-related (ATG) proteins 
in neurons. Knockout of key ATG components, like 
ATG5 or ATG7, causes accumulation of ubiquitinated 

proteins and neurodegeneration, suggesting its impor-
tance in neuronal health  [2, 3]. Regarding signaling 
pathways, autophagy is regulated by mTOR (mamma-
lian target of rapamycin), which senses and integrates 
several intracellular and environmental cues to orches-
trate major processes, including cell growth and metab-
olism, or mTOR-independent pathways, like cAMP 
(3′–5′-cyclic adenosine monophosphate), Ca2+, or IP3 
(Inositolphosphoinositide-3)  [4]. Thus far, most reports 
indicate that mTOR pathway dysregulation, which regu-
lates neurodevelopment or synaptic plasticity, is linked 
to impaired autophagy, leading to mTOR-associated 
brain diseases, including autism spectrum disorders 
(ASD)  [5, 6]. However, to better understand the role of 
autophagy in neurodevelopment, synaptic function, or 
neurological disorders, it is also important to investigate 
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mTOR-independent autophagy in brain function using 
in vitro and in vivo models.

Previous investigations have reported that elevated 
intracellular cAMP inhibits autophagy and is mediated 
by exchange protein activated by cAMP (Epac) [7, 8]. 
Epac2 is highly expressed in the brain and is an upstream 
activator of the small GTPase Ras family  [9]. Several 
animal studies have identified behavioral phenotypes 
in Epac2 knockout (Epac2−/−) mice consistent with the 
link to ASD susceptibility [10], including impaired mem-
ory, behavioral inflexibility, and altered social interac-
tions [11, 12]. However, whether the loss of Epac2 affects 
autophagy activity and whether autophagy is associated 
with social–behavioral phenotypes in Epac2−/− mice 
remains unclear. Therefore, we investigated autophagy 
in Epac2−/− mice to assess whether it affects the social–
behavioral phenotype observed in these models.

First, we investigated the involvement of autophagy 
in Epac2−/− mice by transfecting HyD-LIR-based 
autophagosome sensors (HyD-LIR-GFP), which could 
detect endogenous LC3 or GABARAP family proteins in 
autophagosomes, into cultured cortical neurons (div1) 
[13]. Two days after transfection, the number of HyD-
LIR-GFP-positive autophagosomes in Epac2 deficient 
neurons was significantly accumulated compared with 
that of the wild-type cortical neurons, in the presence of 
a lysosomal inhibitor (chloroquine, CQ), indicating that 
autophagic activity was higher in Epac2-deficient neu-
rons than in wild-type neurons (Fig. 1A, B).

To further investigate whether autophagy was upreg-
ulated due to Epac2 deficiencies, we performed an 
autophagic flux assay by Western blot, using anti-LC3B 
or anti-GABARAPL1 antibodies in the presence or 
absence of a lysosomal inhibitor in Epac2+/+ or Epac2−/− 
cortical neurons. As shown in Fig. 1C–E, the expression 
levels of LC3-II and GABARAPL1-II were significantly 
increased with lysosomal inhibition in Epac2−/− neurons 

compared with Epac2+/+ neurons. These results indi-
cate that Epac2 deficiencies abnormally upregulated 
autophagy activity.

Next, we examined whether the mTOR pathway 
affected abnormal autophagic activity in Epac2−/− mice. 
Therefore, the protein levels of mTOR, p70S6 kinase, and 
phosphorylated p70S6 kinase was evaluated. No signifi-
cant difference was noted in mTOR levels or activity, as 
shown in Fig. 1F–H. This data suggests that Eapc2 gene 
deficiencies could induce changes in mTOR-independent 
pathways, leading to abnormally enhanced autophagic 
activity in the cortical neurons.

Next, we investigated the relationship between 
autophagy activity and autistic phenotype, including 
social recognition deficit [14]. A three-chambered social 
approach test was used to assess the social behaviors of 
Epac2−/− mice with hyperactive autophagic activity. We 
found that Epac2−/− mice had normal sociability but an 
abnormal preference for social novelty, suggesting a defi-
cit in social recognition (Fig. 1I). Next, we examined their 
abilities to detect social olfactory cues using an olfactory 
habituation/dishabituation task [15]. Both Epac2+/+ and 
Epac2−/− mice could detect and discriminate nonsocial 
and social olfactory cues, with normal dishabituation to 
novel social odor and habituation to repeated same social 
odor (Fig.  1J). These data suggest that abnormal prefer-
ence for social novelty in Epac2−/− mice is not due to a 
dysfunction in detecting social odor cues.

Next, to observe whether an abnormal autophagic 
activity could be associated with abnormal social recog-
nition, we conducted an assay to normalize the abnor-
mal autophagic activity enhanced by Epac2 deficiencies. 
Cultured cortical neurons were used as autophagic flux 
assays, which can be performed using this in  vitro sys-
tem, and found reductions in ATG5 or ATG7, siRNA 
transfection, and decreased excessive autophagic flux in 
the cultured cortical neurons of Epac2−/− mice (Fig. 1K, 

Fig. 1  The Excessive autophagic activity contributes to autistic behavior in Epac2−/− mice. A Representative confocal images demonstrate 
HyD-LIR-GFP-positive autophagosome in wild-type cortical and Epac2−/− neurons, in the presence or absence of chloroquine (CQ; 50 μM), for 
24 h. Scale bar, 10 μm. B Bar graph represents the number of HyD-LIR-GFP-positive autophagosomes in wild-type cortical and Epac2−/− neurons. 
C Epac2+/+ or Epac2−/− neurons were incubated in the presence or absence of CQ. Then, the cell lysates were subjected to Western blotting 
with anti-LC3B, anti-GABARAPL1, or anti-β-actin antibodies. D, E The LC3-II and GABARAPL1-II levels were normalized similarly to that of β-actin. 
Western blot (F) and (G, H) quantitative analysis indicating the protein levels of mTOR, p70S6 kinase, and phosphorylated p70S6 kinase (p-p70S6 
kinase) in the cultured cortical neurons of Epac2+/+ and Epac2−/− mice (n.s, no significance). I All Epac2+/+ and Epac2−/− mice showed a significant 
preference for exploring a stranger mouse rather than an empty cage. Contrary to Epac2+/+, Epac2−/− mice exhibited no difference in durations 
exploring a stranger mouse vs. a familiar one. Epac2−/−:Atg5+/− mice showed sociability and preference for social novelty similar to Epac2+/+ mice, 
suggesting the rescue of deficit in social novelty recognition of Epac2−/− mice (n.s, no significance; Str, stranger mouse; Nov, novel mouse). J 
Epac2−/− mice can detect and discriminate nonsocial and social olfactory cues with normal dishabituation to novel social odor and habituation to 
repeated same social odor. K, M Western blotting and quantitative analysis indicating the protein levels of ATG5, ATG7, LC3B, and β-actin in cultured 
cortical neurons in Epac2+/+ and Epac2−/− mice in the presence or absence of siRNAs against ATG5 or ATG7. (M, N) Representative confocal images 
and quantitative analysis show p62-positive aggregates in wild-type, Epac2−/−, and Epac2−/−:Atg5+/− cortical neurons. Values are presented as a 
mean ± standard error of the mean (SEM). *p < 0.05, **p < 0.01, ***p < 0.001. Scale bar, 10 μm

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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L). Next, we performed ATG5 knockdown in vivo using 
Epac2−/− mice and generated Epac2−/−:Atg5+/− mice 
to downregulate abnormally enhanced autophagic 
activity. We confirmed that within the cortical neu-
rons of Epac2−/− mice, aggregation of p62 protein was 
reduced and was restored in the cortical neurons of 
Epac2−/−:Atg5+/− mice in vivo (Fig. 1M, N).

Interestingly, normal sociability and preference for 
social novelty was observed in the Epac2−/−:Atg5+/− 
mice, with the normal ability of olfactory discrimination 
similar to Epac2+/+ mice, suggesting that the deficit in 
social recognition of Epac2−/− mice was rescued through 
crossing with Atg5+/− mice (Fig.  1I, J). Altogether, our 
results suggest that Epac2 contributes to the maintenance 
of basal autophagy activity and normal social recogni-
tion as a basis for normal social behavior by suppressing 
autophagy over activation.

Thus far, impaired or insufficient autophagy has mostly 
been described in neurological disorders. However, 
the role of abnormal autophagy upregulation without 
prominent cell death in brain function or neurological 
disorders remains unclear  [1, 16]. Moreover, the role of 
mTOR-independent autophagy in brain functioning and 
the relationship between hyperactive autophagy and 
social–behavioral defects remain largely unknown. Epac2 
negatively regulates autophagy in an mTOR-independent 
manner [7, 8]. Therefore, to elucidate the role of mTOR-
independent autophagy in brain functioning, including 
social behaviors, we investigated the functional roles of 
autophagy pathways in Epac2−/− mice with social rec-
ognition deficiencies. Although the loss of microglial 
autophagy can be associated with social–behavioral 
impairments [17], in this study, we focused on neuronal 
autophagy because no alterations in morphology and 
number of microglia in the cortex of Epac2−/− mice were 
observed (Additional file 1: Fig. S1).

Epac2 deficiencies affect autophagic activity because 
autophagy is negatively regulated by mTOR and cAMP 
[18]. Although we examined the cAMP levels, which play 
an important role in regulating neural autophagic activ-
ity and directly activates Epac2 [19], we could not find a 
significant difference in cAMP levels in the cultured cor-
tical neurons (Additional file 1: Fig. S2). Moreover, when 
we examined the Rap1 protein expression and enzymatic 
activity as a downstream signaling pathway of Epac2 
activation, we found that the protein expression (Addi-
tional file  1: Fig.  S3) and enzymatic activity (Additional 
file 1: Fig. S4) of Rap1 were unchanged in the cortical tis-
sues of Epac2−/− mice in  vivo compared with Epac2+/+ 
mice. However, calcineurin is activated by lysosomal cal-
cium signaling, which is an endogenous serine/threonine 
phosphatase that dephosphorylates TFEB, leading to an 
upregulation of autophagy [6]. We found that a reduction 

in phosphorylated levels of TFEB in Epac2−/− mice cor-
tex (Additional file  1: Fig.  S5). Therefore, altogether, 
these data suggest that other signaling molecules that 
are affected by Epac2, such as Ca2+, may be involved in 
the autophagic activity changes of cortical neurons in 
Epac2−/− mice via indirect pathways, which are related to 
neither cAMP nor Rap signaling.

To the best of our knowledge, this is the first report that 
demonstrates the excessive activity of mTOR-independ-
ent autophagy, and Epac2 deficiencies could contribute to 
defects in social behaviors in mice models. In addition, 
our study provides therapeutic insights into neurodevel-
opmental disorder treatment, including ASD with exces-
sive autophagic activity, through suppressing autophagic 
activity.
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