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The phosphorylation status of eukaryotic 
elongation factor‑2 indicates neural activity 
in the brain
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Abstract 

Assessment of neural activity in the specific brain area is critical for understanding the circuit mechanisms underlying 
altered brain function and behaviors. A number of immediate early genes (IEGs) that are rapidly transcribed in neu‑
ronal cells in response to synaptic activity have been used as markers for neuronal activity. However, protein detection 
of IEGs requires translation, and the amount of newly synthesized gene product is usually insufficient to detect using 
western blotting, limiting their utility in western blot analysis of brain tissues for comparison of basal activity between 
control and genetically modified animals. Here, we show that the phosphorylation status of eukaryotic elongation 
factor-2 (eEF2) rapidly changes in response to synaptic and neural activities. Intraperitoneal injections of the GABA A 
receptor (GABAAR) antagonist picrotoxin and the glycine receptor antagonist brucine rapidly dephosphorylated eEF2. 
Conversely, potentiation of GABAARs or inhibition of AMPA receptors (AMPARs) induced rapid phosphorylation of 
eEF2 in both the hippocampus and forebrain of mice. Chemogenetic suppression of hippocampal principal neuron 
activity promoted eEF2 phosphorylation. Novel context exploration and acute restraint stress rapidly modified the 
phosphorylation status of hippocampal eEF2. Furthermore, the hippocampal eEF2 phosphorylation levels under basal 
conditions were reduced in mice exhibiting epilepsy and abnormally enhanced excitability in CA3 pyramidal neurons. 
Collectively, the results indicated that eEF2 phosphorylation status is sensitive to neural activity and the ratio of phos‑
phorylated eEF2 to total eEF2 could be a molecular signature for estimating neural activity in a specific brain area.
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Main text
Understanding neural activity in specific brain areas is 
critical for unraveling brain circuitry controlling normal 
behavior and elucidating disease mechanisms underly-
ing brain dysfunction. Neural activity markers provide 
opportunities to estimate circuit activity, and immediate 
early genes (IEGs), such as c-fos, jun, arc, and zif268, have 
been used as neural activity markers [1, 2]. However, 
detection of IEG protein expression requires translation 

of genes, which restricts temporal resolution of signals, 
typically taking tens of minutes to several hours [3]. In 
addition, due to the small amount of newly synthesized 
gene products, western blot analysis of altered IEG 
expression, especially reduction in the IEG protein levels, 
is challenging which limits the utility of IEGs in western 
blot analysis for estimation of basal neural activity.

We previously observed that administration of the 
GABAAR antagonist pentylenetetrazol or reduction of 
interneuron density resulted in dephosphorylation of 
eukaryotic elongation factor 2 (eEF2) in the mouse hip-
pocampus [4]. eEF2 is a GTP-dependent translocase that 
promotes the ribosomal translocation of peptidyl-tRNA 
during polypeptide elongation [5]. eEF2 kinase (eEF2K) 
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phosphorylates eEF2 at threonine 56, which suppresses 
eEF2 activity and results in inhibition of protein synthesis 
[6]. Reportedly, synaptic activity affects eEF2K activity in 
cortical neurons [7]. Furthermore, action potential-medi-
ated and miniature synaptic activity-mediated neuro-
transmissions in cultured hippocampal neurons promote 
eEF2 dephosphorylation (activation) and eEF2 phospho-
rylation (inactivation), respectively [8]. However, the 
effects of neural activity on eEF2 phosphorylation in the 
brain tissue of living animals are unclear.

To investigate whether the eEF2 phosphorylation status 
is responsive to alteration in neural activity, the effects 
of GABAAR agonist muscimol and the antagonist pic-
rotoxin on eEF2 phosphorylation were examined. Intra-
peritoneal (i.p.) injection of muscimol (1.5  mg/kg) and 
picrotoxin (2 mg/kg) produced opposite effects on eEF2 
phosphorylation in both the hippocampus and forebrain 
without affecting total eEF2 levels (Fig.  1a–d and Addi-
tional file 1: Figs. S1 and S2); potentiation of GABAergic 
neurotransmission enhanced the phosphorylated eEF2 
(p-eEF2) levels and suppression of inhibitory neurotrans-
mission promoted eEF2 dephosphorylation. Consist-
ent with this observation, the AMPAR blocker NBQX 
(10  mg/kg, i.p.) significantly enhanced eEF2 phospho-
rylation in both brain areas within 1  h after injection. 
These results indicate that altered neural activity bidi-
rectionally modifies eEF2 phosphorylation status in the 
brain. We further examined eEF2 phosphorylation with 
the glycine receptor blocker brucine (Fig. 1a–d). Similar 

to picrotoxin, a high concentration (50 mg/kg) of brucine 
promoted eEF2 dephosphorylation in the mouse brain. 
Unexpectedly, a low concentration (1 mg/kg) of brucine 
significantly enhanced p-eEF2 levels, indicating this con-
centration of brucine decreases the activity of principal 
neurons in the hippocampus and forebrain presumably 
through the modulation of non-glycinergic neurotrans-
mission (Additional file 1: Figs. S3 and S4).

As systemic administration of synaptic blockers affects 
neurons in the whole brain, their effects on the hip-
pocampal eEF2 phosphorylation might originate from 
altered activity of excitatory and inhibitory neurons in 
other brain areas. To selectively manipulate hippocam-
pal activity, inhibitory (hM4Di) designer receptors exclu-
sively activated by designer drugs (DREADDs) were 
unilaterally expressed in the hippocampus of CaMKIIα-
Cre mice (Fig. 1e). Strong mCherry signals were detected 
in the dendrites and somata of principal neurons in the 
ipsilateral hippocampus and their projections to con-
tralateral hippocampus (Fig. 1f and Additional file 1: Fig. 
S5). We prepared ipsilateral hippocampal lysates from 
mCherry- and hM4Di-mCherry-expressing CaMKIIα-
Cre mice 30 min after clozapine-N-oxide (CNO; 10 mg/
kg, i.p.) injection. Compared to mCherry-expressing 
mice, p-eEF2 levels in the hippocampal lysates from 
hM4Di-expressing mice were significantly enhanced 
(Fig.  1g), indicating that suppression of hippocampal 
principal neuron activity is sufficient to promote eEF2 
phosphorylation in the hippocampus.

Fig. 1  The eEF2 phosphorylation status is sensitive to synaptic and neuronal activities. a–d Administration of excitatory or inhibitory synaptic 
modulators rapidly modify the p-eEF2/eEF2 ratio in the forebrain and hippocampus. a Representative western blot images of p-eEF2 and eEF2 in 
the forebrain lysates obtained 1 h after drug or saline administration; α-tubulin was used as a loading control. b The ratios of phosphorylated eEF2 
to total eEF2 (p-eEF2/eEF2) in the forebrain lysates obtained from drug-injected mice were normalized to saline-injected controls. Numbers in the 
parentheses indicate brucine doses (mg/kg) administered intraperitoneally. N = 6 mice for each group. Muscimol: t(10) =  − 24.11, p = 3.42 × 10−10; 
NBQX: t(10) =  − 3.65, p = 0.0045; Brucine (50): t(10) = 5.10, p = 4.62 × 10−4; Brucine (1): t(10) =  − 8.44, p = 7.30 × 10−6; Student’s t-test. Picrotoxin: 
U = 3.0, Z =  − 2.40, and p = 0.016 by Mann–Whitney test. c The p-eEF2 and total eEF2 protein levels in the hippocampal lysates obtained 1 h 
after drug administration. d Summary of the effects of synaptic modulators and blockers on the p-eEF2/eEF2 ratio in the mouse hippocampus. 
N = 6 mice for each group. Muscimol: U = 0.0, Z =  − 2.88, and p = 0.004; Picrotoxin: U = 1.0, Z =  − 2.72, and p = 0.006; Mann–Whitney test. NBQX: 
t(10) =  − 5.89, p = 1.52 × 10−4; Brucine (50): t(10) = 4.30, p = 0.0016; Brucine (1): t(10) =  − 4.55, p = 0.0011; Student’s t-test. e Schematic diagram of 
Cre-dependent expression of mCherry or hM4Di-mCherry in the principal cells in the hippocampus. f Immunohistochemical staining of a coronal 
brain section showing mCherry expression in the hippocampal principal cells of CaMKIIα-Cre mice unilaterally injected with AAV2-hM4Di-mCherry. 
The section was co-immunostained with mCherry (red) and the neuronal marker NeuN (green). Scale bar, 1 mm. g Enhanced hippocampal 
p-eEF2 level (left) and the p-eEF2/eEF2 ratio (right) in the hM4Di-expressing mice compared to mCherry-expressing mice. N = 4 mice for each 
group. U = 1.0, Z =  − 2.02, and p = 0.043 by Mann–Whitney test. h-j Novel context exploration induces rapid dephosphorylation and subsequent 
phosphorylation of eEF2 in the hippocampus. Schematic diagram of the experimental design (h). i Representative western blot images of 
hippocampal p-eEF2 and eEF2 at various timepoints. j The hippocampal p-eEF2/eEF2 ratios in mice that explored a novel context were normalized 
to those of home cage controls and plotted against exploration time. N = 5–6 mice for each group. 5 min: t(8) = 3.96, p = 0.0042; 15 min: t(8) = 4.067, 
p = 0.0036; 30 min: t(8) =  − 3.772, p = 0.0054; 60 min: t(10) =  − 10.99, p = 6.66 × 10−7; Student’s t-test. k, l Restraint stress dephosphorylates eEF2 
in the hippocampus. The experimental design (k), representative western blots (l, top), and quantification (l, bottom) showing reduced p-eEF2 
levels in the hippocampus of mice exposed to restraint stress. N = 5–6 mice for each group. 5 min: t(8) = 2.735, p = 0.0257; 30 min: t(10) = 5.77, 
p = 1.79 × 10−4; 60 min: t(8) = 4.840, p = 0.0013; Student’s t-test. m The basal levels of p-eEF2 proteins (top) and the p-eEF2/eEF2 ratio (bottom) are 
reduced in the hippocampus of Xpnpep1−/− mice that lack aminopeptidase p1 (APP1) protein. N = 6 (Xpnpep1+/+) and 5 (Xpnpep1−/−) mice. 
t(9) = 2.31 and p = 0.047 by Student’s t-test; U = 3.0, Z =  − 2.19, and p = 0.028 by Mann–Whitney test. a, c, g, i, l, and m The blots were cropped, and 
full blots are presented in the Additional file 1: Fig. S2

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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We hypothesized that eEF2 phosphorylation status 
is regulated during physiological brain activity of living 
animals. Indeed, p-eEF2 level in the hippocampus was 
reduced and then significantly enhanced during the 1-h 
novel context exploration (Fig.  1h-j), indicating initial 
enhancement and subsequent reduction in the neural 
activity. As exploration of a novel environment induces 
both place cell firing and widespread synaptic depression 
in the rodent hippocampus [9, 10], gradual elevation of 
hippocampal p-eEF2 level might be associated with syn-
aptic depression and resultant reduced neural activity. 
In contrast to novel context exploration, acute restraint 
stress significantly reduced hippocampal p-eEF2 at all 
(5, 30, and 60 min) timepoints (Fig. 1k, l), indicating an 
increase in synaptic strength induced by rapid action of 
stress hormones [11, 12]. We finally tested whether the 
eEF2 phosphorylation status is differently regulated by 
basal neural activity. Similar to RalBP1−/− mice that 
exhibit reduced p-eEF2/eEF2 ratio [4], the hippocampal 
p-eEF2 levels were significantly reduced in Xpnpep1−/− 
mice (Fig.  1m), which exhibit epileptic electroencepha-
logram rhythms and abnormally enhanced excitability of 
hippocampal CA3 pyramidal neurons [13, 14], indicating 
the eEF2 phosphorylation status is sensitive to basal neu-
ral activity.

Collectively, the present study shows that the phos-
phorylation status of eEF2 is sensitive to drug-induced 
synaptic modification, chemogenetic suppression of 
neuronal activity, environmental stimuli, and the rest-
ing activity of the specific brain area, and indicates that 
the p-eEF2/eEF2 ratio can be a molecular index to esti-
mate neural activity in the brain. As multiple signaling 
mechanisms regulate eEF2K activity in neurons [7, 8], 
however, combined interaction of neural activity and 
signaling pathways on eEF2 phosphorylation needs fur-
ther investigation.
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