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Secretory carrier‑associated membrane 
protein 2 (SCAMP2) regulates cell surface 
expression of T‑type calcium channels
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Abstract 

Low-voltage-activated T-type Ca2+ channels are key regulators of neuronal excitability both in the central and periph‑
eral nervous systems. Therefore, their recruitment at the plasma membrane is critical in determining firing activity 
patterns of nerve cells. In this study, we report the importance of secretory carrier-associated membrane proteins 
(SCAMPs) in the trafficking regulation of T-type channels. We identified SCAMP2 as a novel Cav3.2-interacting protein. 
In addition, we show that co-expression of SCAMP2 in mammalian cells expressing recombinant Cav3.2 channels 
caused an almost complete drop of the whole cell T-type current, an effect partly reversed by single amino acid muta‑
tions within the conserved cytoplasmic E peptide of SCAMP2. SCAMP2-induced downregulation of T-type currents 
was also observed in cells expressing Cav3.1 and Cav3.3 channel isoforms. Finally, we show that SCAMP2-mediated 
knockdown of the T-type conductance is caused by the lack of Cav3.2 expression at the cell surface as evidenced 
by the concomitant loss of intramembrane charge movement without decrease of total Cav3.2 protein level. Taken 
together, our results indicate that SCAMP2 plays an important role in the trafficking of Cav3.2 channels at the plasma 
membrane.
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Through their ability to pass calcium ions (Ca2+) near 
the resting membrane potential, low-voltage-activated 
T-type channels have an important physiological role in 
shaping firing activity patterns of nerve cells, both in the 
central and peripheral nervous system. The implication 
of T-type channels in the control of neuronal excitabil-
ity is partly defined by the density of channels embed-
ded in the plasma membrane. Therefore, a number of 
molecular mechanisms and signaling pathways come into 
play to underly precise control of cell surface expression 

of T-type channels [1] and defects whether genetic or 
acquired can lead to severe neuronal conditions [2, 3].

Secretory carrier-associated membrane proteins 
(SCAMPs) form a family of integral membrane pro-
teins essentially expressed in the trans-Golgi network 
and recycling endosome membranes where they regu-
late vesicular trafficking and vesicle recycling processes 
[4]. Of the five known mammalian SCAMPs, SCAMP2 
shows a ubiquitous expression pattern including in neu-
ronal tissues where SCAMP2 transcripts are observed for 
instance in the cerebellum, thalamus, hippocampus, and 
spinal cord (https://​www.​prote​inatl​as.​org/​ENSG0​00001​
40497-​SCAMP2/​tissue). SCAMP2 consists of four trans-
membrane helices with cytoplasmic amino- and car-
boxy-termini and a so-called E peptide located between 
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transmembrane helices 2 and 3 essential for mediating 
SCAMP2 function [5]. This E domain is highly conserved 
among SCAMP isoforms and represents an essential 
molecular determinant for SCAMP2-mediated inhibition 
of exocytosis [6]. Only a few reports have documented 
the role of SCAMP2 in the regulation of ion channels and 
transporters [7–10]. In the present study, we aimed to 
assess the functional role of SCAMP2 in the regulation of 
T-type channels.

To address this issue, we assessed whether Cav3.2 
channels and SCAMP2 associate at the protein level. 
Co-immuniprecipitation from tsA-201 cells express-
ing recombinant HA-tagged Cav3.2 and Myc-tagged 
SCAMP2 using an anti-HA-antibody precipitated 
SCAMP2-Myc with Cav3.2-HA revealing the existence 
of a Cav3.2/SCAMP2 protein complex (Fig. 1a). We note 
that co-immunoprecipitation experiments from total cell 
lysates do not address whether this interaction is direct 
or not and it is a possibility that formation of Cav3.2/
SCAMP2 protein complex may also involve another 
intermediate protein. Next, we aimed to analyze the 
functional effect of SCAMP2 on Cav3.2 channels. Patch-
clamp recordings from tsA-201 cells expressing Cav3.2 
showed that co-expression of SCAMP2 produces an 
almost complete drop of the whole-cell T-type current 
(Fig.  1b and c). For instance, the maximal macroscopic 
conductance (Gmax) was reduced by 91% (p < 0.0001) 
in cells co-expressing SCAMP2 (61 ± 18 pS/pF, n = 18) 
compared to cells expressing Cav3.2 alone (692 ± 62 pS/
pF, n = 25) (Fig.  1d). Alanine mutagenesis of the E pep-
tide of SCAMP2 at cysteine 201 (C201A) and tryptophan 
202 (W202A) reduced this effect to 64% (p = 0.0269) and 
39% (p < 0.0001) inhibition, respectively, indicating that 
SCAMP2-induced knockdown of Cav3.2 currents is at 
least partly mediated by the E peptide (Fig. 1b–d). These 
data also indicate that the reduction in Cav3.2 current 
density in the presence of SCAMP2 is not merely due 
to the co-expression of just any protein given that the 
W202A mutant construct has no big effect. With regard 

to the effect of SCAMP2 on the other T-type channel 
isoforms, co-expression of SCAMP2 in cells expressing 
recombinant Cav3.1 and Cav3.3 reduced Gmax by 35% 
(p < 0.0001) and 98% (p < 0.0001) respectively (Fig. 1e and 
f and Additional file 1: Fig. S1) indicative of a differential 
susceptibility to SCAMP2-dependent modulation (Cav3.3 
≈ Cav3.2 > Cav3.1). Next, we aimed to assess the underly-
ing mechanism by which SCAMP2 induced knockdown 
of the T-type conductance. The alteration of the T-type 
conductance in the presence of SCAMP2 could origi-
nate from an overall decreased level of Cav3.2 proteins or 
from a reduced expression of the channel in the plasma 
membrane. Western blot analysis from total cell lysates 
showed that Cav3.2 protein levels were not decreased 
by the presence of SCAMP2. Instead, we observed a 
non-significant trend toward higher expression lev-
els which may have arisen from a lower rate of vesicu-
lar exocytosis therefore preventing the channel from 
being targeted to the proteasomal degradation machin-
ery (Fig. 1g and h). In contrast, recording of intramem-
brane charge movements (Q) that provide an accurate 
assessment of the number of channels embedded in the 
plasma membrane revealed an 85% decrease (p < 0.0001) 
of Qmax in cells expressing SCAMP2 (from 6.1 ± 0.7 fC/
pF, n = 16 to 0.9 ± 0.2 fC/pF, n = 17) (Fig.  1i and j) indi-
cating a decreased channel expression at the cell surface. 
Moreover, while the kinetics of intramembrane charge 
movements remained unaltered (Fig. 1k), the Gmax/Qmax 
dependency in the presence of SCAMP2 was reduced 
by 52% (p < 0.0001) (from 0.169 ± 0.007 pS/fC, n = 16 
to 0.080 ± 0.014 pS/fC, n = 11) suggesting an additional 
alteration of the coupling between the activation of the 
voltage-sensor and the pore opening of the channel 
(Fig.  1l). This observation is consistent with a previous 
report showing that besides to be concentrated primar-
ily in intracellular membranes, SCAMP2 is also found in 
the plasma membrane [11] and therefore could poten-
tially modulate the gating of the channel in addition to its 
insertion in the membrane. We note that the reduction 

Fig. 1  SCAMP2 regulates T-type channel expression. a Co-immunoprecipitation of Myc-tagged SCAMP2 (SCAMP2-Myc) from tsA-201 cells 
co-transfected with HA-tagged Cav3.2 channel (Cav3.2-HA). The upper panel shows the result of the co-immunoprecipitation of SCAMP2-Myc 
with Cav3.2-HA using an anti-HA antibody. The lower panels show the immunoblot of Cav3.2-HA and SCAMP2-Myc from total cell lysates using an 
anti-HA and anti-Myc antibody, respectively. HC, heavy chain antibody; LC, light chain antibody. This experiment was performed four times from 
independent transfections and Cav3.2/SCAMP2 interaction was consistently observed. b Representative T-type current traces from tsA-201 cells 
expressing Cav3.2 alone (black traces) and in combination with wild-type SCAMP2 (blue traces), as well as with C201A (purple traces) and W202A 
(orange traces) SCAMP2 mutants in response to 150 ms depolarizing steps varied from − 90 mV to + 30 mV from a holding potential of − 100 mV. 
c Corresponding mean current/voltage (I/V) relationships. d Corresponding mean maximal macroscopic conductance values (Gmax) obtained 
from the fit of the I/V curves with the modified Boltzmann Eq. (1). e–f Mean Gmax values for tsA-201 cells expressing Cav3.1 and Cav3.3 channels, 
respectively. g. Immunoblot of Cav3.2-HA expressed in tsA-201 cells in the absence (−) and presence (+) of SCAMP2-Myc. The immunoblot shows 
the results of three independent sets of transfections. h Corresponding mean expression levels of Cav3.2-HA normalized to actin. i Representative 
intramembrane charge movement traces recorded at the ionic reversal potential from cells expressing Cav3.2 alone (black trace) and in the 
presence of SCAMP2 (blue trace). The doted lines depict the time course of the intramembrane charge mouvement integral. j Corresponding mean 
maximal intramembrane charge movement values (Qmax). k Corresponding mean 10–90% rise time values calculated from the integral time course 
shown in i. l Corresponding mean Gmax/Qmax values

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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of Qmax combined with the reduction of Gmax/Qmax of the 
small fraction of channels that still reached the plasma 
membrane in the presence of SCAMP2 is very similar 
to the reduction of the maximal T-type conductance we 
previously observed (91%, Fig. 1d).

Several Cav3.2 interacting proteins including KLHL1 
[12], USP5 [13], Stac1 [14], calnexin [15], and Rack-1 [16] 
have been reported to modulate the sorting and traffick-
ing of the channel to the plasma membrane. In this study, 
we reported SCAMP2 as a novel Cav3.2-interacting part-
ner and potent repressor of the expression of the chan-
nel at the cell surface. Further investigations will be 
necessary to fully explore the importance of this regula-
tion in native conditions. Importantly, altered expres-
sion of SCAMP2 has been reported in several types of 
cancer [17]. Given the importance of Cav3.2 channels in 
the development of peripheral painful neuropathies [18], 
it will be interesting to assess to what extent SCAMP2-
mediated regulation of Cav3.2 could possibly contribute 
to cancer-related neuropathic pain.

Abbreviations
Gmax: Maximal macroscopic conductance; KLHL1: Kelch-like 1; Qmax: Maximal 
intra membrane charge movement; Rack-1: Receptor for activated C kinase 1; 
SCAMP2: Secretory carrier membrane protein 2; Stac1: Stac adaptor protein 1; 
USP5: Ubiquitin-specific proteinase 5.
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Additional file 1. Fig. S1. Functional effect of SCAMP2 on Cav3.1 and 
Cav3.3 channels. a Representative T-type current traces from tsA-201 cells 
expressing Cav3.1 alone (black traces) and in combination with SCAMP2 
(blue traces) in response to 150 ms depolarizing steps varied from -90 mV 
to +30 mV from a holding potential of -100 mV. b Corresponding mean 
current/voltage (I/V) relationships. c Corresponding mean maximal macro‑
scopic conductance values (Gmax) obtained from the fit of the I/V curves 
with the modified Boltzmann Eq. (1). d–e Same legend as for a–c but for 
cells expressing Cav3.3 channel.
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