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Paraventricular hypothalamic vasopressin 
neurons induce self‑grooming in mice
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Abstract 

Self-grooming plays an essential role in hygiene maintenance, thermoregulation, and stress response. However, the 
neural populations involved in self-grooming remain largely unknown. The paraventricular hypothalamic nucleus 
(PVH) has been implicated in the regulation of self-grooming. Arginine vasopressin-producing neurons are among 
the major neuronal populations in the PVH (PVHAVP), which play important roles in water homeostasis, blood pres-
sure regulation, feeding, and stress response. Here, we report the critical role of PVHAVP neurons in the induction of 
self-grooming. Optogenetic activation of PVHAVP neurons immediately induced self-grooming in freely moving mice. 
Chemogenetic activation of these neurons also increased time spent self-grooming. In contrast, their chemoge-
netic inhibition significantly reduced naturally occurring self-grooming, suggesting that PVHAVP-induced grooming 
has physiological relevance. Notably, optogenetic activation of PVHAVP neurons triggered self-grooming over other 
adaptive behaviors, such as voracious feeding induced by fasting and social interaction with female mice. Thus, our 
study proposes the novel role of PVHAVP neurons in regulating self-grooming behavior and, consequently, hygiene 
maintenance and stress response. Furthermore, uncontrolled activation of these neurons may be potentially relevant 
to diseases characterized by compulsive behaviors and impaired social interaction, such as autism, obsessive–com-
pulsive disorder, and anorexia nervosa.
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Introduction
Animals perform maintenance behaviors for their basic 
subsistence. Such behaviors include drinking, feeding, 
washing, grooming, preening, and sleeping. In rodents, 
self-grooming is a vital maintenance behavior character-
ized by scratching, licking, or biting the fur, body, whisk-
ers, feet, or genitals [1]. Rodents groom themselves to 
keep the body clean, maintain body temperature, pro-
tect the body from foreign materials, and reduce stress 
levels [2]. They feed, drink, walk, and explore during the 
remaining awake time.

In addition to serving the functions of hygiene main-
tenance and thermoregulation, self-grooming has an 
essential role in stress response [3]. Self-grooming acts as 
an adaptive behavior to avoid over-response to stress [1, 
4, 5]. On the other hand, over-grooming in rodents is a 
repetitive, compulsive behavior comparable to obsessive 
thought or obsessive behavioral change characteristic to 
some psychiatric disorders, such as obsessive–compul-
sive disorder, obsessive eating disorder, and autism spec-
trum disorder [6–10]. Thus, unraveling the brain regions 
and neuronal populations regulating self-grooming is 
valuable for understanding the neurobiological basis of 
hygiene maintenance, stress management, and those psy-
chiatric disorders.

In recent years, the limbic and hypothalamic neural 
circuits involved in self-grooming behavior have begun 
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to emerge [5, 11–14]. The paraventricular hypothala-
mus (PVH) is one of the regions of interest. It is an 
autonomic control system well-known for its essential 
roles in metabolism, stress response, and body-fluid 
homeostasis through its projections to the hypophy-
seal endocrine system, the autonomic nervous system, 
and many other brain regions [15–17]. Local electrical 
or pharmacological activation of PVH and surrounding 
regions have been reported to initiate self-grooming 
[18]. PVH contains multiple types of neurons that have 
different physiological functions. Among them, corti-
cotropin-releasing hormone (CRH)-producing neurons 
(PVHCRH) form the central axis of stress response and 
have been demonstrated to increase self-grooming in 
mice upon their optogenetic activation [13]. Consist-
ently, central administration of CRH or adrenocortico-
tropic hormone (ACTH) elicits self-grooming [19, 20].

AVP-producing neurons are another major neu-
ronal population in the PVH. PVHAVP neurons play a 
role in water homeostasis, blood pressure regulation, 
food intake regulation, social interactions, and stress 
response [21–27]. In addition, intracerebroventricular 
administration (ICV) of AVP has been demonstrated 
to increase grooming [27–30]. However, the involve-
ment of PVHAVP neurons in the regulation of groom-
ing behavior remains unknown. In this study, we used 

optogenetics and chemogenetics to address whether 
these neurons affect self-grooming.

Results
Optogenetic activation of PVHAVP neurons induces 
self‑grooming in freely moving mice
To test whether PVHAVP neurons play a role in self-
grooming, we took an optogenetic approach to activate 
these neurons. We used the stable step-function opsin 
(SSFO), a variant of channelrhodopsin 2 (ChR2), that 
remains active for 20–30  min once activated by blue 
light, mimicking the depolarized state upon enhanced 
excitatory inputs [31, 32]. To express SSFO specifically 
in PVHAVP neurons, we unilaterally injected a Cre-On 
adeno-associated virus vector AAV-EF1α-DIO-SSFO-
EYFP in the PVH of mice expressing Cre recombinase 
specifically in AVP neurons (Avp-Cre mice) [33] (Fig. 1). 
We first verified whether SSFO stimulation increases 
the firing rate of PVHAVP neurons. Slice electrophysiol-
ogy revealed that activation of SSFO in PVHAVP neu-
rons increased their firing rate (baseline: 4.5 ± 0.6 Hz vs. 
optogenetic activation: 9.8 ± 0.4  Hz) (Additional file  1: 
Fig. S1). We also examined in  vivo the effects of SSFO 
stimulation on the activity of PVHAVP neurons. A brief 
blue-light illumination to PVHAVP neurons via an optic 
fiber significantly increased c-Fos expression in SSFO-
EYFP-expressing PVHAVP neurons compared to control 

Fig. 1  SSFO is expressed specifically in PVHAVP neurons. A representative coronal brain section containing the PVH prepared from an Avp-Cre mouse 
with a focal injection of AAV-EF1α-DIO-SSFO-EYFP in the PVH and double-stained with anti-AVP (red) and anti-GFP (green) antibodies. 3v, third 
ventricle. (Scale bar: 200 μm for upper panels, 50 μm for lower panels)
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EGFP-expressing PVHAVP neurons (EGFP: 7.8 ± 2.3% vs. 
SSFO: 77.6 ± 2.9%) (Fig.  2A–D). Thus, PVHAVP neurons 
can be activated optogenetically in vivo.

Then, we observed mouse behavior after an optogenetic 
activation of PVHAVP neurons by videorecording in the 
light period. Upon optogenetic stimulation, freely mov-
ing mice immediately exhibited self-grooming (latency: 
3.7 ± 0.4  s) (Additional file  2: Video S2). Furthermore, 
they drastically increased grooming behavior and spent 
most time grooming during 10 min of observation after 
stimulation (EGFP: 3.5 ± 1.5% vs. SSFO: 91.1 ± 4.9%) 
(Fig.  2E–H, Additional file  2: Video S2 and Additional 
file  3: Video S3). Thus, our result suggested that activa-
tion of PVHAVP neurons induces self-grooming in mice.

Self-grooming is not a unitary behavior and contains 
multiple phases in which animals groom different body 
parts [1, 5, 34]. Furthermore, previous studies suggested 
that the patterns of self-grooming are variable and differ-
entially associated with physical and emotional stress [5]. 
Thus, we compared the pattern of self-grooming induced 
by the optogenetic activation of PVHAVP neurons with 
that of spontaneous ones. To do so, we dissected self-
grooming behavior into four phases. Namely, (1) paw 
licking, (2) face/head grooming, (3) body grooming, and 
(4) leg/tail/genital grooming. During PVHAVP neuron-
induced self-grooming, mice spent paw licking for sig-
nificantly longer at the expense of body/leg/tail/genital 
grooming than spontaneous self-grooming (Additional 
file 1: Fig. S2). Such a pattern of PVHAVP neuron-induced 
self-grooming may resemble those of grooming caused 
by emotional stress in rats [5].

Previous studies have reported that some PVHCRH 
neurons co-express AVP in rats, primarily upon adre-
nalectomy [35]. Therefore, we confirmed that PVHAVP 
neurons stimulated optogenetically constituted a popu-
lation distinct from PVHCRH neurons in our experi-
mental conditions. To do this, we injected a reporter 
AAV-CAG-FLEX-EGFP in the PVH of Avp-Cre mice. 
We immunostained brain sections prepared from these 
mice pretreated with colchicine, which was required to 
delineate cell bodies with an anti-CRH antibody. Only 
3.8 ± 1.2% of EGFP-positive cells were also CRH-positive, 

whereas AVP-positive cells accounted for 90.6 ± 2.0% of 
EGFP-positive cells in the PVH (Additional file  1: Fig. 
S3). This result suggested that optogenetic induction of 
self-grooming we observed was caused by activation of 
PVHAVP neurons but not by a part of PVHCRH neurons.

Chemogenetic activation of PVHAVP neurons promotes 
self‑grooming in freely moving mice
Next, we verified the finding of our optogenetic study 
by the chemogenetic approach. For chemogenetic acti-
vation, we expressed hM3Dq, an excitatory Designer 
Receptors Exclusively Activated by Designer Drugs 
(DREADD) [36], in PVHAVP neurons by unilaterally 
injecting AAV-EF1α-DIO-hM3Dq-mCherry in the PVH 
of Avp-Cre mice (Fig.  3A and B). The excitatory effect 
of hM3Dq stimulation on these neurons was verified by 
slice electrophysiology, showing an increase of firing rate 
from 5.5 ± 0.9 Hz to 14 ± 1.8 Hz upon CNO application 
(Additional file 1: Fig. S4A and B). Chemogenetic activa-
tion of PVHAVP neurons in vivo by CNO administration 
significantly increased time spent self-grooming com-
pared to saline administration during 1 h of observation 
after administration from zeitgeber time (ZT) 3 to ZT4 
(Saline: 19.9 ± 4.6% vs. CNO: 76.2 ± 4.8%) (Fig.  3C–F). 
Thus, our chemogenetic study further confirmed the 
ability of PVHAVP neurons to promote grooming.

Chemogenetic inhibition of PVHAVP neurons reduces 
self‑grooming in freely moving mice
We next examined whether inhibition of PVHAVP neu-
rons reduces naturally occurring self-grooming in the 
homecage. To do this, we expressed an inhibitory DRE-
ADD, hM4Di [36], in PVHAVP neurons by bilaterally 
injecting AAV-EF1α-DIO-hM4Di-mCherry in the PVH 
of Avp-Cre mice (Fig.  4A and B). The inhibitory effect 
of hM4Di on these neurons was verified by slice elec-
trophysiology, showing a decrease of firing rate from 
7.6 ± 2.3 to 1.8 ± 1.3  Hz upon CNO application (Addi-
tional file 1: Fig. S4C and D). Chemogenetic suppression 
of PVHAVP neurons by CNO administration significantly 
reduced self-grooming during 1  h of observation after 

Fig. 2  Optogenetic activation of PVHAVP neurons increases self-grooming in freely moving mice. A Schematic representation of viral vector 
injection strategy and optic fiber placement above the PVH in Avp-Cre mice. B A representative coronal brain section of the PVH prepared from an 
Avp-Cre mouse with a targeted injection of AAV-EF1α-DIO-SSFO-EYFP in the PVH. The position of an optic fiber implant is indicated by a dotted white 
line. 3v, third ventricle; Scale bar: 300 μm. C Representative coronal brain sections prepared from Avp-Cre mice expressing SSFO-EYFP or EGFP in the 
PVH 90 min after a blue-light stimulation (2 s). Slices were double-stained with anti-GFP (green) and anti-c-Fos (red) antibodies. Scale bar, 60 μm. D 
c-Fos expression was increased by SSFO-EYFP stimulation in PVHAVP neurons (n = 3). E Time courses of behaviors of 2 mice expressing SSFO-EYFP 
and 2 mice expressing EGFP in PVHAVP neurons subjected to blue-light illumination. The stimulation point is shown by a blue arrow and denoted as 
0 min in the time course. F Time spent self-grooming, G number of grooming bouts, and H mean duration of grooming bouts for 10 min following 
blue-light illumination. Values are mean ± SEM; n = 4; *p < 0.05, ***p < 0.001 by Welch’s t-test (D, F, G and H)

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Fig. 3  Chemogenetic activation of PVHAVP neurons increases self-grooming in freely moving mice. A Schematic representation of viral vector 
AAV-EF1α-DIO-hM3Dq-mCherry injection in the PVH of an Avp-Cre mice. B A representative coronal brain section containing the PVH prepared from 
Avp-Cre mouse with a focal injection of AAV-EF1α-DIO-hM3Dq-mCherry in the PVH. 3v, third ventricle; Scale bar, 200 μm. C Time courses of behaviors 
of 2 mice expressing hM3Dq in PVHAVP neurons following saline or CNO administration. D Time spent in self-grooming, E number of grooming 
bouts, and F mean duration of grooming bouts for 60 min following saline or CNO administration. Values are mean ± SEM; n = 5; *p < 0.05, 
**p < 0.005 by paired t-test
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Fig. 4  Chemogenetic inhibition of PVHAVP neurons reduces self-grooming in freely moving mice. A Schematic representation of viral vector 
AAV-EF1α-DIO-hM4Di-mCherry injection in the PVH of Avp-Cre mice. B A representative coronal brain section containing the PVH prepared from 
an Avp-Cre mouse with bilateral focal injections of AAV-EF1α-DIO-hM4Di-mCherry in the PVH. 3v, third ventricle; Scale bar, 300 μm. C Time courses 
of behaviors of 2 mice expressing hM4Di in PVHAVP neurons following saline or CNO administration. D Time spent in self-grooming, E number 
of grooming bouts, and F mean duration of grooming bouts for 60 min following saline or CNO administration. Values are mean ± SEM; n = 6; 
*p < 0.05, **p < 0.005 by paired t-test
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administration from ZT11 to ZT12, when mice gener-
ally show an anticipatory increase of wakefulness before 
the onset of the dark period (Saline: 25.8 ± 2.2% vs. 
CNO: 4.9 ± 1.8%) (Fig. 4C–F). This result suggested that 
PVHAVP neurons are involved in the physiological regula-
tion of self-grooming.

Optogenetic activation of PVHAVP neurons causes 
self‑grooming over voracious feeding induced by fasting
We next tested whether the optogenetic activation of 
PVHAVP neurons could switch other adaptive behaviors 
triggered by physiological needs into self-grooming. We 
first examined fasting-induced feeding. Mice expressing 
SSFO-EYFP in PVHAVP neurons were fasted for 24 h and 
then refed. Fasted mice spent most time feeding when 
refed (Fig.  5A, Additional file  4: Video S4). However, 
optogenetic activation of PVHAVP neurons efficiently 
suppressed feeding and instead induced self-grooming 
(latency: 4.7 ± 1.2 s) (Fig. 5A–G, Additional file 5: Video 
S5). This result suggested that activation of PVHAVP 
neurons prioritized self-grooming over hunger-induced 
feeding.

Optogenetic activation of PVHAVP neurons causes 
self‑grooming over social interaction between male 
and female mice
We also tested whether PVHAVP neuron-induced self-
grooming is dominant over social interaction between 
male and female mice. When exposed to a female mouse, 
male mice expressing SSFO-EYFP in PVHAVP neurons 
chased and tried to interact and groom female mice 
(Fig.  6A, Additional file  6: Video S6). However, optoge-
netic activation of PVHAVP neurons significantly pre-
vented male mice from interacting with female mice 
and instead induced self-grooming (latency: 3.7 ± 0.5  s) 
(Fig. 6A–G, Additional file 7: Video S7). Thus, this result 
suggested that activation of PVHAVP neurons overrode 
the need for social interaction and social-grooming to 
induce self-grooming.

Discussion
In this study, we found that activation of PVHAVP neu-
rons immediately induces self-grooming. In addition, 
inhibition of these neurons reduced naturally occur-
ring self-grooming. Intriguingly, stimulation of PVHAVP 

neurons forced mice to self-groom instead of engaging in 
the appropriate adaptive behaviors, such as feeding when 
hungry or social interaction with female mice.

Under normal physiological conditions, mice spent a 
significant portion of their waking hours self-grooming. 
Mice use their tongues to lick their bodies and hairs to 
keep them clean, scratch their bodies with their paws to 
relieve itchiness, and nibble on their hairs and bodies to 
remove dust, foreign materials and parasite [1]. In this 
way, self-grooming maintains hygiene and reduces the 
risk of contracting infectious diseases. Furthermore, self-
grooming behavior occurs frequently when mice are sub-
jected to emotional stresses such as restraint stress, water 
spray, exposure to light, and forced swimming [5, 11, 34, 
37]. For mice, self-grooming seems a means of relieving 
emotional stress [1, 4, 5].

Multiple neural circuits in the limbic system and hypo-
thalamus have been reported to regulate self-grooming 
[5, 11–14]. Mangieri et  al. demonstrated that optoge-
netic activation of Sim1-positive PVH neurons induced 
self-grooming and competed with hunger-induced 
feeding [11]. They further reported that glutamatergic 
PVH → ventral lateral septum (LSv) projections of those 
PVH neurons lacking CRH, oxytocin, and AVP constitute 
the major component of this behavioral circuit [11, 12]. 
On the other hand, PVHCRH neurons have also been dem-
onstrated to promote grooming behavior significantly 
in mice when optogenetically stimulated [13]. Because 
some PVHCRH neurons were reported to express AVP, 
the formal possibility remains that PVHAVP neurons we 
stimulated in the current study overlapped with PVHCRH 
neurons, and we observed the same phenomena as those 
by Füzesi et al. [13]. However, we consider this possibility 
very unlikely. First, AVP expression in PVHCRH neurons 
is negligible at the basal conditions and increases after 
adrenalectomy [38]. In addition, CRH neuron-specific 
Cre driver mice used in Füzesi et al. demonstrated mar-
ginal colocalization (~ 5%) of Cre and AVP expression 
in the PVH [39]. Furthermore, we confirmed little over-
lap (~ 4%) between CRH immunoreactivity and PVHAVP 
neurons we studied.

During PVHCRH stimulation, mice spent ~ 30% of their 
time grooming [13], much less than the activation of 
PVHAVP neurons shown in this study. PVHCRH neurons 
are likely to orchestrate complex behaviors after stress, 

(See figure on next page.)
Fig. 5  Optogenetic activation of PVHAVP neurons causes self-grooming over voracious feeding induced by fasting. A Time courses of behaviors of 
2 mice expressing SSFO-EYFP in PVHAVP neurons during refeeding after ~ 24 h fasting without or with blue-light illumination (2 s). The stimulation 
point is shown by a blue arrow and denoted as 0 min in the time course. B–G Time spent in feeding (B) or grooming (C), number of feeding 
(D) or grooming bouts (E), mean duration of feeding (F) or grooming bouts (G) for 10 min of refeeding after ~ 24 h food deprivation. Values are 
mean ± SEM; n = 4; *p < 0.05, **p < 0.005, ***p < 0.001 by Welch’s t-test
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Fig. 5  (See legend on previous page.)
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one of which is self-grooming [13]. On the other hand, 
the rapid and stereotypical induction of grooming sug-
gested that PVHAVP neurons may be more specialized 
in triggering self-grooming behavior. PVHAVP neurons 
enhance the stress-induced ACTH secretion from the 
anterior pituitary [40]. Therefore, these neurons may 
be well-positioned to regulate multiple aspects of the 
stress response. Nevertheless, the rapid induction of self-
grooming by PVHAVP activation indicates that this induc-
tion was caused by a neural mechanism and was not 
secondary to the endocrine mechanism. The target brain 
regions of PVHAVP neurons and the interaction between 
PVHCRH and PVHAVP neurons in the regulation of self-
grooming should be elucidated in future studies.

The increase of paw licking compared to spontaneous 
self-grooming may implicate the similarity of PVHAVP 
neuron-induced self-grooming to grooming induced 
by emotional stress. The patterns of self-grooming are 
variable and may reflect differences in the context [1, 5, 
34]. Mu et al. showed in rats that the patterns are differ-
ent between self-grooming associated more with physi-
cal stress and that with emotional stress, such as body 
restraint and bright light exposure [5]. Intriguingly, self-
grooming induced by restraint and light exposure con-
tained paw licking more than physical stress-induced and 
spontaneous self-grooming. They also demonstrated that 
the hippocampal ventral subiculum (VS) → LSv → lateral 
hypothalamus tuberal nucleus is the circuitry critical for 
emotional stress-induced grooming. Reportedly, PVHAVP 
neurons receive direct inputs from the LSv [41]. Moreo-
ver, bed nucleus of stria terminalis (BNST) is another 
stress-responsive region that projects PVHAVP neurons 
[41] and has been implicated in the regulation of self-
grooming [42]. Therefore, these projections to PVHAVP 
neurons from the LSv and BNST may be involved in 
stress-induced grooming.

The repetitive self-grooming behavior at the expense 
of social interaction observed in PVHAVP-activated mice 
was similar to the symptoms of autism spectrum disor-
der, namely limited social interaction, reduced commu-
nication, and repetitive behaviors [43, 44].  Repetitive 
behaviors are also shared by people with obsessive–
compulsive disorder (OCD), who have uncontrollable 
obsessive thoughts and compulsive behaviors [45, 46]. 
Repetitive self-grooming and increased paw licking 

induced by the activation of PVHAVP neurons appears 
to be comparable to frequent hand-washing in OCD 
patients. Our findings may also be relevant to the obses-
sive compulsion shown by people with eating disorders 
[7, 47, 48]. For instance, anorexia nervosa patients skip 
food even though they are hungry and show compul-
sive behaviors [47, 49]. Similarly, PVHAVP-induced self-
grooming overrode fasting-induced feeding. A previous 
report that activation of PVHAVP neurons reduces food 
intake in fasted mice may be better interpreted in the 
same context [24].

In conclusion, PVHAVP neurons play an essential role 
in the regulation of self-grooming. Their activation trig-
gers grooming at the expense of other adaptive behav-
iors such as feeding and social interaction. Thus, our 
study proposes novel functions of PVHAVP neurons in 
the maintenance behaviors, stress responses, and the 
pathophysiology of diseases related to repetitive behav-
iors. Artificial manipulations of self-grooming levels via 
PVHAVP neurons and identification of input and output 
pathways of PVHAVP neurons might promote a better 
understanding of the physiological meanings of such an 
intriguing behavior.

Methods
Animals
Hemizygous Avp-Cre mice bred on the C57BL/6 J back-
ground, reported previously [33], were used in the 
present study. We used 12 to 32-week-old male mice, 
weighing 26–40  g at the time of surgery. Mice were 
housed under a 12-h light/12-h dark cycle in a tempera-
ture- and humidity-controlled room and provided free 
access to food and water. All experimental procedures 
were approved by the appropriate institutional animal 
care and use committees of Kanazawa University. We 
made every effort to minimize the number of animals 
used for the experiments and reduce any pain or discom-
fort experienced by the mice.

Generation of recombinant viral vectors
The plasmid pAAV-EF1a-DIO-SSFO-EYFP was obtained 
from Dr. Karl Deisseroth as a gift. The plasmids pAAV-
EF1a-DIO-hM3Dq-mCherry, and pAAV-EF1a-DIO-
hM4Di-mCherry were obtained from Dr. Bryan Roth 
as gifts. The plasmid pAAV-CAG-FLEX-EGFP was 

Fig. 6  Optogenetic activation of PVHAVP neurons causes self-grooming over social interaction with female mice. A Time courses of behaviors of 2 
male mice expressing SSFO-EYFP in PVHAVP neurons after introducing a female mouse without or with blue-light illumination (2 s). The stimulation 
point is shown by a blue arrow and denoted as 0 min in the time course. B–G Time spent in social interaction (B) or self-grooming (C), number 
of social interaction (D) or self-grooming bouts (E), Mean duration of social interaction (F) or self-grooming bouts (G) for 10 min of male–female 
interaction test. Values are mean ± SEM; n = 4; *p < 0.05, **p < 0.005, ***p < 0.001 by Welch’s t-test

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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constructed from plasmid pGP-AAV-CAG-FLEX-
jGCaMP7s-WPRE (Addgene plasmid #104495, a gift 
from Dr. Douglas Kim & GENIE Project) by replacing 
jGCaMP7s with EGFP.

Using a triple transfection helper-free method, recom-
binant AAV vectors (AAV2-rh10) were produced and 
purified as described previously [33]. The titers of recom-
binant AAV vectors were determined by quantitative 
real-time PCR (genome copies per mL): AAV-EF1a-
DIO-SSFO-EYFP, 1.8 × 1012; AAV-CAG-FLEX-EGFP, 
1.0 × 1013; AAV-EF1a-DIO-hM3Dq-mCherry, 1.2 × 1013; 
AAV-EF1a-DIO-hM4Di-mCherry, 1.9 × 1012.

Stereotaxic surgery
Stereotaxic injection of AAV vectors was performed 
as described previously [50]. Mice were anesthetized 
first with the mixture of medetomidine hydrochloride 
(0.3  mg/kg, Zenoaq), midazolam (4  mg/kg, Astellas), 
and butorphanol tartrate (5 mg/kg, Meiji Seika Pharma). 
When mice lost consciousness, they were placed in the 
stereotaxic apparatus, and holes were made in the head 
skull according to requirements. Using a Hamilton Neu-
ros Syringe, 1 μL of AAV vectors was injected unilater-
ally or bilaterally in the PVH (0.9 mm posterior, ± 0.3 mm 
lateral, 4.8 mm ventral, relative to the bregma) at a rate 
of 0.1 μL/min. After 10  min of rest, the needles were 
removed from the injection site. For optogenetic experi-
ments, an optic fiber (200 μm core, N.A. 0.39, 6 mm, fer-
rule 1.25  mm, FT200EMT-CANNULA; Thorlabs) was 
implanted above the PVH (0.9  mm posterior, 0.3  mm 
lateral, 4.5 mm ventral, relative to the bregma), and then 
secured to the skull and skin with the dental cement. 
After the surgical procedure, mice were administered 
with atipamezole hydrochloride (0.3  mg/kg, Zenoaq) 
to regain consciousness. Mice were housed individu-
ally after surgery and allowed to recover for at least two 
weeks before starting the experiments.

Slice electrophysiology
Slice electrophysiology was performed as described 
previously [51]. We expressed SSFO-EYFP, hM3Dq-
mCherry, or hM4Di-mCherry in the PVH of Avp-Cre 
mice by focally injecting the corresponding AAV vectors. 
After 2–4 weeks, the mice were decapitated under deep 
anesthesia with isoflurane. Brains were extracted and 
cooled in ice-cold cutting solution containing following 
compounds in mM concentration: 87 NaCl, 75 sucrose, 
25 NaHCO3, 1.25 NaH2PO4, 2.5 KCl, 0.5 CaCl2, 7 MgCl2, 
and 10 D( +)-glucose, bubbled with O2 95% and CO2 
5%. Coronal brain slices of 250 μm thickness containing 
PVH were prepared with a vibratome (NLS-MT, Dosaka 
EM). The brain slices were incubated at room tempera-
ture for at least 1 h in artificial cerebrospinal fluid (ACSF) 

containing the following compounds in mM concentra-
tion: 125 NaCl, 26 NaHCO3, 1.25 NaH2PO4, 2.5 KCl, 2 
CaCl2, 1 MgSO4, and 10 D( +)-glucose, bubbled with O2 
95% and CO2 5%. Then the slices were transferred to a 
recording chamber on a fluorescent microscope stage 
and continuously perfused with ACSF. EYFP, hM3Dq-
mCherry, or hM4Di-mCherry-expressing neurons were 
identified in the PVH for recording. Cell-attached and 
whole-cell patch-clamp recordings were performed at 
31  °C with borosilicate glass electrodes (4–6 MΩ) pre-
pared by a micropipette puller (P-97, Sutter Instrument) 
and filled with an internal solution containing the fol-
lowing (mM): 125  K-gluconate, 10 HEPES, 0.2 EGTA, 
4 NaCl, 2 MgCl2, 4 ATP, 0.4 GTP, and 10 phosphocre-
atine, pH 7.3, adjusted with KOH. A combination of an 
amplifier (EPC 10/2, HEKA) and Patch master software 
(HEKA) was used to control membrane voltage, data 
acquisition, and triggering of light pulses. To activate 
SSFO-EYFP, blue (470  nm) light was generated from 
a solid-state light illuminator (Spectra X light engine, 
Lumencor). For in vitro hM3Dq-mcherry activation and 
hM4Di-mcherry inhibition purpose, 10  µM CNO was 
bath applied during slice electrophysiology.

Immunostaining
Intracardial perfusion, preparation of serial brain sec-
tions, and double immunostaining were performed as 
described previously [33]. Mice were anesthetized and 
then fixed by intracardiac perfusion with 4% paraform-
aldehyde (PFA) in PBS. Serial coronal brain sections of 
30 μm thickness were prepared with a cryostat (CM1860, 
Leica) and collected in 4 series—one of which was fur-
ther immunostained. Primary antibodies used were 
guinea pig anti-AVP antibody (1:5000; T-5048, Penin-
sula Laboratories), rabbit anti-CRH antibody (1:2000; 
HAC-HM04-01RBP90, the joint/usage research pro-
gram of the Institute for Molecular and Cellular Regula-
tion, Gunma University for anti-CRH antibody), rabbit 
anti-GFP antibody (1:1000; A11122, Thermo Fisher Sci-
entific), rat anti-GFP antibody (1:800; 04404-84, Nacalai 
Tesque), and rabbit anti-c-Fos antibody (1:5000; ABE457, 
Merck Millipore). Secondary antibodies used were Alexa 
Fluor 488-conjugated anti-rabbit IgG antibody (1:2000; 
A-21206, Thermo Fisher Scientific), Alexa Fluor 488-con-
jugated anti-rat antibody (1:800; A-21208, Thermo Fisher 
Scientific), Alexa Fluor 594-conjugated anti-guinea pig 
IgG antibody (1:2000; 11076, Thermo Fisher Scientific), 
and Alexa Fluor 594-conjugated anti-rabbit IgG anti-
body (1:2000; A-21207, Thermo Fisher Scientific). Images 
were taken by an epifluorescence microscope (BZ-9000, 
Keyence) or a confocal microscope (Fluoview Fv10i, 
Olympus).
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Optogenetics
For optogenetic studies, the viral vector AAV-EF1a-
DIO-SSFO-EYFP was focally injected in the PVH of Avp-
Cre mice, and optic fiber was placed above the PVH, as 
described above. After at least two weeks from the sur-
gery, individual mice were transferred to the acrylic cage 
and habituated for at least three days before starting 
the optogenetic experiment. For blue-light delivery, the 
implanted optic fiber was connected to an optical cable at 
least one day before optogenetic stimulation. Then, mice 
were subjected to a light pulse (2 s, 473 nm, 1–2 mW/mm2 
at the tip of the optic cable; DL-473 laser, Rapp OptoElec-
tronic) and videorecorded their behavior. Optogenetic 
experiments were conducted between ZT4 and ZT11. To 
confirm that PVHAVP neurons were activated by blue-light 
illumination, we examined cFos expression in these neu-
rons. To do this, two 2-s blue-light pulses were delivered 
with an interval of 20 min, and then the mice were per-
fused 70 min after the second light pulse.

To analyze the patterns of self-grooming behavior, four 
different phases of grooming activities were defined, includ-
ing paw licking, face/head grooming, body grooming, and 
leg/tail/genital grooming, according to conventional pro-
tocol [1, 5, 34]. To obtain data for spontaneous self-groom-
ing, we videorecorded behavior of Avp-Cre mice for 2–3 h 
between ZT3 and ZT11. The time spent in each phase 
was expressed as a percentage of the total grooming time, 
because the grooming time varied from mouse to mouse.

Chemogenetics
For chemogenetic activation experiment, mCherry-
tagged hM3Dq, an excitatory DREADD, was expressed in 
PVHAVP neurons unilaterally by focally injecting the AAV 
vector AAV-EF1a-DIO-hM3Dq-mCherry in the PVH of 
Avp-Cre mice. For chemogenetic inhibition experiment, 
the AAV vector AAV-EF1a-DIO-hM4Di-mCherry was 
injected in the PVH bilaterally. Mice were administered 
with CNO (5  mg/kg body weight; 34233-69-7, Cayman 
Chemical) or saline intraperitoneally (i.p.) 20 min before 
starting the videorecording. Mice were videorecorded 
from ZT3 to ZT4 for the chemogenetic activation study, 
or ZT11 to ZT12 for the chemogenetic inhibition study. 
Each mouse received one saline and one CNO admin-
istrations in an alternating manner at an interval of 3 d. 
Mice were habituated to i.p injection for at least three 
consecutive days before starting the experiment.

Food deprivation test
After habituation in the acrylic cage for at least three 
days, individual mice with an optic fiber implant and 
SSFO expression in PVHAVP neurons were food-deprived 
for approximately 24  h. Then mice were videorecorded 
for 10 min during refeeding. After at least 7 d with free 

access to food, mice were given the same food depriva-
tion-refeeding protocol except for a 2-s blue-light illu-
mination to PVHAVP neurons at the onset of refeeding. 
Experiments were conducted between ZT4 and ZT11.

Male–female interaction test
Initially, individual male mice with an optic fiber implant 
and SSFO expression in PVHAVP neurons were habitu-
ated in the acrylic cage for at least 3 days. Then, a female 
wildtype mouse was introduced in the cage, and the 
behavior of mice were videorecorded for 10  min. After 
being housed singly for at least 1–2 days, mice were given 
the same male–female interaction protocol except for 
a 2-s blue-light illumination to PVHAVP neurons at the 
onset of the introduction of female mice. Experiments 
were conducted between ZT4 and ZT11.

Statistical analysis
As described in the respective figure legend, statistical 
analyses included Welch’s t-test and paired t-test, per-
formed using Prism 7.0 software (GraphPad). All data are 
presented as mean ± SEM. p < 0.05 was considered statis-
tically significant.
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