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Optogenetic inactivation of the medial 
septum impairs long‑term object recognition 
memory formation
Maria Carolina Gonzalez1,2†   , Andressa Radiske1,2†   , Janine I. Rossato1,3   , Sergio Conde‑Ocazionez4   , 
Lia R. M. Bevilaqua1    and Martín Cammarota1*    

Abstract 

Theta is one of the most prominent extracellular synchronous oscillations in the mammalian brain. Hippocampal 
theta relies on an intact medial septum (MS) and has been consistently recorded during the training phase of some 
learning paradigms, suggesting that it may be implicated in hippocampus-dependent long-term memory process‑
ing. Object recognition memory (ORM) allows animals to identify familiar items and is essential for remembering facts 
and events. In rodents, long-term ORM formation requires a functional hippocampus but the involvement of the MS 
in this process remains controversial. We found that training adult male Wistar rats in a long-term ORM-inducing learn‑
ing task involving exposure to two different, but behaviorally equivalent novel stimuli objects increased hippocampal 
theta power, and that suppressing theta via optogenetic MS inactivation caused amnesia. Importantly, the amne‑
sia was specific to the object the animals were exploring when the MS was inactivated. Taken together, our results 
indicate that the MS is necessary for long-term ORM formation and suggest that hippocampal theta activity is causally 
linked to this process.
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Main text
Neural oscillations are repetitive rhythmic patterns 
of electrical activity that occur spontaneously or in 
response to stimuli. Theta is a slow (5–10  Hz) neural 
oscillation predominantly found in the hippocampus, 
particularly in the CA1 region, where it is more regu-
lar and shows maximum amplitude [1]. Hippocampal 
theta is sensitive to medial septum (MS) lesions [2] and, 
although its behavioral correlates have not yet been fully 
elucidated, extensive evidence indicates that it supports 

learning [3–5]. Indeed, theta facilitates hippocampal 
long-term potentiation (LTP) [6], the main cellular model 
of hippocampus-dependent long-term memory. Object 
recognition memory (ORM) allows animals to deter-
mine the familiarity of items and is vital for remember-
ing events and planning actions. In rodents, training 
in an ORM-based learning paradigm activates several 
plasticity-related signaling pathways and induces LTP in 
dorsal CA1, indicating that the hippocampus is essen-
tial for long-term ORM formation [7–9]. Conversely, 
the participation of the MS in this process remains con-
troversial. For example, septal lesions that impair spa-
tial and working memory do not affect long-term ORM 
[10, 11] but MS stimulation attenuates the long-term 
ORM deficit observed in epileptic mice by increasing 
hippocampal theta activity [12]. Therefore, we set out 
to analyze whether MS-regulated hippocampal theta 
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is indeed associated with long-term ORM retention. 
Firstly, we determined whether long-term ORM forma-
tion affects hippocampal theta. To do that, we implanted 
electrode arrays in the dorsal CA1 region of adult male 
Wistar rats (3-months-old, 300–350 g) and trained them 
in the novel object-recognition paradigm, a long-term 
ORM-inducing task based on the rodents’ natural pre-
dilection for novelty that involves exposure to two dif-
ferent but behaviorally equivalent novel objects A and B 
in a familiar open field arena for 5-min (Fig. 1a) [13]. A 
digital video camera fixed above the arena was utilized 
for tracking, recording, and analyzing the animals’ posi-
tion and behavior with the ObjectScan system software 
(for details see Additional file 1). Exploration events were 
defined as the ≥ 0.5-s-long epochs during which the ani-
mals sniffed and/or touched the stimuli objects with 
their muzzle and/or forepaws. All other epochs ≥ 0.5 s in 
duration were regarded as inter-exploration events and, 
of these, we further considered only those during which 
the mean locomotion speed was ≤ the mean locomotion 
speed of all exploration events. Events lasting < 0.5-s were 
excluded from analysis. Local field potentials (LFP) were 
recorded continuously during the training session. Sig-
nals were amplified, digitized, filtered at cutoff frequen-
cies of 0.3 and 250 Hz, and sampled at 1 kHz. Data from 
time windows corresponding to exploration and inter-
exploration events were extracted and analyzed offline 
using built-in or custom-written routines (see Additional 
file 1 for details). As expected, the exploration time and 
the number of exploration events during training did 
not differ between objects A and B (Fig. 1b; t (5) = 0.79, 
P = 0.46 for exploration time; t (5) = 1.21, P = 0.28 for 
exploration events in paired t test). Exploratory activity 
was observed all through the training session (Fig.  1b). 
Theta activity was also evident throughout this session 
(Fig.  1c), but theta power, which predicts learning [14], 

was particularly high during object exploration (Fig. 1d, 
e). Indeed, power spectra analysis showed that theta 
power during object exploration epochs was 36 ± 7% 
higher than during inter-exploration periods (Fig.  1f, g; 
F (2, 10) = 15.55; P = 0.0009. Obj A vs IE, P = 0.002, Obj 
B vs IE, P = 0.001 in Bonferroni’s multiple comparisons 
test after RM one-way ANOVA). Theta peak frequency 
did not differ between exploration and inter-exploration 
events (Fig. 1f; F (2, 10) = 3.29; P = 0.079 in RM one-way 
ANOVA). Neither the power nor the peak frequency of 
theta differed between object A and object B explora-
tion epochs (Fig.  1f; Obj A vs Obj B, P > 0.99 for theta 
power; Obj A vs Obj B, P = 0.13 for peak frequency in 
Bonferroni’s multiple comparisons test after RM one-
way ANOVA). One day after training, long-term ORM 
retention was evaluated by re-exposing animals to famil-
iar object A and novel object C. As expected, the  ani-
mals preferentially explored the novel object at test (TT; 
Fig. 1h; t (5) = 6.95, P = 0.0009 in one sample t test with 
theoretical mean = 50).

Normal MS functioning is essential for hippocam-
pal theta activity [2]. In fact, MS inactivation has been 
used before as a tool to abolish hippocampal theta dur-
ing learning [15]. Previously, we showed that yellow 
light (565  nm) stimulation of the MS of rats expressing 
the yellow light-sensing optical neural silencer archaer-
hodopsin T (ArchT; see Additional file  1 for technical 
details) [16] rapidly and reversibly cancels theta in dor-
sal CA1 [17]. Therefore, to analyze the involvement of the 
MS in long-term ORM formation and to further assess 
whether hippocampal theta is indeed linked to this pro-
cess, rats expressing ArchT in the MS were trained in 
the novel object-recognition paradigm using A and B as 
stimuli objects, and yellow light was delivered to the MS 
just during object A exploration (Fig. 1i). This procedure 
did not affect locomotor activity (Fig. 1j, k; t (39) = 1.29, 

Fig. 1  a–h Hippocampal theta activity increases during training in the novel object recognition task. Male Wistar rats implanted with electrode 
arrays in the CA1 region of the dorsal hippocampus (n = 6) were habituated to an open-field arena (HAB; 20-min/d/4d) and 24-h later trained in the 
novel object-recognition task (TR). Long-term ORM was evaluated 24-h thereafter (TT). a (Top) Graphic representation of the experimental design. 
(Bottom) Behavioral data showing exploration events distribution and hippocampal LFP recordings during TR for a representative rat. b (Top) 
Mean exploration time (% and s), mean number of exploration events, and representative trajectory during TR. (Bottom) Mean exploration time 
and number of exploration events per minute during TR. c (Top) Exploration events and theta activity during TR for a representative rat. (Bottom) 
Representative power spectral density plots during TR. d (Top) Spectrograms highlighting theta activity during exploration and inter-exploration 
(IE) events. (Middle) Mean locomotion speed during exploration events and IE. (Bottom) Representative power spectral density plots for exploration 
events and IE. e (Top) Mean theta power for exploration events and IE computed for interquartile intervals. (Bottom) Representative plot showing 
cumulative theta power during TR. f (Left) Mean power spectral densities for exploration and IE during TR. (Top right) Mean theta power and 
(Bottom right) mean theta peak frequency during TR. g (Top) Raw data, filtered theta and theta envelope for a representative exploration event. 
(Bottom) Spatial distribution of theta during TR for a representative rat. h (Top) Discrimination index during TR and TT. (Bottom) Mean exploration 
time (%) during TT. i–n Optogenetic inactivation of the medial septum causes amnesia. Two groups of rats expressing Arch-T in MS (LightOFF, 
n = 22 and LightON A, n = 19) were trained in the novel object recognition task exactly as in A, except that LightON A animals received yellow light 
(565-nm) stimulation during object A exploration events whereas LightOFF animals were not stimulated. Long-term ORM was evaluated 24-h later. 
i Graphic representation of the experimental design. j Trajectory during TR for representative LightOFF and LightON A rats. k Mean distance travelled 
during TR and TT. l Mean exploration time (s) and number of exploration events during TR and TT. m Discrimination index during TR and TT. n Mean 
exploration time (%) during TR and TT. Individual values in Additional file 1: Tables S1, S2

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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P = 0.20 for LigthOFF vs LightON A in unpaired t test), 
object exploration time (Fig. 1l; t (39) = 1.33, P = 0.18 for 
LigthOFF vs LightON A in unpaired t test), or the num-
ber of exploration events (Fig.  1l; t (39) = 1.93, P = 0.06 
for LigthOFF vs LightON A in unpaired t test). Long-term 
ORM was evaluated during a retention test session in the 
presence of familiar object A or familiar object B along-
side novel object C carried out 24-h post-training. We 
found that unstimulated ArchT-expressing animals dis-
criminated objects A and B from novel object C (Fig. 1m, 
n; t (10) = 5.96, P < 0.0001 for test AC, t (10) = 7.48, 
P < 0.0001 for test BC in one sample t test with theoretical 
mean = 50); however, rats that had been delivered yellow 
light on the MS during object A exploration at train-
ing discriminated object B but not object A from novel 
object C at test (Fig. 1m, n; t (9) = 1.38, P = 0.19 for test 
AC, t (8) = 7.30, P < 0.0001 for test BC in one sample t test 
with theoretical mean = 50).

Hippocampal theta amplitude depends on locomo-
tion speed [18], but it is unlikely that changes in this 
variable could account for the increase in theta power 
that we observed during training because we only 
compared exploration events with inter-exploration 
events matched for similar speed. It is also unlikely that 
the amnesia triggered by MS inactivation was due to 
impaired recall, subpar training performance, optoge-
netic construct overexpression, or a harmful effect of 
light stimulation per se, because it was specific to the 
object the animals were exploring when optogenetic 
suppression was applied, and light delivery did not 
affect object exploration. The MS not only projects to 
the hippocampus but also to the anterior cingulate cor-
tex (ACC) [19]. Therefore, the amnesia induced by MS 
inactivation could potentially be caused by impairment 
of this interaction. However, the ACC is not involved 
in long-term ORM formation [20] and inhibition of 
MS-ACC projections does not affect this form of 
declarative-like memory [21]. Hence, it is implausible 
that disruption of ACC function could account for our 
results which are likely due to hippocampal theta inhi-
bition. The notion that the hippocampus is required 
for ORM processing has received wide experimental 
support, but it is not unanimously accepted [22]. For 
example, pre-training intra-hippocampal muscimol 
administration affects ORM only when the training-
test interval is longer than 10 min [23], suggesting that 
the hippocampus is not required for short-term ORM 
recall, that other brain regions take over the role of the 
hippocampus in short-term ORM processing when it 
remains disabled for a long time, or that short-term and 
long-term ORM involve independent mechanisms, as it 
has been reported for other memory types [24]. In this 
regard, our data indicate that the hippocampus is key 

for long-term ORM formation and substantiate fur-
ther the idea that the two long-term object memories 
acquired during training in the novel object recogni-
tion task are independent [13]. Furthermore, the fact 
that the animals were amnesic only for the object they 
were exploring when the MS was inactivated strongly 
indicates that theta is not just a byproduct of learning-
induced neural plasticity but is functionally linked to 
the calculations that occur in the hippocampus during 
long-term ORM formation.
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