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Abstract 

Migraine is a complex neurological disease of unknown etiology involving both genetic and environmental factors. 
It has previously been reported that persistent pain may be mediated by the immune and inflammatory systems. 
Toll-like receptors (TLRs) play a significant role in immune and inflammatory responses and are expressed by microglia 
and astrocytes. One of the fundamental mechanisms of the innate immune system in coordinating inflammatory 
signal transduction is through TLRs, which protect the host organism by initiating inflammatory signaling cascades 
in response to tissue damage or stress. TLRs reside at the neuroimmune interface, and accumulating evidence has 
suggested that the inflammatory consequences of TLR activation on glia (mainly microglia and astrocytes), sensory 
neurons, and other cell types can influence nociceptive processing and lead to pain. Several studies have shown that 
TLRs may play a key role in neuropathic pain and migraine etiology by activating the microglia. The pathogenesis of 
migraine may involve a TLR-mediated crosstalk between neurons and immune cells. Innate responses in the cen-
tral nervous system (CNS) occur during neuroinflammatory phenomena, including migraine. Antigens found in the 
environment play a crucial role in the inflammatory response, causing a broad range of diseases, including migraines. 
These can be recognized by several innate immune cells, including macrophages, microglia, and dendritic cells, and 
can be activated through TLR signaling. Given the prevalence of migraine and the insufficient efficacy and safety 
of current treatment options, a deeper understanding of TLRs is expected to provide novel therapies for managing 
chronic migraine. This review aimed to justify the view that TLRs may be involved in migraine.
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Introduction
Migraine
Migraine is a neurological disorder that manifests as a 
paroxysmal headache lasting approximately 4–72 h. This 
type of headache may be unilateral and is character-
ized by pulsating or throbbing. It is generally associated 
with nausea and/or vomiting and sensitivity to light and 
sound. It can be relieved after rest and aggravated after 
activity. If treated inactively or improperly, headache 

severity may progress throughout an attack and even 
develop into chronic migraine [1].

Migraine is divided into episodic (< 15 monthly head-
ache days, MHDs) and chronic (≥ 15 MHDs, with 
migraine attacks occurring at least 8 days per month), 
according to the frequency of headache days per month 
[2]. In the 2016 Global Burden of Disease Study, migraine 
was a leading cause of disability among patients under 50 
years of age worldwide, second only to lower back pain 
[1, 3].

However, the exact etiology and pathogenesis of 
migraine are still under discussion, resulting in limited 
treatment options. Recent studies have shown that Toll-
like receptors (TLRs) are significantly associated with 
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migraine. They mediate inflammatory pain and cause 
central sensitization by generating inflammatory media-
tors (e.g., TNF-α, IL-1β, and NO) [4].

Neuropathic pain
Neuropathic pain was redefined as pain caused by a lesion 
or disease of the somatosensory system [5, 6]. Its symp-
tom severity and duration are often greater than those 
of other types of chronic pain [7], with 5% of patients 
debilitated despite the use of analgesics [8]. Therefore, 
in-depth study of the role of TLRs in neuropathic pain 
is conducive to better treatment. Several recent studies 
have demonstrated that TLRs are dramatically associated 
with neuropathic pain [4, 9–17]. Its pathogenesis may be 
that they induce the activation of microglia or astrocytes 
and the production of the proinflammatory cytokines in 
the spinal cord, resulting in the development and main-
tenance of inflammatory pain and neuropathic pain. In 
particular, primary sensory neurons express TLRs to 
sense exogenous PAMPs  (pathogen-associated molecu-
lar patterns, PAMPs) and endogenous DAMPs  (damage-
associated molecular patterns, DAMPs) released after 
tissue injury and/or cellular stress.

History of TLRs
TLRs have been characterized by their essential contri-
bution to innate immune signaling [18, 19]. They were 
first discovered in the form of genes in Drosophila mel-
anogaster that control the dorsal-ventral axis during 
embryonic development [20]. Toll was further identi-
fied as a transmembrane interleukin-1 receptor homolog 
that initiates immune responses in Drosophila in  vitro 
[21, 22]. A human homolog of Drosophila Toll (Toll-like) 

was cloned and characterized as a transmembrane pro-
tein that can activate nuclear factor-κB (NF-κB), mediat-
ing transcription of the proinflammatory cytokines IL-1, 
IL-6, and IL-8 in human monocytes [23]. The discovery 
of this receptor provided preliminary evidence that TLRs 
are regulators of mammalian immunity [18, 24].

Structure and function of TLRs
All TLRs consist of an amino-terminal domain that has 
multiple leucine-rich repeats and a carboxy-terminal 
TIR domain that interacts with TIR-containing adap-
tors. Thirteen TLRs have been identified in humans and 
rodents. Humans functionally express TLR1 to TLR10, 
whereas rodents express TLR1 to TLR9 and TLR11 to 
TLR13 [18]. TLR10 is the latest to be discovered [25]. 
TLR2 likely forms heterodimers with TLR1 and TLR6, 
whereas other TLRs form homodimers. Nucleic acid–
sensing TLRs (TLR3, TLR7, TLR8, and TLR9) are located 
within the endosomal compartments, while other TLRs 
(TLR1, TLR2, TLR4, TLR5, TLR6, TLR10, TLR11, 
TLR12) reside at the plasma membrane [26–28] (Fig. 1).

The TLR gene was discovered to be one of the key 
genes during development. TLRs are specific type-I 
transmembrane receptors and pathogen pattern rec-
ognition receptors in the innate immune system. These 
receptors initiate immediate innate immunity by recog-
nizing pathogens and can initiate adaptive immunity via 
activating signaling pathways. However, they are also 
expressed in many non-immune tissues, both through-
out development and in adulthood. Several studies have 
indicated that TLRs not only exert immune functions, 
but also have a wide range of functions in regulating cell 
fate, cell number, and cell shape [29–33]. These receptors 

Fig. 1  Location and structure of TLRs in cells. In human cells, TLR1, TLR2, TLR4, TLR5, TLR6, TLR10 reside at the plasma membrane, while the nucleic 
acid–sensing TLRs (TLR3, TLR7, TLR8, and TLR9) are localized within endosomal compartments
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also play a key role in regulating the survival of nerve and 
glial cells and regulating synaptic plasticity in the central 
nervous system (CNS) [34].

Signaling pathways of TLRs
The TLR ligands include exogenous pathogenic micro-
organisms and endogenous ligands released after tissue 
injury or damage. TLRs play an essential role in recogniz-
ing specific patterns of microbial components involved in 
the activation of innate immunity. Simultaneously, they 
can initiate a series of downstream reactions by binding 
to endogenous ligands during acquired immune activity. 
These noxious endogenous ligands are known as DAMPs 
(also known as alarmins).

TLRs signaling pathways arise from intracytoplasmic 
TIR domains, which are conserved among all TLRs [35]. 
Recent evidence has suggested that upon ligand binding, 
the cytoplasmic TIR domain of TLR recruits MyD88, 
TIRAP, TRAM, and TRIF (signal transduction con-
nectors), which modulate TLR signaling pathways [26] 

(Fig. 1). In summary, different adaptors activate different 
kinases (IRAK4, IRAK1, IRAK2, TBK1, and IKKε) and 
ubiquitin ligases (TRAF6 and pellino 1), finally activating 
the NF-κB, type I interferon, p38 MAP kinase (MAPK), 
and JNK MAPK pathways [26, 36, 37] (Fig. 2).

MyD88 is essential for the induction of inflammatory 
cytokines triggered by all TLRs. TIRAP is specifically 
involved in the MyD88-dependent pathway via TLR2 and 
TLR4, whereas TRIF is involved in the MyD88-independ-
ent pathway that is mediated by TLR3 and TLR4. Thus, 
the diversity of TIR domain-containing adapters provides 
the specificity and complexity of TLR signaling [35]. The 
TLR5, TLR7, TLR8, and TLR9 signaling pathways are 
MyD88-dependent.

Research on TLR10 signaling is currently inconclusive. 
To date, TLR10 is the only TLR known to exhibit anti-
inflammatory properties. Previously, TLR10 was thought 
to be an “orphan receptor,“ but many recent studies 
have identified ligands of TLR10 [25, 38]. Some stud-
ies have suggested that TLR10 activation can promote 

Fig. 2  TLRs signaling. TIR domain-containing adaptors and TLR signaling. MyD88 is an essential TIR domain-containing adaptor for the induction 
of inflammatory cytokines via all the TLRs. Upon stimulation, MyD88 recruits IL-1 receptor-associated kinase (IRAK) to TLRs. IRAK is activated by 
phosphorylation and then dimerizes with TRAF6, leading to the activation of two distinct signaling pathways, finally activating MAPK and NF-kB to 
elicit proinflammatory cytokines. TIRAP/Mal is a second TIR domain-containing adaptor that specifically mediates the MyD88-dependent pathway 
via TLR2 and TLR4, While TRIF specifically participates in the MyD88-independent pathway mediated by TLR3 and TLR4, TLR2 leads to the complexity 
of signal pathway by forming tlr2-tlr1 and tlr2-tlr6 heterodimers and starts intracellular signal transduction. Both homodimers (TLR10/TLR10) and 
heterodimers (TLR10/TLR2) can recruit MyD88. TLR10 can reduce the production of IL-1β by directly inhibiting MyD88 or MAPK. Although several 
studies have suggested its inflammatory properties, TLR10 has also been shown to increase the production of IL-1Ra (an anti-inflammatory factor), 
but the underlying mechanism is still unclear, as indicated by question marks. Nucleic acids in endolysosomes activate TLR3, TLR7 or TLR9 and 
initiate different and overlapping signal cascades
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inflammation by activating NF-κB, while others have 
shown that it suppresses inflammation by inhibiting 
NF-κB. However, the downstream signaling pathway 
remains to be elucidated. The complexity of TLR10 sign-
aling may be related to its ability to form TLR2/TLR10 
heterodimers or TLR10/TLR10 homodimers.

TLRs and migraine
TLRs are normally expressed in immune and glial cells 
of the CNS [39, 40]. In addition to pathogen recognition, 
TLRs also function to recognize the molecular patterns 
of ligands associated with cellular stress, tissue damage, 
or cell death [41–43].

Significant evidence has illustrated that innate immune 
signaling is the major mechanism responsible for persis-
tent pain [18]. Previous studies have also suggested that 
TLRs (TLR2, TLR3, TLR4, TLR5, TLR7, TLR8, TLR9) 
are implicated in the pathogenesis of neuropathic pain 
models [4, 9–17]. However, the role of TLRs in migraines 
remains unclear. To date, several studies have shown that 
TLR2, TLR3, and TLR4 are associated with migraine 
[44–48].

The possible mechanisms by which TLRs cause 
migraine are as follows: activation of TLRs leads to the 

upregulation of NF-κB, while increasing the transcription 
of genes encoding IL-1 family cytokines and TNF [49, 
50]. After activation, Th1, Th2, and Th17 effector cells 
express a series of cytokines that act on innate immune 
cells to fight infections and may cause migraine [51–53] 
(Fig. 3).

Discussion
TLR2
TLR2 signaling
Residing at the plasma membrane, TLR2 is characterized 
by an exceptional diversity of compatible exogenous and 
endogenous ligands [18, 54]. This is mainly because it can 
dimerize with TLR1 or TLR6, which increases the com-
plexity of ligand specificity. Structural studies have con-
firmed that TLR2 can distinguish various lipopeptides by 
forming TLR2/TLR1 and TLR2/TLR6 heterodimers [18, 
55, 56]. Ligand-induced heterodimerization of the TLR2 
extracellular domain brings the cytoplasmic C-terminal 
TIR domain into proximity and then initiates intracel-
lular signaling via the MyD88 -dependent pathway. This 
then leads to upregulation of NF-κB and increased tran-
scription of genes encoding the IL-1 family cytokines and 
TNF by binding to the cofactor CD14, which induces the 

Fig. 3  TLRs 2, 3, and 4 mediate migraine. Activation of TLRs (TLR2, TLR3, and TLR4) triggers upregulation of NF-κB and increases the transcription of 
genes encoding IL-1 family cytokines and TNF. Upon activation, a series of cytokines and inflammatory mediators are expressed that lead to central 
sensitization and possibly migraine
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production of inflammatory cytokines, resulting in pain 
[18, 51, 57].

In addition to reacting with exogenous ligands, TLR2 
is triggered by its binding to endogenous ligands when 
the body is damaged and stressed. Although endogenous 
DAMPs for TLR2 have not been definitively captured, 
a few studies have shown that TLR2 can bind to high-
mobility group box 1 (HMGB1), Ganglioside GT1b, Heat 
Shock Protein 60 (HSP60), biglycan (a type of CSPG), 
and hyaluronan [18, 58–62].

The TLR2 signaling pathways are complex, not only 
because it is easy to form a heterodimer, but also because 
there seems to be a large overlap between some endog-
enous ligands and their effects on TLR2 and TLR4, creat-
ing crosstalk between TLR2 and its downstream targets. 
The ability to directly attribute to functional results to 
TLR2 depend on the method used [18].

TLR2 and neuropathic pain
TLR2 is found in many organisms, where it induces the 
generation of inflammatory cytokines, activating NF-kB, 
with consequent pain [51, 63]. Although low levels were 
detected in astrocytes, oligodendrocytes, Schwann cells, 
fibroblasts, endothelial cells, and neurons, they are pre-
dominantly expressed on microglia and other mac-
rophages in the peripheral and central nervous system 
[49, 50, 64–66].

Several studies have shown that TLR2 activates micro-
glia and astrocytes and produces proinflammatory 
cytokines in the spinal cord following tissue and nerve 
injury, leading to the development and maintenance of 
inflammatory and neuropathic pain [4]. Several research-
ers have also found that Tlr2 knockout partially alleviated 
mechanical allodynia and thermal hyperalgesia caused by 
nerve ligation [12, 18, 67].

TLR2 and migraine
RNA sequencing of the brain revealed that Tlr2 gene 
expression is highly enriched in microglia compared 
to other cell types, and has been identified as a reliable 
marker of activated microglia in  vivo, but its detailed 
role in microgliosis is still unknown [18, 68, 69]. Previ-
ous studies have suggested that TLR2 is involved in the 
pathogenesis of neuropathic pain and trigeminal neural-
gia. However, the mechanism of TLR2 pathway during 
migraine attacks remains unclear [40].

Evidence suggests that TLR are significantly associ-
ated with migraine. Transcriptomics has demonstrated 
that the expression of proinflammatory genes (e.g., 
TLR2, CCL8) in the calvarial periosteum is significantly 
increased in patients with CM [44]. In a study of migraine 
with aura, multiple cortical spreading depression (CSD) 
episodes induced significant HMGB1 release, and the 

HMGB1-TLR2/4 axis activated microglia [45]. Several 
studies have shown further evidence that both mast cells 
and T cells are activated and the expression of chemokine 
and TLR2 are increased in migraines [51, 70, 71].

An increase in inflammatory cytokines leads to 
increased cell adhesion, production of chemical inflam-
matory compounds, and NF-κB dysfunction (Fig.  3). 
Therefore, reducing inflammatory symptoms in migraine 
may affect innate immune response pathways by modu-
lating the inflammatory cytokines, TLRs and NF-κB [44].

It is not difficult to see that research on TLR2 and 
migraine is still in its infancy. Further work is needed 
to elucidate the upstream and downstream molecular 
mechanisms of migraine.

TLR3
TLR3 signaling
TLR3 is an intracellular receptor localized within the 
endosomal compartments. In addition to DRGs, TLR3 is 
thought to be expressed to varying degrees in microglia, 
astrocytes, oligodendrocytes, Schwann cells, fibroblasts, 
and endothelial cells [18].

Intracellular TLR3 is intrinsically capable of detecting 
nucleic acids. It acts within the endosomal compartment 
and can distinguish between host and foreign nucleic 
acids. This role is exerted at specific stages of endosomal 
maturation and acidification.

TLR3 recognizes double-stranded RNA (dsRNA) and 
is MyD88-independent [72]. TLR3 is specific to dsRNA, 
and in addition to ligand dsRNA, TLR3 is also able to 
recognize some ssRNA viruses [27]. It is unique among 
all TLRs, and it signals through the TRIF pathway, result-
ing in the release of type I interferons via IRF3 and/or 
inflammatory cytokines via NF-κB [18, 36].

TLR3 and neuropathic pain
Research on the mechanism of its involvement in pain 
is increasing [27], and there is some initial evidence sug-
gesting that TLR3 modulates pain through both shared 
and distinct molecular mechanisms. This is indirectly 
supported by the observation that DRGs express TLR3 
in culture. TLR3 specific agonist (poly I: C) can increase 
TRPV1 expression and the functional activity of these 
sensory neurons, along with triggering an increase in 
the release of pro-nociceptive prostaglandin E2 [18, 73]. 
However, few studies have investigated the relationship 
between TLR3 and neuropathic pain.

A recent investigation identified elevated TLR3 mRNA 
and protein levels in the rat spinal cord after nerve 
injury along with increased activation of microglial 
autophagy. Intrathecal injection of the TLR3 agonist poly 
(I: C) significantly increased the activation of microglial 
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autophagy and promoted neuropathic pain, which was 
dramatically reversed by TLR3 knockout [11].

Several studies have shown that TLR3 plays a substan-
tial role in the activation of spinal microglia and devel-
opment of tactile allodynia after nerve injury [74]. TLR3 
deficient mice exhibit moderately reduced allodynia 
in response to nerve injury, suggesting that activation 
of TLR3 can be used to regulate neuropathic pain [12]. 
Tong Liu demonstrated a critical role of TLR3 in regu-
lating sensory neuronal excitability, spinal cord synaptic 
transmission, and central sensitization. Central sensiti-
zation-driven pain hypersensitivity, but not acute pain, 
is impaired in Tlr3(-/-) mice [10]. However, the specific 
endogenous ligands of TLR3 and mechanisms by which 
they induce neuropathic pain remain unclear.

TLR3 and migraine
Although little research has been conducted on the rela-
tionship between TLR3 and migraine, there is direct 
and indirect evidence to suggest that TLR3 is associated 
with migraine. Research has shown that TLR3 mediates 
inflammatory pain and causes central sensitization. The 
specific signaling pathways are as follows: activation of 
TLR3 in spinal cord microglia results in the activation of 
the nuclear factor κB (NF-κB), extracellular signal-regu-
lated kinase (ERK), and p38 signaling pathways, leading 
to the production of inflammatory mediators, central 
sensitization, and chronic pain [4] (Fig. 3).

However, there seem to be opposing conclusions 
regarding the association between TLR3 and migraines. 
Significant evidence suggests that TLR3 activation is 
neuroprotective and anti-inflammatory in CSD-induced 
neuroinflammation. Targeting TLR3 may be a novel 
strategy for developing new treatments for CSD-related 
neurological disorders [46].

This contradictory conclusion provides research space 
and innovation for future research. Apparently, research 
on the relationship between TLR3 and migraine is insuf-
ficient, and more research is needed in the future.

TLR4
TLR4 signaling
TLR4 is one of the most widely characterized TLRs 
owing to its fundamental role in bacterial perception 
and the resulting inflammatory response. The canonical 
ligand for TLR4 is lipopolysaccharide (LPS). The recog-
nition of LPS by TLR4 is multifaceted, and requires the 
coordination of multiple accessory proteins and corecep-
tors [18].

Among the TLRs, TLR4 is unique in its capacity to sig-
nal through both MyD88-dependent and TRIF-depend-
ent pathways [18]. Conformational changes in TLR4 
after binding to ligands recruit adaptor proteins (MyD88 

and TRIF) to initiate intracellular signaling cascades. Its 
recruitment can lead to activation of NF-κB, MAPKs, 
activator protein-1 (AP-1), and IFN regulatory factor 5 
(IRF5), culminating in the transcription of cytokines, 
chemokines, and other immune mediators [18, 75–78].

TLR4 and neuropathic pain
A growing number of studies have shown that TLR4 is a 
key receptor associated with persistent pain [18, 79–81]. 
The participation of the sciatic nerve in neuropathic pain 
was confirmed by drug interventions in a chronic con-
traction injury model [82]. The TLR4 antagonist LPS-RS 
reversed mechanical hypersensitivity in a mouse model 
of arthritis pain [83]. While antagonism of TLR4 may 
help prevent dysregulated pain, the involvement of TLR4 
may help orchestrate some aspects of tissue repair in the 
context of nerve injury [18, 84, 85]. Therefore, targeting 
TLR4 in the treatment of neuropathic pain needs to be 
cautiously confirmed through further in-depth research.

TLR4 and migraine
The findings of Rafiei et  al. suggested that TLR-4 poly-
morphism is a genetic risk factor for migraine [86]. Other 
evidence has indicated that TLR4 is associated with 
hyperalgesia in migraines. The TLR4 signaling pathway 
promotes hyperalgesia induced by acute inflammatory 
soup delivery by stimulating the production of proin-
flammatory cytokines and activating microglia [87]. 
IL-18-mediated microglia/astrocyte interactions in the 
medullary dorsal horn likely contribute to the develop-
ment of hyperpathia or allodynia induced by migraines 
[88]. In periorbital hypersensitivity of migraine, the TLR4 
antagonist (+)-naltrexone blocked the development of 
facial allodynia after supradural inflammatory soup [89].

In addition, the relationship between the gut microbi-
ota and migraine is currently a hot research topic. Signifi-
cant research has shown that migraine is associated with 
functional gastrointestinal disorders (FGIDs), such as 
functional nausea, cyclic vomiting syndrome, and irrita-
ble bowel syndrome (IBS). Modulation of the Kynurenine 
(l-kyn) pathway (KP) may provide common triggers for 
migraine and FGIDs involving of TLR, aryl hydrocarbon 
receptor (AhR), and MyD88 activation; Meanwhile, TLR4 
signaling was observed to initiate and maintain migraine-
like behavior through mouse MyD88, and KP metabolites 
detected downstream of TLR activation may be a marker 
of IBS. Therefore, TLR4 may play a role in the mecha-
nism of migraine induced by FGIDS [47, 48] (Fig. 3).

Although the relationship between TLR4 and migraine 
is more well-studied than that between TLR2 and TLR3, 
the related upstream and downstream mechanisms still 
require significant research.
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Conclusions and perspectives
Decades of work have indicated that pain and inflam-
mation are subtly entangled concepts. Here, we present 
evidence that TLRs are essential for migraine devel-
opment. Research thus far has suggested that the TLR 
family members TLR2, TLR3, and TLR4 are associated 
with migraine, but the detailed underlying pathways 
and mechanisms remain unclear.

Since the effect of each TLR on pain varies widely 
due to its structure and cellular location, future stud-
ies should investigate the signaling properties of TLRs 
in migraine attacks at a deeper level, while seeking to 
translate preclinical insights into effective treatment. 
In the study of the relationship between TLR2, TLR3, 
TLR4, and migraine, more attention should be paid to 
the study of the detailed signaling pathways. We fur-
ther dissected how each TLR affects nociception and 
how its expression in glial cells and neurons, or cross-
talk between the two, differentially affects the process-
ing of migraines. In addition to TLR2, TLR3, and TLR4, 
future research should also focus on the roles of TLR5, 
TLR7, TLR8, and TLR9 in the etiology of neuropathic 
pain in migraine. Despite these challenges, continuing 
to elucidate the role of each TLR in representing pain 
experience provides a very promising opportunity to 
improve pain in migraine sufferers.
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