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Abstract 

Dopamine-deficient (DD) mice exhibit psychomotor hyperactivity that might be related to a decrease in muscarinic 
signaling. In the present study, muscarinic acetylcholine receptor M2 (CHRM2) density decreased in the cortex in DD 
mice. This is significant because cortical CHRM2 acts as an autoreceptor; therefore, changes in CHRM2 levels could 
alter acetylcholine in DD mice. We also found that the CHRM1/CHRM4 agonist xanomeline and CHRM2 agonist are-
caidine propargyl ester tosylate inhibited hyperactivity in DD mice, suggesting that postsynaptic CHRM1 and CHRM2 
and presynaptic CHRM2 may be involved in hyperactivity in DD mice.
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Background
A decrease in dopamine levels is generally considered to 
impair motor function. We used a dopamine-deficient 
(DD) mouse model in which the tyrosine hydroxylase 
(TH) gene is knocked out but TH expression is rescued 
in noradrenergic and adrenergic neurons by introduc-
ing a transgene that expresses TH under the dopamine 
β-hydroxylase promotor [1]. Using this model, we previ-
ously reported that DD mice, which have extremely low 
levels of dopamine in the brain, are hyperactive when 
placed in a novel environment [2]. Hyperactivity in DD 
mice was not suppressed by typical antipsychotics but 
was reduced by clozapine, suggesting that this psycho-
motor hyperactivity might reflect a treatment-resistant 
schizophrenia-like phenotype [2].

Unlike typical antipsychotic drugs, clozapine and its 
metabolites target muscarinic acetylcholine receptors 

(CHRMs), which mediate the regulation of ion channels 
by activating signal-transducing G proteins and intracel-
lular effector systems [3, 4]. Thus, clozapine and/or its 
metabolites could exert therapeutic effects by exerting 
actions on CHRMs, which are suggested to be involved 
in the pathophysiology of schizophrenia [5]. We previ-
ously reported that hyperactivity in DD mice in a novel 
environment was inhibited by oxotremorine [2], a non-
selective CHRM agonist [6], and acetylcholine levels 
decreased in DD mice [2]. Acetylcholine plays a key role 
in various nervous system functions, including the con-
traction of skeletal muscles, emotion, perception, cogni-
tion, learning, and memory. These results suggest that a 
decrease in CHRM activation that is caused by a decrease 
in acetylcholine could be involved in hyperactivity in DD 
mice. The present study investigated whether CHRM 
density is disturbed and whether a CHRM subtype-selec-
tive agonist or antagonist affects locomotor activity in 
DD mice.
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Methods
Male and female DD mice on a C57BL/6J background 
were maintained on daily intraperitoneal injections 
of 50  mg/kg l-3,4-dihydroxyphenylalanine (l-DOPA; 
Nacalai Tesque, Kyoto, Japan) until 6 weeks of age. The 
DD mice were then given a paste diet that was soaked 
in water and contained 500 mg l-DOPA, 125 mg bens-
erazide (Fujifilm Wako Pure Chemical, Tokyo, Japan), 
and 250  mg ascorbic acid (Nakalai Tesque) in 1  kg of 
powdered feed. The DD mice were given a 50  mg/kg 
l-DOPA injection 72  h before testing. For the bind-
ing assays, brain samples were collected 72  h after the 
l-DOPA injection and then stored at − 80  °C until use. 
Levels of  [3H]pirenzepine (CHRM1 antagonist; DuPont, 
Melbourne, Australia),  [3H]AFDX-384 (CHRM2 antag-
onist; DuPont), and  [3H]4-DAMP (CHRM3 antago-
nist; DuPont) binding were measured using established 
methodologies [7]. Locomotor activity was measured 
in a novel environment as described previously [2]. 
In the present study, we used a commercially avail-
able CHRM subtype-selective agonist and antagonist. 
Xanomeline (CHRM1/CHRM4 agonist; 10 mg/kg; Toc-
ris Bioscience, Bristol, UK), arecaidine propargyl ester 
tosylate (CHRM2 agonist; 5  mg/kg; Tocris Bioscience), 
VU0255035 (CHRM1 antagonist; 10 mg/kg; Tocris Bio-
science), and AQRA-741 (CHRM2 antagonist; 1 mg/kg; 
Tocris Bioscience) were dissolved in saline and admin-
istered subcutaneously. The dose of each drug was 
determined according to doses that were used in mice 
in previous studies or doses that decreased locomotor 
activity in wildtype (WT) mice [8–10]. The statistical 
analyses were performed using Student’s t-test or two-
way repeated-measures analysis of variance (ANOVA) 
followed by the Scheffe post hoc test. Values of p < 0.05 
were considered statistically significant. The data were 
analyzed using BellCurve for Excel software (Social Sur-
vey Research Information, Tokyo, Japan).

Results and discussion
No significant differences in  [3H]pirenzepine or 
 [3H]4-DAMP binding were found in the cortex or stri-
atum between DD and WT mice. The binding of  [3H]
AFDX-384 was significantly higher in the cortex but 
not striatum in DD mice (Fig. 1a–c). These data sug-
gest that CHRM2 levels in the cortex increased in DD 
mice, whereas CHRM1, CHRM3, and CHRM4 lev-
els were unaltered in the cortex and striatum in DD 

mice. Notably, our previous data from CHRM knock-
out mice showed that the methodology we used in the 
present study means that  [3H]AFDX-384 preferentially 
binds to CHRM2 [11, 12]. Therefore, our data sug-
gest that CHRM2 levels are higher in the cortex in DD 
mice (p = 0.0048). The cerebral cortex receives cho-
linergic afferents from the nucleus of Meynert. This 
is important because CHRM2 in the cortex predomi-
nantly acts as a cholinergic autoreceptor [13] that aids 
in the regulation of acetylcholine from presynaptic 
neurons. Higher levels of CHRM2 in DD mice could 
reflect a compensatory increase in sensitivity of the 
autoreceptor-driven feedback loop in an attempt to 
reduce acetylcholine levels in DD mice.

Hyperactivity in DD mice was reduced by treatment 
with xanomeline (Fig.  1d) and arecaidine propargyl 
ester tosylate (Fig. 1e). However, the effect of arecaidine 
propargyl ester tosylate was shorter than xanomeline. 
Hyperactivity was not reduced by treatment with 
VU0255035 (Fig. 1f ) or AQRA-741 (Fig. 1g). Xanomeline 
is a CHRM1/CHRM4 agonist, arecaidine propargyl ester 
tosylate is a CHRM2 agonist, VU0255035 is a CHRM1 
antagonist, and AQRA-741 is a CHRM2 antagonist. 
Based on these data, low levels of acetylcholine in DD 
mice may cause a maximal change in locomotion that is 
not further influenced by a receptor antagonist that low-
ers cholinergic activity in the brain. In contrast, the rever-
sal of hyperactivity by a CHRM2 agonist and CHRM1/
CHRM4 agonist suggests that CHRM2, CHRM1, and/or 
CHRM4 are involved in mediating hyperactivity in DD 
mice. Saline treatment alone did not affect hyperactivity 
in DD mice (Fig. 1h). All raw data are included in Addi-
tional file 1.

Xanomeline effectively suppressed hyperactivity in 
DD mice. Xanomeline treatment alone [14] and com-
bined with a peripheral CHRM antagonist [15] effectively 
reduced clinical symptoms of schizophrenia in humans. 
Therefore, our preliminary data suggest that DD mice 
may be a valid model for studying the mechanisms by 
which CHRM agonists exert therapeutic effects in schiz-
ophrenia patients.

In conclusion, CHRM2 density increased in DD mice, 
possibly reflecting a physiological response to low levels 
of acetylcholine. Our data suggest that DD mice may be a 
useful model for studying cholinergic abnormalities that 
have been reported to exist in the central nervous system 
in schizophrenia patients.
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Fig. 1 Effects of CHRM subtype-selective agonists and antagonists on CHRM density and locomotor activity in DD mice. (a–c) Binding assays 
with  [3H]pirenzepine,  [3H]AFDX-384, and  [3H]4-DAMP were conducted. WT mice: n = 5, DD mice: n = 5. **p < 0.01 (Student’s t-test). The data are 
expressed as the mean + SEM with data point overlap. (d-h) Change in locomotor activity in WT mice (n = 11–12) and DD mice (n = 9–12) following 
xanomeline, arecaidine propargyl ester tosylate, VU0255035, AQRA-741, and saline treatment. *p < 0.05, **p < 0.01 (two-way repeated-measures 
ANOVA). The data are expressed as the mean ± SEM
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