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Inhibitory insula‑ACC projections modulate 
affective but not sensory aspects of neuropathic 
pain
Heloísa Alonso‑Matielo1,2  , Zizhen Zhang1  , Eder Gambeta1  , Junting Huang1, Lina Chen1, 
Gabriel Oliveira de Melo2  , Camila Squarzoni Dale2   and Gerald W. Zamponi1*   

Abstract 

The insula and anterior cingulate cortex (ACC) are brain regions that undergo structural and functional reorganiza‑
tion in neuropathic pain states. Here, we aimed to study inhibitory parvalbumin positive (PV+) posterior insula (pIC) 
to posterior ACC (pACC) projections, and to evaluate the effects of direct optogenetic manipulation of such projec‑
tions on mechanical nociception and spontaneous ongoing pain in mice with Spared Nerve Injury (SNI).  CTB488 tract‑
tracing in male PVCrexAi9 mice revealed a small proportion of PV+ projections from the pIC to the pACC. Electro‑
physiological analysis confirmed the existence of synaptic inputs into the pACC by pIC GABAergic cells. Optogenetic 
stimulation of these pathways did not change mechanical nociception, but induced conditioned place preference 
behavior responses. Our results suggest the presence of inhibitory projections between the pIC and the pACC which 
are able to selectively modulate affective aspects of neuropathic pain.
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The pain modulatory system comprises anatomical path-
ways that include inhibitory circuits originating from 
cortical areas such as  the insula and anterior cingulate 
cortex (ACC) [1]. The posterior insula (pIC) is involved 
in the processing and modulation of sensory functions 
[2] and connects with pain matrix structures such as the 
ACC [3, 4]. Insula activity is affected by different painful 
stimuli and altered during neuropathic pain in preclini-
cal models and in patients [5, 6]. The insula contains par-
valbumin (PV+) expressing inhibitory interneurons [7] 

and GABAergic inhibition in the pIC is directly involved 
in induction of analgesia [6, 8]. Similarly, in the ACC, 
decreased pain responses and associated aversive behav-
ior are mediated by inhibitory signaling [5, 9]. We thus 
aimed to examine the existence and role of inhibitory 
projections from the pIC to the pACC, and to test their 
role in hypersensivity and affective-motivational behav-
ior of SNI mice. Detailed methodologies are provided in 
Additional file 1.

We first examined to what extent the insular cortex 
and pACC are linked by inhibitory connections.  CTB488 
was injected into the pACC region of PV-tdTomato 
mice, and overlap between  CTB488 and tdTomato label 
in slices from the insular cortex visualized and quanti-
fied. The green retrotracer-labeled GABAergic cells in 
the pIC are shown in Fig.  1a, and the correct location 
of the  CTB488 injection was verified by examination of 
pACC slices (Fig.  1b). Quantitative analysis (Fig.  1c) 
reveals the percentage of tdTomato positive cells that 
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overlap with  CTB488 fluorescence in the pIC (SHAM: 
4.4 ± 4.4%, n = 3; SNI: 45.1 ± 26.3%, n = 4). We also 
examined the degree of c-Fos activation in GABAe-
rgic cells projecting to the pACC in the presence and 
absence of SNI (Fig.  1d). These data suggest very lit-
tle tonic activation of these neurons during both con-
ditions, with only around 10–20% of projecting cells 
being activated after SHAM surgery, and perhaps even 
less activation after SNI (proportion of c-Fos positive 
PVCre::tdTomato-CTB488 cells: SHAM 16.6 ± 16.6%, 
n = 3; SNI 0 ± 0, n = 3). Hence, SNI does not appear to 
induce increased activity in GABAergic pIC to pACC 
projections.

To complement our retro-tracing experiments, we 
used electrophysiology on pACC slice preps with opto-
stimulation of synaptic inputs from the pIC. AAV-
EF1a-DIO-ChR2-H134R was injected in the pIC of 
PVCre transgenic mice to express ChR2 in PV+ neu-
rons (Fig. 1e). Whole cell patch clamp recordings were 
performed in neurons of the pACC, using blue laser 
stimulation (10  ms, every 20  s, Laserglow ON) of the 
input fibers originating from the pIC. Forty-seven 
cells (7 mice) were randomly chosen for recordings in 
the pACC (Fig.  1f, g). Among these, 6 cells responded 
with an oIPSC at 0 mV, but none responded at − 70 mV 
(Fig.  1f, left). TTX was applied to 3 of the 6 respond-
ing cells, leading to complete loss of the oIPSC, sug-
gesting that the oIPSC responses are action potential 
dependent (Fig.  1f, right). Figure  1h illustrates the 
amplitudes of the optically evoked IPSCs and their 
latencies. Altogether, these data indicate that the pACC 
receives sparse but functional innervation from pIC 
PV+ GABA cells and confirm the confocal microscopy 

data. We note that our approach does not allow us to 
discern whether the recorded cells were GABAergic or 
glutamatergic.

For behavior characterization, AAV9-Ef1α-DIO-
ChR2-EFYP was injected in the pIC of PVCre mice fol-
lowed by the implantation of a fiber optic cannula in the 
pACC. Histological slices were used to confirm stere-
otaxic coordinates for both sites of injection and implan-
tation (not shown). PVCre SHAM and SNI mice were 
subjected to optostimulation with a blue laser for selec-
tive ChR2 activation in PV+ projections from the  pIC 
to the pACC. There was no effect of optostimulation on 
mechanical withdrawal thresholds in SHAM mice (No 
Light: 8.4 ± 0. 7  g; Light: 9.8 ± 1.3  g; n = 5) (Fig.  1i). SNI 
mice exhibited ipsilateral mechanical hypersensitiv-
ity that was not reversed by optostimulation (No Light: 
5.4 ± 0.7  g; Light: 6.9 ± 0.8  g; n = 5). These data indicate 
that exogenous optogenetic activation of GABAergic pIC 
to pACC projections does not affect sensory aspects of 
neuropathic pain. The effect of optostimulation on Con-
ditioned Place Preference (CPP) was then evaluated. In 
Fig. 1j, PVCre SNI mice exhibited place preference when 
conditioned with blue light (SNI: Light 554.0 ± 32.2  s; 
n = 5; No Light 205.6 ± 34.6  s, n = 5 ####p < 0.0001). The 
SHAM group was not affected. These data are also rep-
resented in Fig. 1k in the form of difference scores (SNI 
Light 188.0 ± 32.8 s; SNI No light = − 148.4 ± 36.2 s; n = 5, 
*p = 0.0182). Collectively, these data suggest that activa-
tion of PV + projections from the pIC to the pACC par-
ticipate in affective aspects of neuropathic pain.

Several interconnected brain regions have been impli-
cated in neuropathic pain, including the prefrontal cortex 
[10, 11], amygdala, PAG and thalamus [1]. The insula and 

Fig. 1 Insula‑pACC PV+ projections modulate CPP responses without mechanical threshold effects. a Confocal microscopy images from pIC 
slices from SHAM and SNI operated PV Cre:tdTomato mice subjected to  CTB488 (green) injection in the pACC (PVCre n = 7) followed by SNI 
or SHAM procedures a week later. Slices were immunostained for c‑Fos activity (shown in blue). White arrows highlight examples of cells in which 
 CTB488 and tdTomato label overlap, circles highlight projecting cells that are positive for c‑Fos. Dotted squares show only PV+ cells. b Verification 
of injection of  CTB488 injection sites in the pAAC region. c Quantification of the percentage overlap between tdTomato positive cells that are 
also positive for  CTB488. d Percentage overlap between pIC‑pACC projecting GABAergic cells (i.e., cells that are both red and green) and those 
positive for c‑Fos (blue). Data are presented as mean ± S.E.M. e Diagram showing that AAV (AAV9‑EF1a‑DIO‑ChR2‑eYFP) was injected in the pIC 
of PV Cre transgenic mice. f Voltage clamp recording in brain slices of the pACC. Left: percentage of cells that responded with oIPSCs (12.7%, 
upper) and with oEPSCs (0%, lower). Right: sample traces showing responses at − 70 mV (no oEPSC) and at 0 mV (with oIPSC) and that TTX blocked 
the oIPSC response. g Location of recording sites in pACC slices. Each recorded neuron in the pACC was mapped onto a brain section of pACC 
from a mouse brain atlas showing the location of responding neurons (responder, solid dots) and non‑responding neurons (non‑responder, 
open dots). h Amplitude and latency of oIPSCs from responding neurons. Error bars are S.E.M. i Mechanical withdrawal threshold of SHAM 
and SNI operated PVCre mice with and without optoactivation of ChR2 (Light and No Light‑473 nm, pulsed light, 5mW, 40 Hz) and mechanical 
threshold was accessed using a DPA test with the animal under stimulation. Two‑way ANOVA followed by Bonferroni post‑test. ***p = 0.0001. 
j Optogenetic stimulation of the GABAergic pIC to pACC pathway was able to induce place preference in SNI mice (PVCre SNI (n = 5) or SHAM 
(n = 4 to 5)). The paradigm consists of one day conditioning, with lights off for 15 min in the morning in one chamber and opto‑light stimulation 
for 15 min in the afternoon in the opposite chamber. Two‑way ANOVA followed by Bonferroni post‑test, *p = 0.0331 SHAM vs SNI Light paired 
chamber; **p = 0.0082 Pre (pre‑test) vs SNI Light paired chamber; ####p < 0.0001 Light vs No Light SNI group. k CPP score (difference of time spent 
in the conditioning chamber during post‑ and pre‑conditioning); One‑way ANOVA followed by Bonferroni post‑test, *p = 0.018 SNI No Lght vs Light. 
All data are presented as mean ± S.E.M

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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the ACC are two major areas that appear to be involved 
in pathological pain [12], and most importantly in the 
control of sensitive-discriminative and affective-motiva-
tional pain aspects [13, 14]. Previous findings have asso-
ciated decreased insular GABA levels with hyperalgesic 
behavior in animals [13], suggesting that inhibitory tone 
in insula may be a causal contributor to the develop-
ment of chronic pain states. Indeed, inhibitory signal-
ing in both the insular cortex and ACC is responsible for 
the induction of analgesia [5, 12]. Our observation that 
optostimulation of the GABAergic projections resulted 
in altered CPP supports that these projections are physi-
ologically relevant. Sensory components of neuropathic 
pain were not affected suggesting that connections 
between the pIC and the pACC discriminate between 
these modalities. This may fit with the notion that the 
pACC can integrate sensory and affective aspects of 
pain [14]. Yet a previous study revealed that a projection 
from the mid-cingulate cortex to the insula does control 
nociceptive hypersensitivity, suggesting that the pIC may 
perhaps  modulate affective and sensory components of 
chronic pain depending on which pathway is activated 
[15].

Only a small portion of pIC to pACC projections were 
activated under basal conditions, and the proportion of 
activated cells appeared even lower after SNI surgery. 
c-Fos labeling has limitations, including a lack of quan-
titative output of neuronal activity, and subtle activity 
alterations within a specific subset of already active neu-
rons due to SNI may not have been resolved. Our sample 
size was, however, limited, and thus putative activity dif-
ferences between SHAM and SNI surgery may not have 
been fully resolved.

In summary, our results support the idea that inhibi-
tory pathways between the pIC and pACC can modulate 
affective-motivational aspects of pain, highlighting these 
areas as potential targets for the management of neuro-
pathic pain.
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