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Abstract 

T-type calcium channelopathies encompass a group of human disorders either caused or exacerbated by muta-
tions in the genes encoding different T-type calcium channels. Recently, a new heterozygous missense mutation 
in the CACNA1H gene that encodes the  Cav3.2 T-type calcium channel was reported in a patient presenting with epi-
lepsy and hearing loss—apparently the first CACNA1H mutation to be associated with a sensorineural hearing condi-
tion. This mutation leads to the substitution of an arginine at position 132 with a histidine (R132H) in the proximal 
extracellular end of the second transmembrane helix of  Cav3.2. In this study, we report the electrophysiological char-
acterization of this new variant using whole-cell patch clamp recordings in tsA-201 cells. Our data reveal minor gating 
alterations of the channel evidenced by a mild increase of the T-type current density and slower recovery from inac-
tivation, as well as an enhanced sensitivity of the channel to external pH change. To what extend these biophysical 
changes and pH sensitivity alterations induced by the R132H mutation contribute to the observed pathogenicity 
remains an open question that will necessitate the analysis of additional CACNA1H variants associated with the same 
pathologies.
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Mutations in the CACNA1H gene that encodes the 
 Cav3.2  T-type calcium channel are risk factors for a 
number of human channelopathies including epilepsy 
[1], primary aldosteronism [2], autism spectrum disor-
der [3, 4], amyotrophic lateral sclerosis [5, 6], congenital 
amyotrophy [7], and trigeminal neuralgia [8, 9]. Recently, 
Algahtani and colleagues reported a new heterozygous 
missense mutation in a 50-year-old female patient with 
a clinical condition involving epilepsy and hearing loss 
which appears to be the first CACNA1H variant to be 
associated with sensorineural hearing alterations [10]. 
This mutation results in the substitution of an arginine 
at position 132 with a histidine (R132H) in the proximal 
extracellular end of the second transmembrane helix 
of  Cav3.2 (Fig. 1a) and has not yet been reported in the 
gnomAD database (https:// gnomad. broad insti tute. org/). 
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Molecular simulation using the AlphaFold-generated 
model of the human  Cav3.2 channel shows that replace-
ment of the arginine 132 with a histidine leads to an 
additional hydrogen bond with methionine 119 of the 
first transmembrane helix (Fig.  1a) that has the poten-
tial to alter the gating of the channel. In addition, a his-
tidine residue has a highly variable pKa value depending 
of its direct environment indicating that its charge may 
vary subtly as a function of external pH. To challenge 
this hypothesis, we assessed the functional impact of the 
R132H variant on the biophysical properties of  Cav3.2 
using patch-clamp recordings in tsA-201 cells bathed in 
5 mM barium as the charge carrier (see Additional file 1). 
Both cells expressing  Cav3.2 wild-type (WT) and R132H 
mutant channels displayed characteristic low-voltage 
activated T-type currents (Fig.  1a, b). A significant 40% 
(p = 0.0285) increase of the maximal macroscopic T-type 
conductance (Gmax) was observed in cells expressing the 
R132H channel variant (0.52 ± 0.06 nS/pF, n = 26) com-
pared to cells expressing the WT channel (0.37 ± 0.03 nS/
pF, n = 24) (Fig. 1d) without any alteration of the voltage 
dependence of activation (Fig.  1e) or steady-state inac-
tivation (Fig.  1f ). An additional significant (p = 0.0342) 
slowing of the time constant (τ) of recovery from inac-
tivation was observed for R132H channels (467 ± 21 ms, 
n = 18) compared to WT channels (284 ± 34  ms, n = 10) 
(Fig. 1g) while fast activation and inactivation kinetics of 
the current remained unaltered (Fig. 1h).

Next, we aimed to assess the effect of extracellular pH 
 (pHe) on the regulation of the channels. Indeed, histi-
dine residues theoretically bear a partial charge at physi-
ological pH, although this is largely influenced by the 
direct environment of the residue, and therefore act as 
 [H+] sensor as a result of protonation. Protonation may 

in turn mediate modulatory effects on voltage-gated 
channels, including  Cav3.2 [11]. Given that the R132H 
variant implicates the introduction of histidine within 
the extracellular end of the second transmembrane 
helix of  Cav3.2, we assessed the effects of extracellu-
lar pH changes, alkalization  (pHe 8.0) and acidification 
 (pHe 6.5), on T-type currents. Consistent with previous 
results on T-type channels [11, 12], extracellular alkali-
zation and acidification produced a significant increase 
and decrease of the T-type current, respectively, in 
both  Cav3.2 WT- and R132H-expressing cells (Fig.  1i, 
top panels). However, these effects were emphasized on 
 Cav3.2 R132H-mediated currents. For instance, alkali-
zation-mediated increase of the T-type current was 82% 
higher (p = 0.0176) in cells expressing the R132H channel 
(24.0 ± 3.5% increase, n = 23) compared to cells expressing 
the WT channel (13.1 ± 1.2% increase, n = 16), whereas 
acidification-mediated decrease of the current was 
enhanced by 37% greater (p = 0.0087) (from − 30.9 ± 2.9% 
decrease in WT, n = 15, to −  42.5 ± 2.9% for R132H, 
n = 19) (Fig. 1i, bottom panels). In addition, extracellular 
alkalization produced an acceleration of the kinetics of 
current activation and inactivation, whereas acidification 
produced the exact opposite (Fig. 1j, k, top panels). How-
ever, these effects were proportionally similar between 
WT and R132H channels (Fig. 1j, k, bottom panels).

Previous studies in animal models have documented 
the importance of T-type channels in the functioning of 
the auditory system. For instance,  Cav3.2 channels are 
highly expressed in mouse spiral ganglion neurons (SGN) 
where they are necessary for spatiotemporal auditory 
processing [13]. However, they also exhibit age-depend-
ent increases in expression levels that are causally asso-
ciated with SGN degeneration, whereas T-type channel 

Fig. 1 Functional properties of the  Cav3.2 R132H variant associated with epilepsy and hearing loss. a AlphaFold model of the human  Cav3.2 
channel showing the location of the R132H mutation (left panel). In this model, the arginine (R) 132 is located within the extracellular-exposed 
proximal end of the second transmembrane helix (S2) of  Cav3.2 and forms two intra-helix hydrogen bonds with serine (S) 130 and leucine (L) 
136 (left panel). Substitution of the R132 with a histidine (H) residue creates an additional hydrogen bond with methionine (M) 119 located 
within the first transmembrane helix (S1) of the channel. b Representative sets of whole-cell T-type current traces recorded in tsA-201 cells 
expressing  Cav3.2 wild-type (WT) (black traces) and R132H variant (red traces). Currents were elicited by depolarizing steps to values ranging 
between − 90 mV and + 30 mV from a holding potential of − 100 mV. c Corresponding mean current/voltage (I/V) relationships. The continuous 
lines represent the fit of the I/V curves with the modified Boltzmann Eq. (1). d Corresponding mean maximal macroscopic conductance values 
(Gmax) obtained from the fit of the I/V curves. e Corresponding mean normalized voltage dependence of activation fitted (continuous lines) 
with the modified Boltzmann Eq. (2). The inset shows the mean half-activation potential values obtained from the fit of the conductance curves. 
f Mean normalized voltage dependence of steady-state inactivation fitted with the two-state Boltzmann Eq. (3). The inset represents the mean 
half-inactivation potential values obtained from the fit of the inactivation curves. g Mean normalized recovery from inactivation kinetic fitted 
with the single-exponential function (4). Inset shows the mean time constant values obtained from the fit of the recovery from inactivation 
curves. h Mean time constant of fast activation (diamond symbols) and inactivation (round symbols) kinetics of T-type currents as a function 
of the membrane potential. i Relative change in peak current amplitude in response to extracellular pH alkalinization  (pHe 8.0, green symbols) 
and acidification  (pHe 6.5, orange symbols) from physiological  pHe 7.2 (top panels) as well as corresponding mean current change amplitude values 
(bottom panels). T-type currents were elicited by repetitive depolarizing steps to -20 mV from a holding potential of -100 mV. j, k Legend same 
as (i) but for T-type current activation and inactivation kinetics. Data are presented as mean ± S.E.M. and statistical analysis was performed using 
a two-tailed Student’s t test

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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blockers are protective against age-related SGN and 
hearing loss [14]. Here, we showed that the  Cav3.2 R132H 
mutation causes mixed alterations of the channel as evi-
dent from an increase in current density (that can be 
attributed to an alteration of the single channel gating 
properties and/or an increased expression of  Cav3.2 at 
the cell surface) consistent with a gain-of-channel func-
tion. There is also a slowing of the recovery from inacti-
vation which is consistent with a loss-of-function of the 
channel. However, the extent to which this loss-of-gating 
will manifest under physiological conditions will largely 
depend on the firing properties of nerve cells express-
ing the mutant channel. In addition, we illustrate that the 
R132H mutation enhances the impact of  pHe regulation 
of the channel. While the alterations may seem relatively 
mild, they have the merit to be observed and will require 
further experimentation to define their meaning in terms 
of pathogenicity. Clearly, there is evidence that alteration 
of pH homeostasis in response to primary metabolic dis-
orders such as renal tubular acidosis is often accompa-
nied with sensorineural hearing alterations [15]. In such 
context, altered  pHe-dependent modulation of  Cav3.2 by 
the R132H mutation may represent a risk factor for hear-
ing loss. Likewise, there is evidence that brain pH levels 
are significantly increased in experimental animal mod-
els of epilepsy [16–19] and patients [20] and precipitates 
the development of seizures. Therefore, it is a possibility 
that alkalinization-meditated increase of  Cav3.2 R132H 
currents may also exacerbate seizures. An interesting 
consideration is whether a primary epilepsy could be the 
initiator of subsequent hearing loss in the patient carry-
ing the  Cav3.2 R132H mutation.

In conclusion, it is premature to recommend classifying 
the  Cav3.2 R132H mutation as disease-causing variant at 
this stage in the absence of a larger number of variants 
causing the same pathologies. Moreover, since our func-
tional analysis was performed in a recombinant expres-
sion system, there remains the possibility that the R132H 
mutation may exhibit a more pronounced phenotype in a 
native neuronal environment, and additional analysis will 
help to fully comprehend to which extent this mutation 
alters  Cav3.2 channel function in the context of auditory 
function and epilepsy.
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