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computations underlying learning and memory. The hip-
pocampus can be divided into the dentate gyrus (DG), 
CA3, CA2, and CA1 regions [2, 3]. It has been consid-
ered that the superficial layers (II/III) of EC mainly proj-
ect to the HPC, while the deep layers (V/VI) receive the 
input from the HPC to provide telencephalic projections 
[4]. For example, Reelin+ cells in layer II of the EC proj-
ect to the hippocampal DG, CA3, and CA2 [4–6]. Pyra-
midal cells in layer III of the EC directly project to the 
hippocampal CA1 [4, 7]. A subpopulation of Wolfram 
syndrome 1 (Wfs1) / CalbindinD-28  K (CalB)+ pyrami-
dal cells in layer II of the EC project to the inhibitory 
neurons in the hippocampal CA1 area [4, 8, 9]. On the 
other hand, in contrast to the superficial layers, the cell-
type specific projection pattern for the deep layers of the 
EC are beginning to be studied. Layer V can be separated 
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Abstract
Entorhinal cortical (EC)-hippocampal (HPC) circuits are crucial for learning and memory. Although it was 
traditionally believed that superficial layers (II/III) of the EC mainly project to the HPC and deep layers (V/VI) receive 
input from the HPC, recent studies have highlighted the significant projections from layers Va and VI of the EC into 
the HPC. However, it still remains unknown whether Vb neurons in the EC provide projections to the hippocampus. 
In this study, using a molecular marker for Vb and retrograde tracers, we identified that the outer layer of Vb 
neurons in the medial EC (MEC) directly project to both dorsal and ventral hippocampal dentate gyrus (DG), with a 
significant preference for the ventral DG. In contrast to the distribution of DG-projecting Vb cells, anterior thalamus-
projecting Vb cells are distributed through the outer to the inner layer of Vb. Furthermore, dual tracer injections 
revealed that DG-projecting Vb cells and anterior thalamus-projecting Vb cells are distinct populations. These 
results suggest that the roles of MEC Vb neurons are not merely limited to the formation of EC-HPC loop circuits, 
but rather contribute to multiple neural processes for learning and memory.
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into two sublayers: Va and Vb [4, 9, 10]. Vb neurons are 
known to function as a local projection to superficial lay-
ers in the EC [9, 11, 12], and Va neurons project to tel-
encephalic structures [4, 9–11]. Previous studies raised 
the possibility that some neurons in the deep layers of 
the EC also may project back to the HPC [13, 14]. Uti-
lizing molecular markers for deep layers and viral-based 
neural tracing, recent studies revealed that Va neurons 
collaterally project to telencephalic structures as well as 
the hippocampal CA1 area [15]. Furthermore, VI neu-
rons project to the hippocampal CA1, CA2, CA3, and 
DG areas [16]. However, it remains unknown whether Vb 
neurons in the EC also project to the HPC. In this study, 
we investigated whether Vb neurons in the medial EC 
(MEC) project to the HPC.

We injected retrograde tracers, Cholera Toxin Subunit 
B (CTB) 488 and CTB555, into the dorsal (AP: -2.00, ML: 
1.30, DV: -2.00) and ventral DG (AP: -3.70, ML: 2.90, 
DV: -3.50) (Fig.  1A) of 6–10 weeks old C57BL6J male 
and female mice (JAX:000664), respectively (dDG: 100nl, 
vDG: 70nl, 0.5% wt/vol, Invitrogen). Four to six days 
after the injection, these mice were deeply anesthetized 
with a cocktail of ketamine (75  mg/kg)/dexmedetomi-
dine (1 mg/kg) and then transcardially perfused with 4% 
paraformaldehyde (PFA) in PBS. Brains were extracted 
and post-fixed overnight in 4% PFA in PBS at 4  °C and 
then sectioned at a thickness of 60 μm using a vibratome 
(Leica). We found both CTB488+ and CTB555+ cells in 
layer II of MEC (MECII); CTB488+ cells were observed 
in the dorsal part of MECII while CTB555+ cells were 
found in the ventral part of MECII (Fig. 1B), as previously 
demonstrated [2, 3, 5], indicating that we successfully 
injected these tracers into the dorsal and ventral DG. We 
also found small population of CTB488+ and CTB555+ 
cells in the layer V of MEC, while CTB555+ cells were 
more abundant than the CTB488+ cells (Fig.  1B). There 
were a partial overlap between CTB488+ and CTB555+ 
cells; 27.03% of CTB488+ cells were labeled with CTB555 
while 5.99% of CTB555+ cells were labeled with CTB488 
(Fig.  1B–D, total 37 CTB488+ cells and 167 CTB555+ 
cells, 5 mice). We also found that CTB488+ cells were 
preferentially located in the dorsal part of MEC, while 
CTB555+ cells were distributed through the dorso-ven-
tral axis (Fig. 1B, CTB488+ cells; dorsal 50.00%, interme-
diate 36.36%, and ventral 13.64%, total 22 cells from 4 
mice, CTB555+ cells; dorsal 22.92%, intermediate 46.88%, 
and ventral 30.21%, total 96 cells from 4 mice). These 
results indicate that layer V of MEC neurons project to 
dorsal and ventral hippocampal DG.

To identify whether Vb neurons in the MEC project to 
DG, we next examined the immunohistochemistry for 
Ctip2, a marker for MEC Vb neurons [9] (rat anti-Ctip2 
antibody; ab18465, abcam, 1/300 dilution) and found 
that both CTB488+ and CTB555+ cells were colocalized 

with Ctip2 (Fig.  1B–D). 0.56 ± 0.14% of neurons were 
CTB488+ and 2.48 ± 0.32% of neurons were CTB555+ in 
MEC Vb (N = 4). Importantly, the outer layer of Vb neu-
rons was preferentially labeled with CTBs (Fig. 1C–D). 
These results indicate that neurons in the outer layer 
of Vb preferentially project to both dorsal and ventral 
DG (vDG), with a significant preference for the vDG. 
To identify the cell-types of DG-projecting Vb cells, we 
examined immunohistochemistry using inhibitory neu-
ron makers; GAD67, parvalbumin and somatostatin 
(Fig.  1E–H) (mouse anti-GAD67 antibody; MAB5406, 
Millipore, 1/200 dilution, mouse anti-parvalbumin anti-
body; PV235, SWANT, 1/200 dilution, rat anti-soma-
tostatin antibody; MAB354, Millipore, 1/200 dilution). 
There were no DG-projecting cells which colocalized 
with GAD67 (Fig.  1E, dDG-projecting cells; 0%, 0 out 
of 29 cells from 7 mice, vDG-projecting cells; 0%, 0 out 
of 364 cells from 7 mice) or parvalbumin (Fig. 1F dDG-
projecting cells; 0%, 0 out of 21 cells from 6 mice, vDG-
projecting cells; 0%, 0 out of 369 cells from 6 mice). Only 
3 vDG-projecting cells were colocalized with somatosta-
tin (Fig. 1G, H, dDG-projecting cells; 0%, 0 out of 31 cells 
from 7 mice, vDG-projecting cells; 0.70%, 3 out of 429 
cells from 7 mice). These results suggest that the majority 
of DG-projecting Vb neurons in the MEC are excitatory 
neurons.

Va neurons project to the basolateral amygdala (BLA) 
and nucleus accumbens (NAc) [4, 8, 9]. To examine 
the layer specificity in the MEC, we injected CTB488, 
CTB555, and CTB647 into the BLA (AP: -1.40, ML: 
3.40, DV: -5.00), vDG (AP: -3.70, ML: 2.90, DV: -3.50), 
and NAc (AP: 1.15, ML: 0.70, DV: -4.70) of 6–10 weeks 
old C57BL6J male mice (N = 4), respectively (BLA 100nl, 
vDG: 70nl, NAc: 300nl, 0.5% wt/vol, Invitrogen) (Fig. 1I). 
We found that vDG-projecting cells were never colocal-
ized with BLA- or NAc-projecting cells (Fig. 1J, K), sug-
gesting that Va neurons do not project to the vDG.

A previous study [9] showed that a subpopulation of Vb 
neurons projects to the anterior thalamic nuclei in mice. 
Therefore, to identify if DG-projecting Vb cells belong to 
the same population as anterior thalamus-projecting Vb 
cells, we injected CTB555 into the anterodorsal/antero-
ventral thalamic nucleus (AD/AV) (AP: -0.90, ML: 0.90, 
DV: -3.15) (150nl, 0.5% wt/vol, Invitrogen) of 6–10 weeks 
old C57BL6J male and female mice (N = 8) (Fig. 1L) and 
examined the immunohistochemistry for Purkinje cell 
protein 4 (PCP4), a marker for ECIII and ECVb [10], 
(rabbit anti- PCP4, Sigma, HPA005792, 1/300) and NeuN 
(chick anti-NeuN, abcam, ab134014, 1/1000) (Fig.  1M, 
N). In contrast to the DG-projecting Vb cells, which are 
preferentially located in the outer layer of Vb (Fig. 1O-P), 
anterior thalamus-projecting Vb cells were distributed 
from the inner to outer layer of Vb (Fig. 1O-P). Further-
more, double CTB injections into same mice (CTB488 
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in AD/AV and CTB555 in vDG, respectively, male and 
female 5 mice) demonstrated that there is no overlap 
between vDG-projecting cells and AD/AV-projecting 
cells in Vb (Fig. 1P, 0% overlap, examined total 171 vDG-
projecting cells and 213 AD/AV-projecting cells from 5 

mice). These results suggest that DG-projecting Vb cells 
are different population from anterior thalamus-project-
ing Vb cells.

Vb neurons have been known to function as local 
projections to superficial layers in the EC to form the 

Fig. 1 Outer layer of Vb neurons in medial entorhinal cortex project to hippocampal dentate gyrus in mice. (A) Injection of CTB488 and CTB555 into dor-
sal (top) and ventral DG (bottom), respectively. CTB488 (green). CTB555 (red). DAPI (blue). Scale bar, 500 μm (top), 1 mm (bottom). (B) Parasagittal sections 
of the MEC labeled with CTB488 (green), CTB555 (red) and immunostained with Ctip2 (blue). Arrowheads indicate CTB488+ cells and CTB555+cells in Vb, 
individually. Scale bar, 500 μm. (C–D) Magnified images of B, top square (C) and bottom square (D), respectively. Yellow arrowheads indicate CTB488 and 
CTB555 double positive cells. White arrowheads indicate CTB555 single positive cells. Scale bar, 100 μm. (E–H) Immunohistochemistry for CTB555+ cells 
using GABAergic interneuron makers, respectively (left). Merged images of left panel and CTB555+ cell, individually (right). (E) GAD67, (F) Parvalbumin, 
(G–H) Somatostatin. Example image of somatostatin negative CTB555+ cell (G) and somatostatin positive CTB555+ cell (H). Scale bar, 10 μm. (I) Injection 
of CTB555 (red) into vDG (top), CTB488 (green) into BLA (middle), and CTB647 (blue) into NAc (bottom), respectively. Scale bar, 1 mm. (J) Parasagittal 
sections of the MEC labeled with CTB488, CTB555, CTB647. Scale bar, 500 μm. (K) Magnified images of J, respectively. Scale bar, 200 μm. (L) Injection of 
CTB555 into AD/AV. Scale bar, 1 mm. (M) Parasagittal sections of the MEC labeled with CTB555 (top left, red) and immunostained with PCP4 (top right, 
green), NeuN (bottom left, blue) and merged image (bottom right). Scale bar, 200 μm. (N) Magnified image of square area in M. Scale bar, 100 μm. (O) 
Distribution of vDG-projecting CTB+ cells (top, n = 7 mice) and AD/AV-projecting CTB+ cells (bottom, n = 6 mice) in MEC Vb which represented by 50 bins 
through the outer to the inner layer of Vb. (P) Parasagittal section of the MEC Vb labeled with CTB488 (green) and CTB555 (red) and immunestained with 
PCP4 (blue), which CTB488 and CTB555 were injected into AD/AV and vDG, respectively. Scale bar, 50 μm. (Q) Summary for projection of MEC layer Vb 
neurons into hippocampus
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EC-HPC loop circuit [4, 9, 11, 12]. However, in this study, 
we identified that the outer layer of MEC Vb neurons 
directly project to both the dorsal and ventral DG, with 
a significant preference for the ventral DG (Fig. 1Q). DG-
projecting Vb cells and anterior thalamus-projecting 
Vb cells are distinct populations and they have differen-
tial distribution patterns in Vb (Fig. 1O). Both male and 
female mice showed similar anatomical distribution. 
Although it has long been considered that only superfi-
cial layers of EC neurons project to the HPC, accumulat-
ing evidence [15, 16] including this study indicates that 
the subpopulation of neurons from all layers in the EC 
differentially provide significant projections to the HPC. 
Further studies will be required to understand the neural 
processes and the computations underlying learning and 
memory, based on the updated anatomical maps in the 
EC-HPC networks.
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