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Abstract
This study aimed to unveil the central mechanism of moxibustion treating chronic inflammatory visceral pain (CIVP) 
from the angle of circRNA-miRNA-mRNA networks in the spinal cord. The rat CIVP model was established using a 
mixture of 5% (w/v) 2,4,6-trinitrobenzene sulfonic acid and 50% ethanol at a volume ratio of 2:1 via enema. Rats in 
the moxibustion group received herb-partitioned moxibustion at Tianshu (ST25, bilateral) and Qihai (CV6) points. 
The abdominal withdrawal reflex (AWR), mechanical withdrawal threshold (MWT), and thermal withdrawal latency 
(TWL) were adopted for pain behavior observation and pain sensitivity assessment. The circRNA, miRNA, and mRNA 
expression profiles were detected using the high-throughput sequencing technique. Relevant databases and 
bioinformatics analysis methods were used to screen for differentially expressed (DE) RNAs and build a circRNA-
miRNA-mRNA (competing endogenous RNA) ceRNA regulatory network. The real-time quantitative PCR was 
employed to verify the sequencing result. CIVP rat models had a significantly higher AWR and lower TWL and MWT 
than normal rats. Between normal and model rats, there were 103 DE-circRNAs, 16 DE-miRNAs, and 397 DE-mRNAs 
in the spinal cord. Compared with the model group, the moxibustion group had a lower AWR and higher TWL and 
MWT; between these two groups, there were 118 DE-circRNAs, 15 DE-miRNAs, and 804 DE-mRNAs in the spinal 
cord. Two ceRNA networks were chosen to be verified. As a result, moxibustion’s analgesic effect on visceral pain 
in CIVP rats may be associated with regulating the circRNA_02767/rno-miR-483-3p/Gfap network in the spinal cord 
and improving central sensitization.
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Introduction
Visceral pain (VP) is the pain deriving from internal 
organs and is also one of the most common types of 
chronic pain experienced by inflammatory bowel dis-
ease (IBD) patients [1]. A hospital cohort study showed 
that 38% of IBD patients suffered from chronic pain, and 
91% suffered abdominal pain; they usually had a high dis-
ease activity, hindered quality of life (QOL), and negative 
moods like anxiety and depression [2]. Abdominal pain 
caused by chronic and recurrent gastrointestinal inflam-
mation, a chronic inflammatory visceral pain (CIVP), is a 
major type of IBD-associated VP [3, 4]. Hence, relieving 
pain and improving QOL are important demands of IBD 
patients. To date, short-term and small-dose painkillers 
such as non-steroidal anti-inflammatory drugs, antide-
pressants, cyclooxygenase-2 inhibitors, and psychoactive 
agents such as marijuana and opioids are often recom-
mended to manage abdominal pain in IBD patients [5, 6]. 
However, aside from side effects and addiction, long-term 
use of opioids has been proven to be associated with poor 
QOL and a high mortality rate [7–9]. Therefore, clinical 
management of IBD-related CIVP is in high demand; 
seeking safe, effective analgesic approaches or drugs has 
become the focus of clinical staff and patients. It’s been 
verified that moxibustion, a non-pharmaceutical ther-
apy, can reduce abdominal pain in Crohn’s disease (CD), 
ulcerative colitis (UC), and irritable bowel syndrome 
(IBS) and improve QOL and anxiety [10–15]. However, 
moxibustion’s analgesic mechanism is still unclear.

The sensitization of peripheral and central nervous sys-
tems is an essential mechanism in developing IBD-asso-
ciated CIVP [16–18]. Research shows that CIVP patients 
and animal models all present persistent visceral hyper-
algesia, which involves multiple abnormal epigenetic 
modifications in the spinal cord and brain [19–21]. Cir-
cular RNAs (circRNAs) are closed-loop RNA molecules 
with microRNA (miRNA, miR) response element (MRE) 
structures. They are highly conservative, extensively dis-
tributed, and tissue-specific and act as the key compet-
ing endogenous RNA (ceRNA) of epigenetic regulatory 
factors [22, 23]. Recent studies have found that circRNAs 
play an important role in chronic pains, including lum-
bago and neuropathic pain in degenerative diseases [24–
27]. As the “molecular sponge” of miRNAs, circRNAs can 
competitively bind with miRNAs to regulate the mRNA 
transcription of target genes; these three groups of RNAs 
interact and build a ceRNA network [28]. Some miRNAs 
and the corresponding target genes participate in the 
regulation of pain-related gene expression in the central 
nervous system [29, 30]. It is unknown and worth discov-
ering whether moxibustion improves visceral hyperalge-
sia and treats CIVP by modulating the ceRNA network 
in the spinal cord. So, in this study, we used 2,4,6-trini-
trobenzene sulfonic acid (TNBS) to develop a rat CIVP 

model. With this model, we screened for differentially 
expressed (DE) circRNAs, miRNAs, and mRNAs in the 
spinal cord using the full-transcriptome high-throughput 
sequencing technique and built circRNA-miRNA-mRNA 
ceRNA networks via databases such as miRanda and bio-
informatics analysis techniques. This study was supposed 
to reveal the central mechanism of moxibustion treating 
IBD-associated CIVP from the perspective of spinal cord 
ceRNA network regulation and to provide novel ideas for 
moxibustion’s analgesic mechanism research.

Results
Comparison of AWR(Abdominal withdrawal reflex), 
MWT(Mechanical withdrawal threshold), and TWL(Thermal 
withdrawal latency)
Rats in the model group (MG) had a higher AWR and 
lower MWT and TWL at each level of rectal distension 
pressure compared with the normal group (NG) (all 
P<0.01). In the MG, rats showed severe colonic damage, 
manifesting as loss of colonic mucosal epithelium, ulcers 
reaching the submucosal and muscular layers, irregular 
gland arrangement or even loss of glands, and edema of 
submucosal connective tissue with extensive inflamma-
tory cell infiltration. Compared with the MG, the AWR 
dropped (P40mmHg<0.05, Pother pressure levels<0.01), and the 
MWT and TWL increased (all P<0.01) at each pres-
sure level in the moxibustion group (MOXG). Moreover, 
in the MOXG, healed ulcers were found, together with 
slightly irregularly arranged swelling glands and mild 
submucosal edema and inflammatory cell infiltration 
(Fig. 1).

Changes in the profiling of circRNA, miRNA, and mRNA in 
rat spinal cord
Compared with the NG, 103 DE-circRNAs (56 up-reg-
ulated/47 down-regulated), 16 DE-miRNAs (all down-
regulated), and 397 DE-mRNAs (58 up-regulated/339 
down-regulated) were found in the spinal cord tissue of 
MG rats. Compared with the MG, 118 DE-circRNAs (59 
up-regulated/59 down-regulated), 15 DE-miRNAs (14 
up-regulated/1 down-regulated), and 804 DE-mRNAs 
(703 up-regulated/101 down-regulated) were found in 
the spinal cord tissue of MOXG rats. Cluster analysis was 
performed for the DE-circRNAs, miRNAs, and mRNAs 
(Fig. 2).

Constructing the circRNA-miRNA-mRNA ceRNA networks 
in the spinal cord and screening
Based on the Pearson correlation analysis, miRanda 
v3.3a was used to predict the target pairs among 3 
DE-RNAs. Finally, we discovered 38 cicRNA-miRNA 
negative regulation pairs, 46 miRNA-mRNA negative 
regulation pairs, and 2762 circRNA-miRNA positive 
regulation pairs (MG vs. NG). We then used CytoScape 
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3.6.1 to sketch the circRNA-miRNA-mRNA ceRNA 
networks, including 19 circRNAs, 6 miRNAs, and 12 
mRNAs (Supplementary Tables  1, 2,  3,  4; Fig.  3). And, 
the top 6 ceRNA networks were circRNA_04991/rno-
miR-214-3p/Lrrc4, circRNA_04991/rno-miR-483-3p/
Lrrc4, circRNA_01290/rno-miR-214-3p/LOC108348139, 
circRNA_01290/rno-miR-451-5p/LOC108348139, cir-
cRNA_01290/rno-miR-203a-3p/LOC108348139, and 
circRNA_01290/rno-miR-483-5p/LOC108348139.

Target gene functional annotation and enrichment 
analysis
Functional annotation and enrichment analysis of the 
corresponding DE-mRNAs were conducted using KEGG 
and GO databases (Supplementary Table 5). It’s revealed 
that the top 5 enriched signaling pathways were D-Argi-
nine and D-ornithine metabolism, ECM-receptor inter-
action, protein digestion and absorption, focal adhesion, 
and PI3K-Akt pathways. Of the top 30 enriched signaling 
pathways, some were related to pain, such as cGMP-PKG, 
NF-κB, and mTOR signaling pathways, and some were 
associated with inflammation, such as Jak-STAT, NOD-
like receptor, and TOLL-like receptor, and cAMP signal-
ing pathways (Fig. 4A). The involved biological processes 

mainly included anterior/posterior pattern specification, 
brain development, apoptotic process, transmembrane 
transport, positive regulation of gene expression, nega-
tive regulation of transcription by RNA polymerase II, 
and protein hydrolysis. The cell components included 
axonal terminals, cell bodies, basolateral plasma mem-
branes, and neuronal cell bodies. Molecular functions 
included structural molecular activity, signaling receptor 
binding, DNA binding transcription factor activity, pro-
tein recognition binding, zinc ion binding, etc. (Fig. 4B).

Verification of sequencing results
Two DE pairs, circRNA_09943/rno-miR-203a-3p and 
circRNA_02767/rno-miR-483-3p, were selected by ana-
lyzing the intersection between two groups of circRNA-
miRNA pairs (MG vs. NG and MOXG vs. MG). Then, 
the mRNAs co-expressed in the three groups were 
screened for the target genes of the above two miR-
NAs, given the premise of pain-related, and we got two 
ceRNA networks: circRNA_02767/rno-miR-483-3p/Gfap 
and circRNA_09943/rno-miR-203a-3p/Aurkb, which 
were then verified, and possible binding sites were pre-
dicted (Fig. 5A, B, C, D). The results presented that, com-
pared with the NG, rats in the MG showed a significant 

Fig. 1  Histomorphological observation of rat colonic tissue and pain behaviors (A) Hematoxylin-eosin  (HE) staining of colonic tissue (×100, 
×400);(B) Comparison of the AWR at rectal distension pressures of 20, 40, 60, and 80 mmHg; (C) Comparison of the MWT; (D) Comparison of the TWL; 
(E) Change of the AWR pre and post treatment at rectal distension pressures of 20, 40, 60, and 80 mmHg; (F) Change of the MWT and TWL pre and post 
treatment; (G) Comparison of the histological score and inflammatory cell count. vs. NG, **P<0.01; vs. MG, ##P<0.01. NG: Normal group; MG: Model group; 
MOXG: Moxibustion group. AWR: Abdominal withdrawal reflex; MWT: Mechanical withdrawal threshold; TWL: Thermal withdrawal latency
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increase in the expression of circRNA_02767 and cir-
cRNA_09943, a notable decrease in the expression of 
miR-203a-3p and miR-483-3p, and elevated Gfap mRNA 
expression in the spinal cord tissue (all P<0.01), while the 
Aurkb mRNA content only had an increasing tendency 
without statistical significance (P>0.05). Compared with 
the MG, in the spinal cord tissue of MOXG rats, the 
expression of circRNA_02767 was down-regulated, the 
expression of miR-203a-3p and miR-483-3p was up-reg-
ulated, and the expression of Gfap mRNA was reduced 
(all P<0.05), while the expression of circRNA_09943 and 

Aurkb mRNA showed a statistically insignificant decreas-
ing tendency (both P>0.05) (Fig. 5E, F, G, H).

Discussion
Abdominal pain is the primary main recurrent clinical 
manifestation during the disease course in IBD patients 
[31]. When inflammation attacks, intestinal efferent 
nerve endings activated by inflammation mediators often 
cause persistent pain [32]. Nevertheless, even when the 
intestinal inflammation is in remission, 30-50% of the 
population still suffer from severe abdominal pain, and in 

Fig. 2  Heat map and volcano map of DE circRNAs, miRNAs, and mRNAs (A) Heat map of DE circRNAs (MG vs. NG); heat map of DE circRNAs (MOXG 
vs. MG). (B) Volcano map of DE circRNAs (MG vs. NG); heat map of DE circRNAs (MOXG vs. MG). (C) Heat map of DE miRNAs (MG vs. NG); heat map of 
DE miRNAs (MOXG vs. MG). (D) Volcano map of DE miRNAs (MG vs. NG); volcano map of DE miRNAs (MOXG vs. MG). (E) Heat map of DE mRNAs (MG vs. 
NG); heat map of DE mRNAs (MOXG vs. MG). (F) Volcano map of DE mRNAs (MG vs. NG); volcano map of DE mRNAs (MOXG vs. MG). n = 3. On heat maps, 
red represents up-regulation, and blue means down-regulation; the darker the color, the more significant the change. On volcano maps, red represents 
significantly up-regulated RNAs, green indicates significantly down-regulated RNAs, and grey means insignificantly differentially expressed RNAs. NG: 
Normal group; MG: Model group; MOXG: Moxibustion group. DE: Differentially expressed
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some cases, the pain “transfers” from the intestine to skin 
or other visceral regions, which hampers the QOL and 
increases the risk of pressure, anxiety, and depression 
[33, 34]. Thus, safe and effective management of pain and 
improving QOL have become highly demanded among 
IBD patients. Aside from drugs for ameliorating intestinal 
lesions, analgesics like opioids are commonly used [35]. 
However, long-term use or large doses of opioid drugs 
has been found related to the increase in mortality and 
infection in IBD patients, thus triggering opioid use dis-
orders [36, 37]. Therefore, some scholars point out that 
it is indeed crucial to find a replacement drug or therapy 
for IBD patients suffering from pain [38]. As a non-phar-
maceutical external therapy, acupuncture-moxibustion is 
simple, mild, and multi-targeting [39, 40]. In recent years, 
numerous studies have verified the positive effect of 
moxibustion on abdominal pain. For example, moxibus-
tion can mitigate abdominal pain in CD by reducing its 
intensity, frequency, and duration; moxibustion can also 
improve abdominal pain, bloating, and mental symptoms 
by regulating the brain-gut axis function in constipation-
dominant IBS patients [41, 42]. In this study, moxibus-
tion reduced the AWR and increased the MWT and 
TWL, lowering hyperalgesia, in TNBS-induced CIVP rat 
models, suggesting the analgesic effect of moxibustion 
on CIVP rats, which is in line with previous reports [43, 

44]. It inspires that moxibustion may become an analge-
sic replacement and be applied in the routine treatment 
of IBD patients suffering from pain. Further research on 
moxibustion’s analgesic mechanism can provide reliable 
scientific evidence for the clinical application.

CircRNAs are differentially expressed in various 
regions or subcellular neuronal structures. They play a 
role in modulating brain development, neuronal differ-
entiation, and synaptic plasticity and act as important 
regulatory factors in the occurrence and development 
of neurological diseases such as Parkinson’s disease and 
Alzheimer’s disease [45–47]. Some studies hold that 
circRNAs may be involved in regulating chronic pain, 
including the development of pain and central sensiti-
zation [25, 48]. Chen et al [49] proved that spinal cord 
circKcnk9 mediated IBS-associated chronic visceral 
hyperalgesia. However, research is still limited on cir-
cRNAs and IBD-related CIVP. Based on the above find-
ings, the current study adopted an IBD-related CIVP 
model to investigate the action mechanism of circRNAs 
in CIVP. The results suggested that compared with the 
NG, there were 103 DE circRNAs (59 up-regulated; 47 
down-regulated) in the spinal cord of MG rats; com-
pared with the MG, 118 DE circRNAs (59 up-regulated; 
59 down-regulated) were found in the spinal cord of 
MOXG rats. Some DE circRNAs between the MOXG 

Fig. 3  Interacting circRNA-miRNA, miRNA-mRNA, circRNA-mRNA pairs and circRNA-miRNA-mRNA networks (A): CircRNA-miRNA pairs, in which 
circRNAs were all down-regulated, and miRNAs were up-regulated. (B): MiRNA-mRNA pairs, in which miRNAs were all up-regulated, and mRNAs were 
down-regulated. (C): CircRNA-mRNA pairs, in which circRNAs and mRNAs were all down-regulated. (D): CircRNA-miRNA-mRNA networks. Green repre-
sents circRNAs, red represents miRNAs, and yellow indicates mRNAs. DE: differentially expressed

 



Page 6 of 13Zhang et al. Molecular Brain           (2024) 17:23 

Fig. 4  Target gene function and pathway enrichment analyses (A): KEGG pathway enrichment. The size of the dots corresponds to the number of dif-
ferentially expressed genes in GO items. The enrichment P-value shrinks, and the significance grows as the dot’s color changes from purple to blue, green, 
and red. (B): GO function enrichment. Green represents biological processes, blue indicates cellular components, and red means molecular functions
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and MG participate in pain conduction, e.g., sodium ion 
channel proteins Slc8a1 and Slc8a3, inflammation-related 
signaling molecule Lilrb3l, Ubr3, Stx8, Zfp423, Myt1l, 
etc. (Supplementary Table  6). The results indicated that 
abnormally expressed circRNAs in the spinal cord were 
involved in the development of CIVP; moxibustion might 
relieve hyperalgesia in CIVP rats by regulating circRNAs 
in the spinal cord.

CircRNAs competitively bind with miRNAs through 
MRE to release miRNAs’ suppression on target genes 
and regulate the transcription of target mRNAs [50]. In 
this study, we discovered 10 DE miRNAs co-expressed 
in the three groups: rno-miR-429, rno-miR-223-5P, 
rno-miR-203a-3p, rno-miR-450b-3p, rno-miR-214-3p, 
rno-miR-3120, rno-miR-322-3p, rno-miR-199a-5p, 

rno-miR-345-5p, and rno-miR-542-5p. It’s found that 
miRNAs play a role in visceral pain by modulating target 
gene transcription of peripheral or central neurotrans-
mitters and their related proteins [51]. Our findings 
partly correlate with the previous research. For example, 
rno-miR-223-5P participates in modulating the polar-
ization of microglia and plays an essential role in pain 
responses; the expression of spinal cord miR-214-3p 
can suppress astrocytes’ reactions and attenuate neuro-
inflammation and pain behavior in spinal nerve ligation 
(SNL) model rats [52–54]. In the current study, these 
miRNAs were down-regulated in the MG but up-regu-
lated in the MOXG. Furthermore, we performed KEGG 
analysis for the target genes based on the negative regu-
lation relationship between miRNAs and mRNAs. The 

Fig. 5  Prediction of ceRNA network binding sites and qRT-PCR verification (A): Predicted binding sites of circRNA_09943 and rno-miR-203a-3p; (B): 
Predicted binding sites of circRNA_02767 and rno-miR-483-3p; (C): Predicted binding sites of rno-miR-203a-3p and Aurkb mRNA; (D): Predicted bind-
ing sites of rno-miR-483-3p and Gfap mRNA. Red triangles represent the binding regions of miRNAs (MRE). (E): Comparison of the relative expression of 
circRNA_0994 and circRNA_02767 (F): Comparison of the relative expression of rno-miR-203a-3p and rno-miR-483-3p; (G): Comparison of the relative 
expression of Gfap mRNA; (H): Comparison of the relative expression of Aurkb mRNA. n = 6. vs. NG, **P<0.01; vs. MG, *P<0.05, ##P<0.01. NG: Normal group; 
MG: Model group; MOXG: Moxibustion group
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analysis discovered pain-related signaling pathways such 
as PI3K-Akt, cGMP-PKG, NF-кB, and mTOR pathways 
and inflammation-related signaling pathways such as 
Jak-STAT, NOD-like receptor, TOLL-like receptor, and 
cAMP pathways, which were all highly enriched. The 
GO analysis revealed that the molecular functions of the 
target gene were mainly enriched in structural molecule 
activity, signal receptor binding, DNA-binding transcrip-
tion factor activity, protein recognition binding, zinc ion 
binding, etc. These findings suggest that moxibustion 
may ease pain by regulating miRNAs’ activity via cir-
cRNAs to modulate the target mRNA transcription and 
pertinent signaling pathways.

As the term “ceRNA” arises, circRNAs and other 
noncoding RNAs are endowed with novel biological 
functions, and the potential regulation mechanisms 
of transcription are also extended [55]. In a study, the 
lncRNA/circRNA-miRNA-mRNA ceRNA networks were 
discovered in neurological diseases mediated by microg-
lia and astrocytes [56]. In the current study, we observed 
the whole transcriptome expression profiling of CIVP 
rats’ spinal cords using the high-throughput sequenc-
ing technique and constructed circRNA-miRNA-mRNA 
ceRNA networks to discuss the mechanism of moxibus-
tion treating IBD-related CIVP. We verified two networks 
out of numerous ceRNA networks, circRNA_09943/
rno-miR-203a-3p/Aurkb and circRNA_02767/rno-miR-
483-3p/Gfap. In these two networks, miR-203a-3p and 
miR-483-3p may relate to pain, and two target genes, 
Aurkb and Gafp are also found participating in pain regu-
lation [57, 58]. Aurkb is a serine/threonine protein kinase 
that modulates the separation of chromosomes and cyto-
plasm during mitosis and is a key protein in the cell cycle 
signaling pathway. Shen et al [59] found that Aurkb was 
essential in spinal microglial proliferation and neuro-
pathic pain, and modulating Aurkb might be an effec-
tive approach in treating peripheral nerve injury-related 
neuropathic pain. Gfap is an important immune marker 
of astrocytes, which can encourage the occurrence of 
IBS-related abdominal pain [60, 61]. Pro-inflammatory 
cytokines and chemokines produced by astrocytes and 
microglia are crucial in inducing and maintaining central 
sensitization [62]. According to PCR verification, com-
pared with the MG, circRNA_02767 was down-regulated, 
rno-miR-203a-3p and rno-miR-483-3p were up-regu-
lated, and Gfap mRNA was down-regulated in the spinal 
cord of MOXG rats (all P<0.05), while circRNA_09943 
and Aurkb mRNA only showed a decreasing tendency 
(P>0.05). The circRNA-miRNA-mRNA network plays a 
crucial role in IBD related CIVP and moxibustion may 
improve pain hypersensitivity in rats and alleviate CIVP 
by regulating the spinal cord circRNA 02767/rno miR-
483-3p/Gfap network.

Conclusion
This study analyzed, predicted, and constructed ceRNA 
networks by the high-throughput sequencing tech-
nique and used miRanda software to select two ceRNA 
networks to verify, circRNA_09943/rno-miR-203a-3p/
Aurkb and circRNA_02767/rno-miR-483-3p/Gfap, which 
were closely associated with IBD-related CIVP. This study 
unveiled the central sensitization in CIVP and possible 
mechanisms of moxibustion analgesia. We proved that 
moxibustion could improve hyperalgesia in CIVP rats, 
and this effect might be achieved by regulating the spinal 
circRNA_02767/rno-miR-483-3p/Gfap ceRNA network.

However, some limitations should be mentioned here. 
This experiment only verified for pain-related ceRNA 
networks chosen based on the miRNAs co-expressed in 
the three groups. Therefore, further validation and explo-
ration are needed for ceRNA networks with higher scores 
in future research. Meanwhile, due to the large amount 
of full transcription sequencing data and the differences 
in screening methods, other interesting research results 
remain to be discovered. Secondly, further analysis and 
confirmation of circRNA-miRNA and miRNA-mRNA 
interactions are required using experimental techniques 
such as dual luciferase reporter assay and pull down 
experiment. In addition, this experiment used the entire 
spinal cord sample for sequencing. So, exactly which cells 
in the spinal cord execute the regulation of the ceRNA 
network is also a question worthy of attention and 
research.

Method and material
Experimental animal
A total of 27 healthy SPF  (Specific pathogen free) male 
Sprague-Dawley (SD) rats weighing (150 ± 20) g were 
supplied by Shanghai Jihui Experimental Animal Co., Ltd. 
(SCXK(Hu)2017-0012). Before the experiment started, 
rats were fed in an environment with the room tempera-
ture at (20 ± 2) °C and humidity at 50-70% for 7 d. This 
experiment was approved by the Ethics Committee of 
Yueyang Hospital of Integrated Traditional Chinese and 
Western Medicine (No.YYLAC-2020-085), and all pro-
cedures were in line with the Guiding Opinions on the 
Treatment of Experimental Animals issued by the Minis-
try of Science and Technology of the People’s Republic of 
China ((2006)398). Rats were randomized into a normal 
group , a model group, and a moxibustion group, 9 rats 
each. The experimental design and whole schedule are 
respectively shown in Fig. 6A and C.

Establishment of CIVP model
The IBD-associated CIVP rat model was established via 
enema with the mixture of 5% (w/v) TNBS (Sigma, MO, 
USA) and 50% ethanol at a ratio of 2:1 [63, 64]. When the 
modeling procedure ended, each group of rats underwent 
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pain behavior tests, and each group randomly donated 
one rat for pathological observation of colonic tissues to 
verify the modeling result.

Intervention
Rats in the MOXG received herb-partitioned moxibus-
tion (HPM) at Tianshu (ST25, bilateral) and Qihai(CV6) 
points (Fig.  6B), 2 cones for each point each session, 
once daily for 7 d. Herbal cakes (1  cm in diameter and 
0.45 cm high) used in the HPM intervention were mainly 
made with aconite powder (Huaji Pharmaceutical Indus-
try, Shanghai, China) mixed with yellow rice wine. Each 
moxa cone (0.6  cm in diameter and 0.6  cm high) used 
in the intervention was made of 90  mg fine moxa wool 
(Nanyang Hanyi Moxa Wool Co., Ltd., Henan, China). 
Rats in the NG and MG did not receive the intervention.

Pain behavior tests and pain sensitivity assessment
AWR score
Visceral sensitivity was measured by referring to AI-
Chaer’s [65] method using rectal dilation stimulation 
with the pressure going from 20 mmHg, 40 mmHg, 60 

mmHg, to 80 mmHg. Each rat was tested 3 times at each 
pressure level, 20  s each dilation, with a 5-min interval; 
the average of the three tests was taken as the final result. 
The scoring criteria were as follows: 0 points, no behav-
ioral response; 1 point, occidental head movements at 
the beginning of stimulation, while rats maintained still 
during the test; 2 points, slight contraction of abdominal 
muscles without rising of the abdomen; 3 points, strong 
contraction of abdominal muscles with notable rising of 
the abdomen but not the pelvis and scrotum; 4 points, 
the abdomen arched with rising of the pelvis and scro-
tum [66].

MWT test
The MWT test used von Frey filaments (Stoelting, IL, 
USA) to stimulate the center of the rat’s hind paw, not 
lasting over 4 s each time. Positive reactions were defined 
as lifting or licking the paw [67]. When the stimulation 
failed to induce a positive response, a one-grade higher 
stimulation would be applied; when the first positive 
reaction was induced, a one-grade lower stimulation 
would be applied. Each rat was tested 5 times at each 

Fig. 6  Illustration (A): Mechanism diagram; (B): Moxibustion (harb-partitioned moxibustion); (C): Experiment schedule and time points. CN: Central nerve; 
PN: Peripheral nerve; AWR: Abdominal withdrawal reflex; MWT: Mechanical withdrawal threshold; TWL: Thermal withdrawal latency
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grade of stimulation, with a 30  s interval. The bending 
force varied from 2.0 to 4.0, 6.0, 8.0, and 15.0 g, and the 
50% MWT of the positive reaction was calculated using 
the up-down method.

TWL test
According to Hargreaves’s [68] method, the TWL test 
adopted a thermal stimulator (Institute of Medical Biol-
ogy of Chinese Academy of Medical Sciences, Yunan, 
China) to observe the time from the beginning of thermal 
radiation till the appearance of paw lifting. Each rat was 
tested 3 times at a 3 min interval, and the average value 
was obtained as the final result.

Sample processing
Rats were anesthetized using intraperitoneal injection 
of pentobarbital sodium and sacrificed via abdominal 
aortic blood collection. Rats were fixed in a supine posi-
tion to separate the cecum, colon, and rectum. The part 
of the intestine from 2 cm above the anus to the end of 
the cecum was collected, cut along the mesenterium, and 
rinsed using normal saline at 4 ℃. One-centimeter nota-
bly injured part of the colon was collected and fixed in 
4% paraformaldehyde. Then, rats were fixed in a prone 
position to expose the spinal cord and collect the L6-S2 
segment by separating muscles on both sides of the spine, 
cutting cervical vertebral bodies, and slowly cutting ver-
tebral pedicles perpendicularly from the broken end of 
the spinal canal. The collected spinal cord tissues were 
kept at -80 ℃.

Histomorphological observation of colonic tissues
Histomorphological changes in colonic tissues were 
observed under a light microscope (Olympus, Toyko, 
Japan) using HE staining. The pathological injury score 
of colon was determined according to the scoring criteria 
(Supplementary Table  5) and the number of inflamma-
tory cell was counted.

High-throughput sequencing (RNA-seq)
Total RNA extraction: Each group contributed the entire 
segment of L6-S2 spinal cord tissues from 3 rats to extract 
the total RNA using the tissue RNA purification kit 
plus (EZBioscience, MN, USA). The purity and content 
were determined by an ultraviolet spectrophotometer 
NanoDrop 2000. The Agilent 4200 TapeStation system 
(Agilent, CA, USA) was used to test the quality of the 
total RNA, and the qualified samples would go through 
RNA-seq.

Establishing the full-transcriptome sequencing library: 
Removal of rRNA using the total RNA-seq library prep 
kit (Illumina, CA, USA); RNA fragmentation; first-strand 
cDNA synthesis during reverse transcription; replac-
ing dTTP with dUTP during the second-strand cDNA 

synthesis while reserving the first strand; amplifying the 
first strand after purification, modification, and fragment 
length screening to construct the cDNA library for cir-
cRNA and mRNA.

Establishing the microRNA sequencing library: The gel 
electrophoresis was used to break 5 µL total RNA into 
18–30 nt RNA fragments, amplified after end repair to 
establish the cDNA library for miRNA.

Sequencing and data analysis: Took 1 µL sample from 
each library to quality testing with the Agilent 2100 chip 
(Agilent, CA, USA). The qualified samples were then sent 
for sequencing using the Illumina sequencer (Illumina, 
CA, USA). We used HISAT2 to run sequence compari-
sons between CleanReads and the designated reference 
genome and collect the locations of the reference genome 
or genes, as well as the sequencing features of the sample 
[69]. The circRNA expression was calculated using the 
number of reads per million (RPM) clean tags, and the 
expression of miRNA was described using the transcript 
per million (TPM). Finally, the fragments per kilobase of 
exon model per million mapped fragments (FPKM) was 
used to normalize mRNA expression.

The raw sequence data reported in this paper have been 
deposited in the Genome Sequence Archive (Genomics, 
Proteomics & Bioinformatics 2021) in National Genom-
ics Data Center (Nucleic Acids Res 2022), China National 
Center for Bioinformation / Beijing Institute of Genom-
ics, Chinese Academy of Sciences (GSA: CRA015638) 
that are publicly accessible at https://ngdc.cncb.ac.cn/gsa 
[70, 71].

Screening for DE genes and cluster analysis
The between-group difference was analyzed using DeSeq 
and EdgeR, and the expression difference of a gene 
between different samples was assessed using fold change 
(FC) and P-value. The expression difference was con-
firmed significant when P<0.05 and log2FC>1. Cluster 3.0 
and Treeview were adopted to run cluster analysis for DE 
genes.

Constructing circRNA-miRNA-mRNA ceRNA networks
We used databases such as miRanda to predict the reg-
ulation relationships between miRNA and circRNA, 
miRNA and mRNA, circRNA and mRNA, and estab-
lish circRNA-miRNA, miRNA-mRNA, and circRNA-
mRNA pairs. Based on the Pearson correlation analysis, 
pairs with a correlation efficient r ≥ 0.80 and P ≤ 0.05 were 
selected; the default in miRanda (v3.3a) was used to pre-
dict the binding between sequences. We used ceRNA 
MuTATE to score ceRNA pairs and calculated the prob-
ability of ceRNA pairs sharing certain miRNAs with the 
hypergeometric distribution mathematic model. The 
Cytoscape 3.6.1 software was employed to visualize the 
corresponding regulation networks.

https://ngdc.cncb.ac.cn/gsa
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GO and KEGG analysis of DE target mRNAs
The pathway enrichment analysis for DE mRNAs was 
run using the KEGG (Kyoto Encyclopedia of Genes and 
Genomes) database (http://www.genome.ad.jp/kegg); the 
function enrichment was analyzed using the GO (Gene 
Ontology) database (http://www.geneontology.org)[72, 
73].

Quantitative real-time PCR (qRT-PCR)
According to the Trizol kit (Invitrogen, CA, USA) 
instruction, the total RNA in rat spinal cord tissues 
was extracted and then detected for its content using 
the ND-1000 Nanodrop (Thermo Fisher, MA, USA). 
The cDNA of miRNA was generated using the miRNA 
reverse transcription kit (EZBioscience, MN, USA). The 
amplification reaction conditions were: 95 ℃ 5  min; 95 
℃ 10 s; 60 ℃ 30 s; 95 ℃ 15 s; 60 ℃ 1 min; 95 ℃ 30 s, 
40 cycles. The cDNA of circRNA was synthesized using 
the PrimeScript™ RT Master Mix (Takara, Shiga, Japan) 
under: 95 ℃ 30 s, 1 cycle; 95 ℃ 5 s; 60 ℃ 30 s, 40 cycles; 
95 ℃ 5  s; 60 ℃ 1  min, 1 cycle; 50 ℃ 30  s, 1 cycle. All 
amplification reactions were completed by the LightCy-
cler 480 real-time quantitative PCR instrument (Roche, 
Basel, Switzerland). The primer sequences are shown in 
Supplementary Table  6. The relative amount was calcu-
lated using 2ΔΔCt; ΔCt = Target gene Ct value – reference 
gene Ct value. The 2ΔΔCt of each sample = 2ΔCt of each 
sample/the mean 2ΔCt of all samples in the NG.

Statistical analysis
SPSS 24.0 was used for statistical analyses. The data 
conforming to normal distribution were expressed as 
mean ± standard deviation (x ± s), and those not were 
described as median and quartiles [Median(P25, P75)]. 
The data conforming to normal distribution and homoge-
neity of variance were checked by the one-way ANOVA; 
the LSD for between-group comparisons and Bonfer-
roni’s multiple comparison test for multiple comparisons. 
The data not in normal distribution or homogeneity of 
variance were processed using the Kruskal-Wallis H test, 
and the Games-Howell test for between-group compari-
sons. We took α = 0.05 as the significance level and con-
firmed statistical significance when P<0.05.

Figures and legends.
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