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by G protein-coupled receptor (GPCR) can affect social 
behavior [4].

Oxytocin is a neuropeptide that affects multiple 
physiological responses, including social behaviors [5]. 
Although oxytocin is produced by oxytocin neurons 
in the hypothalamus, the oxytocin receptor (OXTR) is 
widely expressed in the brain, including in the cerebel-
lum. The expression pattern of OXTR is associated with 
social behavior [6]. Although some reports suggest that 
PCs express OXTR [7], others suggest that BGs, and not 
PCs, express OXTR [8]. These contradictory findings 
have not been explained in detail.

In this study, we found large variations in the expres-
sion patterns of OXTR in the cerebellum among the 
transgenic lines, even though they were all knock-in mice. 
We also observed changes in the expression of OXTR in 
BGs during aging. Finally, we found that physical damage 

Introduction
The cerebellum regulates body movements and cognitive 
functions. Cerebellar injury at birth increases the risk of 
autism spectrum disorder [1]. Purkinje cells (PCs) in the 
cerebellum receive multiple inputs from parallel fibers 
and project to the deep cerebellar nuclei. The cerebel-
lar cerebrocortical circuit controls social behavior [2]. 
Another essential component of the cerebellum is the 
Bergmann glial cells (BGs) which are specialized astro-
cytes that wrap around the dendrites of PCs [3]. BGs 
modulate the firing patterns of PCs, and their modulation 

Molecular Brain

*Correspondence:
Ayumu Inutsuka
inutsuka@jichi.ac.jp
Tatsushi Onaka
tonaka@jichi.ac.jp
1Department of Physiology, Jichi Medical University,  
Shimotsuke 323-0498, Japan

Abstract
The cerebellum plays an important role in cognitive and social functioning. Childhood damage in the cerebellum 
increases the risk of autism spectrum disorder. Cerebellar inflammation induces social avoidance in mice. Oxytocin 
regulates social relationship and expression pattern of the oxytocin receptor in the brain is related to social 
behaviors. However, the expression patterns of the oxytocin receptor in the cerebellum remain controversial. Here, 
we report that the expression patterns of the oxytocin receptor in the cerebellum are highly variable among 
knock-in transgenic lines. We used Oxtr-Cre knock-in mice combined with a fluorescent reporter line and found that 
oxytocin receptor expression in Bergmann glia was more variable than that in Purkinje cells. We found that physical 
damage with inflammation induced the selective upregulation of the oxytocin receptor in Bergmann glia. Our 
findings indicate high variability in oxytocin receptor expression in the cerebellum and suggest that the oxytocin 
receptor can affect neural processing in pathological conditions, such as inflammation.
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Fig. 1 (See legend on next page.)
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with inflammation selectively activated OXTR expression 
in BGs.

Results
To visualize OXTR expression patterns, we used an Oxtr-
Cre knock-in mouse line combined with a reporter line. 
In double-transgenic Oxtr-Cre; Rosa-LSL-tdTomato 
(Ai14) mice, OXTR expression was detected as tdTo-
mato expression (Fig. 1A). Brain slices of Oxtr-Cre; Ai14 
mice showed tdTomato expression in both PCs and BGs 
of the cerebellum (Fig. 1B). PCs and BGs were identified 
by immunostaining with anti-calbindin and anti-glial 
fibrillary acidic protein (GFAP) antibodies as molecular 
markers respectively. Developmental changes in OXTR 
expression were investigated on postnatal days 10, 3 
weeks, 10 weeks, and 53 weeks old (Fig. 1C). We observed 
a gradual increase in the number of tdTomato-positive 
cells in the Purkinje cell layer (PCL) of the cerebellum. 
The increase in the number of tdTomato-expressing cells 
in the PCL was mainly due to an increase in tdTomato-
expressing BGs. Next, we compared the three transgenic 
lines that visualize OXTR-expressing cells. Oxtr-Venus 
knock-in mice showed an almost exclusive expression 
pattern in the BGs. We also examined mice created by 
crossbreeding another line of Oxtr-Cre knock-in mice [9] 
with Rosa-LSL-tdTomato (Ai9) reporter mice (described 
in the Methods section of the Supplemental Informa-
tion). The mice showed tdTomato expression mainly in 
PCs. Therefore, the three transgenic lines exhibited dif-
ferent cerebellar OXTR expression patterns (Fig.  1D). 
Finally, we investigated the effects of the physical injury 
caused by glass capillary insertion into the cerebellum. 
We found that capillary insertion induced local upregula-
tion of tdTomato in the cerebellum (Fig. 1E). Immunos-
taining of microglia using an anti-Iba1 antibody showed a 
local increase in reactive microglia on the ipsilateral side 
of the cerebellum compared with the contralateral side. 
We performed similar experiments in other brain areas, 
such as the anterior cingulate cortex (ACC), to examine 
whether OXTR upregulation was selective for BGs. We 
found no similar upregulation of tdTomato expression 
in these brain areas (Fig. 1E). Quantitative cell counting 

analysis indicated that this upregulation of OXTR in the 
cerebellum is a BG-specific phenomenon and that the 
number of tdTomato-expressing PCs was not affected 
by inflammation (Fig. 1F). We observed similar upregu-
lation of OXTR one week after adeno-associated virus 
(AAV) injection, while we observed weaker upregulation 
two days after injection (Figure S1). Capillary insertion 
induced a local increase of Venus signal in the injured 
area of the cerebellum in Oxtr-Venus mice (Figure S2). 
Lipopolysaccharide (LPS) injection resulted in wide-
spread upregulation of OXTR (Figure S3). We confirmed 
that there were no tdTomato-expressing cells in both the 
contralateral and ipsilateral sides of the insertion area in 
the cerebella of Cre-negative Ai14 mice (Figure S4). In 
the injured area of the cerebellum, we also observed local 
GFAP upregulation (Figure S5).

Discussion
In this study, we demonstrated the high variability of 
OXTR expression in the cerebellum. OXTR expression in 
BGs was activated during development (Fig.  1C). It has 
not been confirmed that all tdTomato-expressing cells in 
Oxtr-Cre; Ai14 double-transgenic mice express OXTR at 
the time of fixation. Transient activation of the Oxtr gene 
can be observed as tdTomato-positive cells in this line. 
Therefore, cumulative weak activation may be observed 
as an increase in the number of tdTomato-positive cells. 
Nevertheless, these results suggest that physiological 
events can induce remarkable upregulation of OXTR in 
BGs that is not observed in other cells, such as PCs or 
astrocytes in the ACC.

The three transgenic lines showed highly variable 
expression patterns of OXTR in the cerebellum although 
they were all knock-in mice (Fig.  1D). These results 
clearly demonstrate that the selection of animal lines is 
important for investigating the physiological functions 
of OXTR in the cerebellum. Although transient expres-
sion of Oxtr in PCs during early development partially 
explains this difference, we cannot fully explain the 
mechanism at present. This topic should be addressed in 
future studies.

(See figure on previous page.)
Fig. 1 A, Diagram showing the experimental design of double-transgenic mice to observe OXTR expression. In Oxtr-Cre; ROSA-LSL-tdTomato (Ai14) mice, 
OXTR-expressing cells are visualized as tdTomato-expressing cells. B, A typical image of cerebellum slices showing tdTomato-positive cells in Oxtr-Cre; 
Ai14 mice. PCs, BGs, and other cells such as granule cells were observed. In the Purkinje cell layer, PCs were confirmed by calbindin immunostaining, 
while BGs were confirmed by GFAP immunostaining. Black arrowhead; a cell body of a PC, white arrowheads; cell bodies of BGs, white arrows; radial fibers 
of BGs. Scale bar = 500 μm. PC, Purkinje cell; BG, Bergmann glial cell. C, Developmental changes in expression patterns of OXTR in the cerebellum. Scale 
bar = 100 μm. IGL, internal granular cell layer; PCL, Purkinje cell layer; EGL, external granular cell layer; ML, molecular layer; GCL, granule cell layer. In the 
lower row, signal intensities of tdTomato were individually adjusted for clear visualization of cell morphology. We observed at least 3 mice at each devel-
opmental stage except 53 weeks (two mice). Black arrowheads; cell bodies of PCs, white arrowheads; cell bodies of BGs. D, Typical expression pattern of 
OXTR in the cerebellar Purkinje cell layer in three transgenic lines. Scale bar = 50 μm. Black arrowheads; cell bodies of PCs, white arrowheads; cell bodies 
of BGs. We observed at least 3 mice of each mouse line except Oxtr-Cre*; Ai9 (two mice). E, Selective local up-regulation of OXTR in the cerebellum at the 
site of capillary insertion. Scale bar = 100 μm. F, Quantitative analysis of tdTomato-positive cells on the ipsilateral and contralateral side of the cerebellum. 
** P < 0.01 (n = 5)
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Differences in OXTR expression patterns in the fore-
brain can induce prominent changes in social behavior, 
from monogamous to promiscuous pair bonding [6]. 
The transcriptional regulation of Oxtr is highly variable 
among multiple bacterial artificial chromosome (BAC) 
transgenic lines with the same transgenes inserted into 
different genetic loci [10]. Our results show that this 
high transcriptional lability of Oxtr can be observed 
even in knock-in mice and provides an additional ele-
ment: inflammation. We found that physical damage with 
inflammation in the cerebellum induced the specific acti-
vation of OXTR expression in BGs (Fig. 1E, F, S1, and S2). 
The glass capillary insertion in this study is a common 
protocol for local AAV brain injection [11]. Note that 
the negative control experiments with Cre-negative Ai14 
mice clearly dispel the possibility of Cre-independent 
“leak” expression in Ai14 mice (Figure S4). BGs are gen-
erated selectively during the short period of E13.5-E14.5 
[12]; therefore, it is not reasonable to consider the cell 
proliferation of tdTomato-expressing BGs in damaged 
areas.

It was reported that OXTR is not involved in the elec-
trical properties of PCs and does not affect social behav-
iors, such as social interaction tests [7]. However, our 
results suggest that OXTR may mediate cell signaling 
under pathological conditions such as cerebellar infec-
tion. It has been reported that the insertion of an AAV-
injecting needle induces inflammation and switches the 
genetic expression of neuron-specific enolase from PCs 
to BGs, and that LPS enhances this genetic regulation 
in BGs [13]. It was also reported that inflammation by 
LPS increased the OXTR expression via nuclear factor 
kappa B (NF-κΒ) in macrophages [14], and the promoter 
region of Oxtr includes several binding sites for NF-κΒ 
and interleukins [15]. In accordance with this report, we 
observed widespread upregulation of OXTR following 
LPS injection (Figure S3) and local GFAP upregulation in 
the injured brain area (Figure S5). Considering that cer-
ebellar inflammation induces depression-like behaviors 
and social avoidance by changing the neural processing 
between the deep cerebellar nuclei and prefrontal cortex 
[16], our results indicate the need to investigate the phys-
iological roles of OXTR in the cerebellum under patho-
logical conditions.
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