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The overexpression of DSP1 
in neurons induces neuronal dysfunction 
and neurodegeneration phenotypes 
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Abstract 

Dorsal switch protein 1(DSP1), a mammalian homolog of HMGB1, is firstly identified as a dorsal co‑repressor in 1994. 
DSP1 contains HMG‑box domain and functions as a transcriptional regulator in Drosophila melanogaster. It plays 
a crucial role in embryonic development, particularly in dorsal–ventral patterning during early embryogenesis, 
through the regulation of gene expression. Moreover, DSP1 is implicated in various cellular processes, including cell 
fate determination and tissue differentiation, which are essential for embryonic development. While the function 
of DSP1 in embryonic development has been relatively well‑studied, its role in the adult Drosophila brain remains 
less understood. In this study, we investigated the role of DSP1 in the brain by using neuronal‑specific DSP1 overex‑
pression flies. We observed that climbing ability and life span are decreased in DSP1‑overexpressed flies. Furthermore, 
these flies demonstrated neuromuscular junction (NMJ) defect, reduced eye size and a decrease in tyrosine hydroxy‑
lase (TH)‑positive neurons, indicating neuronal toxicity induced by DSP1 overexpression. Our data suggest that DSP1 
overexpression leads to neuronal dysfunction and toxicity, positioning DSP1 as a potential therapeutic target for neu‑
rodegenerative diseases.
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Main text
Dorsal switch protein 1 (DSP1) was firstly identified in 
1994 as a co-repressor of Dorsal protein in Drosophila 
melanogaster [1]. The DSP1 gene encodes a protein with 
a glutamine-rich domain (N-terminal), acidic tail (C-ter-
minal) and two HMG (High Mobility Group) boxes des-
ignated as HMG box A and B [2]. HMG boxes are known 
to play a critical role in DNA binding including tran-
scription factors and chromatin remodeling complexes 
[3]. DSP1 also has been shown to be involved in tran-
scriptional activity and chromatin remodeling [1]. Previ-
ous studies have demonstrated that DSP1 binds to dorsal 
and affects transcriptional activity in dorsal. Dorsal is a 
key transcription factor responsible for dorso-ventral 
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patterning during embryonic development in Drosophila 
[1, 4]. The activity of the Dorsal protein, which can act 
as both a transcriptional activator and repressor, var-
ies depending on the promoter [4]. TATA-binding pro-
tein (TBP) is essential for transcription, being capable 
of direct interaction with the Drosophila transcription 
factor IIA (TFIIA). The TBP-TFIIA complex is involved 
in the regulation of various gene expressions, includ-
ing Dorsal protein [5]. DSP1 directly binds to TBP, dis-
rupting the TBP-TFIIA complex, particularly affecting 
TBP-gene interactions, which suppresses transcrip-
tional activity of Dorsal protein [5]. In  situ hybridiza-
tion data indicated that DSP1 is expressed in the ovaries 
and brain of adult Drosophila, highlighting its signifi-
cance in embryonic development [1]. Also, high mobil-
ity group box  1 (HMGB1), a mammalian homolog of 
DSP1, is associated with several neurodegenerative dis-
eases, including Parkinson’s disease (PD), Multiple Scle-
rosis (MS), and Amyotrophic lateral sclerosis (ALS) [6]. 
HMGB1-mediated neurodegeneration is often linked to 
neuroinflammation, a process closely associated with the 
activation of toll-like receptor 4 (TLR4) and the Recep-
tor for Advanced Glycation End products (RAGEs) [6]. 
This activation stimulates the production and secre-
tion of pro-inflammatory cytokines, including tumor 
necrosis factor-alpha (TNF-α) and interleukin-1 (IL-1α 
and IL-1β) [7]. It has been suggested that HMGB1 plays 
important roles in both autophagy and apoptosis in neu-
rodegeneration induced by mitochondrial dysfunction. 
Moreover, HMGB1 contributes to neurodegeneration 
through multiple pathways, including promoting oxi-
dative stress and disrupting the integrity of the blood–
brain barrier (BBB) [8].

However, understanding of molecular function of DSP1 
in Drosophila brain is largely unknown. To address this, 
we utilized the pan-neuronal specific Elav-Gal4 system 
to overexpress DSP1 in neuronal cells, aiming to uncover 
its functional roles in the brain. Firstly, we measured 

DSP1 expression levels and the results showed that sig-
nificant DSP1 upregulation in DSP1-overexpressed 
flies compared to wild-type controls (Supplementary 
Fig. 1A). Climbing ability and life span serve as indicators 
of neuronal function in Drosophila; a decrease in climb-
ing ability suggests impaired neuronal functions [9]. In 
accordance with previous studies, we assessed the neu-
ronal function in DSP1-overexpressed flies by measuring 
life span and conducting climbing assays. DSP1-over-
expressed flies showed a shortened lifespan and defects 
in climbing ability compared to wild-type flies (Fig. 1 A, 
B). These data indicate that DSP1 overexpression leads 
to neuronal impairment in the brain. The Drosophila 
eye has been highlighted as a robust model for assessing 
toxicity, with eye dysfunction linked to gene expression 
changes. Indeed, the photoreceptor cells of Drosophila 
have provided a foundation for genetic research into 
neuronal structure and function. Gene-induced toxicity 
in the eye is evaluated based on morphological change, 
proliferation rates, and cell death [9]. Based on this 
approach, we examined the DSP1-mediated eye mor-
phological changes using GMR-Gal4. The overexpression 
of DSP1 in the eyes showed a reduction of eye size and 
increased cell death compared with wild-type controls 
(Fig.  1C). Neuromuscular junction (NMJ) is crucial for 
signal transduction between motor neurons and muscle 
fibers, and Drosophila NMJ is a well-established model 
for studying synaptic development, function and plastic-
ity. It serves as a powerful model for studying neurode-
generation [10]. Given this context, we hypothesized that 
overexpression of DSP1 might lead to abnormalities at 
the NMJ. Indeed, we observed a decrease in the number 
of boutons at the NMJ in flies overexpressing DSP1 com-
pared to controls (Fig. 1D), indicating that DSP1 overex-
pression in neuronal cells could induce motor deficits in 
Drosophila. In motor neurons, dopamine is an essential 
neurotransmitter involved in regulation of movement 
and motor control [11]. Tyrosine hydroxylase (TH) is 

Fig. 1 A Life span analysis of control and DSP1‑overexpressed flies. The longevity of DSP1‑overexpressed flies was significantly reduced compare 
with control for both male and female (N = 125). Data are presented as the mean ± SD. ****p < 0.0001 (Log‑rank test). B Climbing ability assay 
of control and DSP1‑overexpressed flies. Neuronal expression of DSP1‑overexpressed flies significantly reduced climbing ability compared to control 
in weeks 1–4 (N = 125). Data are presented as the mean ± SD. ****p < 0.0001 (Student’s t‑test). C Eye phenotype of control and DSP1‑overexpressed 
flies using GMR-GAL4. Specific DSP1‑overexpressed flies (GMR-GAL4 > UAS-DSP1) identified a significant reduction in eye size relative to the control 
(GMR-GAL4/ +) (N ≥ 8). Data are presented as the mean ± SD. ****p < 0.0001 (Student’s t‑test). D Fluorescence analysis of third instar larval NMJs 
under control and DSP1‑overexpressed flies using anti‑horseradish peroxidase (green). Scale bar, 20 µm. DSP1‑overexpressed flies significantly 
reduced the number of synaptic boutons relative to control (N = 5). Data are presented as the mean ± SD. **p < 0.01 (Student’s t‑test). E Fluorescence 
analysis of the brain in control and DSP1‑overexpressed flies using anti‑tyrosine hydroxylase (red). Scale bar, 20 µm. DSP1‑overexpressed flies 
showed significantly decreased DA neurons compared with control. Quantified of dopaminergic neuron number in posterior clusters of the flies’ 
brain (N ≥ 10). Data are presented as the mean ± SD. ***p < 0.001 (Student’s t‑test). F RT‑PCR for AMPs and Inflammation‑related gene expression 
in control and DSP1‑overexpressed flies’ brain. RP49 was used for normalization. DSP1‑overexpressed flies are significantly reduced AMPs mRNA 
levels. Data are presented as the mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001 (Student’s t‑test). A,B,D‑F Genotypes: control is Elav-GAL4/ + (w.1118), 
DSP1 is Elav-GAL4/UAS-DSP1 

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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crucial enzyme involved in the biosynthesis of catecho-
lamine, including dopamine. Dysregulation of TH activ-
ity can lead to dopamine level abnormalities, affecting 
behaviors like motor control, learning and memory, and 
is a pathological hallmark of neurodegenerative diseases 
[12]. In DSP1-overexpressed  flies, TH-positive neurons 
are significantly decreased in PPL1, PPL2, PPM3 clusters 
(Fig.  1E) and Ple (tyrosine hydroxylase encoding gene) 
mRNA expression level is also reduced (Supplemen-
tary Fig. 1B), known to influence locomotor activity and 
neuronal functions [13]. Thus, a reduction of TH-posi-
tive neurons may contribute to neuronal impairment in 
DSP1-overexpressed flies. Neurodegeneration can also 
be driven by excessive inflammatory responses in the 
brain. Drosophila has only innate immune system, dem-
onstrating that dysregulation of this system is a patho-
logical feature in neurodegeneration [14]. Antimicrobial 
peptides (AMPs), regulated by Toll and Imd signaling 
pathways, play a role in the innate immune response. We 
examined that whether DSP1 overexpression manipu-
lates AMPs expression. Upon overexpressing DSP1 in 
neuron, we found a reduction in AMPs (Drosomycin, 
Defencin, Attancin A and Relish) and immune-related 
gene (Toll, Imd and NOS) levels in DSP1-overexpressed 
flies (Fig.  1F). Glia-specific overexpression of DSP1 also 
downregulated AMPs level (Supplementary Fig.  1C). 
While an elevated inflammatory response is one of the 
markers in neurodegeneration, our data suggest that 
DSP1 overexpression diminishes immune-related gene 
expression. Previous study has indicated that decreased 
AMP levels are a critical phenomenon in early neuro-
degeneration in Drosophila [15], suggesting that AMP 
dysregulation could reflect an immune response imbal-
ance, potentially worsening neuronal damage and dis-
ease progression. Therefore, monitoring AMPs levels and 
their regulation could provide insights into the progres-
sion of neurodegenerative diseases. On the other hand, 
knockdown of DSP1 in neuronal and glial cells showed 
extended lifespan and improved climbing ability (Supple-
mentary Fig. 1D), we suggest that loss-of-function DSP1 
might have neuroprotective effect in Drosophila.

In this study, we tried to reveal the functional role 
of DSP1 in the brain. Our findings indicate that over-
expression of DSP1 induces neuronal dysfunction 
through climbing defect and reduced life span. Further-
more, the overexpression of DSP1 resulted in impaired 
eye phenotype and decreased TH activity. Based on our 
observations, we emphasize that DSP1 overexpression 
strongly linked to neurodegeneration. However, the 
detailed molecular mechanisms mediated by DSP1 in 
inducing neurotoxic effects are not fully understood, 

highlighting the need for further research to unravel 
the molecular mechanisms of DSP1-mediated neuro-
toxicity. Given the multifaceted role of HMGB1/DSP1 
in neurodegeneration, targeting of HMGB1/DSP1 may 
represent a novel therapeutic strategy for combating 
neurodegenerative diseases.
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