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The pathological hallmarks of AD include amyloid-beta 
(Aβ) plaques and neurofibrillary tangles (NFTs), such as 
tau protein tangles [4], cholinergic dysfunction [5], glial 
cell activation [6], mitochondrial dysfunction [7], vascu-
lar abnormalities [8], calcium homeostasis [9], oxidative 
stress [10], and synaptic dysfunction [11]. These elements 
are associated with the degeneration of neurons, impede 
cognitive function, and require extensive medical atten-
tion [12, 13].

Of the various defining characteristics of AD, the 
accumulation of Aβ is regarded as a crucial pathologi-
cal feature [14]. It is believed to occur early in the disease 
process and plays a pivotal role in the progression of AD 
[15]. Furthermore, Aβ accumulation has been observed 
to be associated with other hallmark features [16–20], 

Introduction
Alzheimer’s disease (AD) is a multifaceted neurologi-
cal condition that involves the progressive degeneration 
of brain cells, resulting in cognitive decline, memory 
loss, and ultimately dementia [1]. As the leading cause of 
dementia, it accounts for roughly 60–70% of all demen-
tia cases [2]. The disease typically progresses through 
stages, starting with mild memory lapses and leading to 
severe impairments in thinking, behavior, and the ability 
to carry out daily activities [3].
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Abstract
Alzheimer’s disease (AD) is a degenerative neurological condition that gradually impairs cognitive abilities, disrupts 
memory retention, and impedes daily functioning by impacting the cells of the brain. A key characteristic of AD 
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cleavage of the amyloid precursor protein (APP) and plays a dual role depending on its processing pathway. 
The non-amyloidogenic pathway reduces Aβ production and has neuroprotective and anti-inflammatory effects, 
whereas the amyloidogenic pathway leads to the production of Aβ peptides, including Aβ40 and Aβ42, which 
contribute to neurodegeneration and toxic effects in AD. Understanding the multifaceted role of Aβ, particularly 
in AD, is crucial for developing effective therapeutic strategies that target Aβ metabolism, aggregation, and 
clearance with the aim of mitigating the detrimental consequences of the disease. This review aims to explore the 
mechanisms and functions of Aβ under normal and abnormal conditions, particularly in AD, by examining both its 
beneficial and detrimental effects.
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underscoring its significance and the need to pay atten-
tion to its role in AD. The formation of Aβ plaques begins 
with the production of Aβ peptides through the sequen-
tial cleavage of the amyloid precursor protein (APP), a 
transmembrane protein found in many cells, including 
neurons [21].

Aβ exhibits a dual role contingent on the situation 
and the two processing pathways it undergoes: the non-
amyloidogenic and amyloidogenic pathways. The non-
amyloidogenic pathway diminishes the production and 
aggregation of Aβ peptides, imparting neuroprotection, 
fostering synaptic plasticity, and exerting anti-inflamma-
tory effects [22, 23]. However, excessive emphasis on this 
pathway may disrupt the equilibrium of APP metabolism, 
resulting in accumulation of other fragments. Notably, 
the amyloidogenic pathway yields Aβ peptides, including 
Aβ40 and Aβ42, and the accumulation and aggregation of 
Aβ is closely linked to AD, provoking neurodegeneration 
and engendering toxic effects [24–27].

Understanding the multifaceted role of Aβ in differ-
ent conditions, particularly AD, is of utmost importance. 
This understanding can help scientists develop effective 
therapeutic strategies that target Aβ metabolism, hinder 
aggregation, boost clearance mechanisms, and alleviate 
the detrimental consequences of AD. The objective of 
this study was to investigate the mechanisms and roles of 
Aβ in diverse conditions, with a specific emphasis on AD, 
by examining its positive and negative effects.

Aβ production: physiological and pathological
Aβ, a small protein consisting of 39–43 amino acids, 
exists in different biophysical forms and can be gener-
ated by various cell types, including neurons, astrocytes, 
neuroblastoma cells, hepatoma cells, fibroblasts, and 
platelets [28–30]. Its presence in different species and 
cell types suggests that it plays a significant role in nor-
mal cell development and maintenance [31]. Among the 
cell types mentioned, neurons and smooth muscle cells 
demonstrate the highest levels of Aβ expression [32]. 
While the exact functions of Aβ in cell development and 
maintenance are not elaborated upon in the provided 
information, its widespread production and heightened 
expression in specific cell types imply its importance in 
cellular processes and homeostasis [33].

The production of Aβ involves the enzymatic cleav-
age of APP; this cleavage can occur through two distinct 
pathways: The amyloidogenic pathway and the non-
amyloidogenic pathway. In the amyloidogenic pathway, 
Aβ plaques are generated, while the non-amyloidogenic 
pathway does not produce Aβ plaques [24] (Fig. 1).

The non-amyloidogenic pathway serves as a natural 
mechanism to inhibit the production of Aβ. In this path-
way, α-secretase recognizes APP within the Aβ domain, 
leading to the generation of soluble α-APP fragments 
(sAPPα) and C-terminal fragment α (CTFα, or C83). 
Subsequently, C83 is cleaved by γ-secretase, result-
ing in the formation of non-toxic P3 fragments and 

Fig. 1  The non-amyloidogenic pathway plays a role in prevents the generation of Aβ by cleaving APP at α-secretase. In contrast, the amyloidogenic 
pathway involves β-secretase and γ-secretase, which are responsible for APP processing and contribute to the production of Aβ. Maintaining a balance 
between these pathways is important for the regulation of Aβ generation and its potential role in AD
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APP intracellular domain (AICD) fragments. This intri-
cate process helps maintain a healthy equilibrium in 
APP processing [34, 35]. Two enzymes, ADAM10 and 
ADAM17 (also known as TACE), have been identified 
as α-secretases. ADAM10 is a member of the ADAM 
(a disintegrin and metalloproteinase) family, while 
ADAM17 is also known as a tumor necrosis factor-con-
verting enzyme (TACE) [36]. These enzymes are capable 
of cleaving APP at the α-secretase cleavage site, thereby 
promoting the non-amyloidogenic pathway. In addi-
tion to ADAM10 and ADAM17, other proteases, such 
as ADAM9, ADAM12, ADAM19, and MDC9 have also 
been implicated in α-secretase activity [35].

In contrast, the amyloidogenic pathway entails a series 
of steps involving β-secretase and γ-secretase. Initially, 
β-secretase cleaves APP, resulting in the production of 
soluble β-APP fragments (sAPPβ) and C-terminal β frag-
ments (CTFβ, or C99). Subsequently, γ-secretase cleaves 
C99, leading to the generation of AICD and Aβ [37]. 
The C99 fragment, generated by β-secretase, undergoes 
cleavage by γ-secretase within the cell membrane. This 
enzymatic process results in the release of the Aβ pep-
tide, specifically the fragments Aβ40 and Aβ42 [38].

Most importantly, the accumulation of Aβ in AD can 
activate kinases such as GSK-3β, CDK5, and MAPKs, 
leading to abnormal phosphorylation of tau protein and 
its subsequent aggregation into NFTs. Additionally, dis-
ruption of phosphatases, enzymes that remove phosphate 
groups, can further contribute to tau hyperphosphoryla-
tion. The interaction between the amyloidogenic pathway 
and tau protein highlights the complex interplay between 
Aβ and tau pathology in AD, emphasizing the need for 
comprehensive therapeutic strategies targeting both 
aspects of the disease [39–41].

Notably, there is an imbalance between the activities 
of α-secretase and β-secretase in AD. β-Secretase activ-
ity increases, leading to enhanced cleavage of APP in the 
amyloidogenic pathway. As a consequence, there is an 
increased production of Aβ, particularly the more prone-
to-aggregate Aβ42 fragment. The identification and clon-
ing of the enzyme responsible for β-secretase cleavage 
resulted in the discovery of the beta-Site APP Cleaving 
enzyme (BACE). BACE is a membrane-bound aspar-
tyl protease that initiates the amyloidogenic pathway 
by cleaving APP at the β-secretase site. The heightened 
activity of β-secretase, coupled with the aggregation-
prone nature of Aβ42, leads to the accumulation of Aβ 
peptides, which subsequently aggregate to form amyloid 
plaques in the brain [42] (Fig. 2).

Notably, Aβ40 is more abundant than Aβ42 [43–45], 
yet in the formation of amyloid plaques, Aβ42 is the 
main component [46–49]. Aβ plaques trigger a series 
of downstream events that contribute to neurodegen-
eration in AD. The most important of these include 

neuroinflammation, synaptic dysfunction, tau pathology, 
oxidative stress, impaired protein clearance, mitochon-
drial dysfunction, and disruption of calcium homeostasis 
[50–52]. These interconnected processes further exacer-
bate neuronal damage, leading to the cognitive impair-
ment and progressive decline observed in AD [53].

Positive effects of the Aβ
The potential protective effects of Aβ in brain cells have 
received limited attention and have often been disre-
garded. Nonetheless, emerging evidence indicates that 
under specific circumstances, Aβ may display protec-
tive, trophic, or antioxidative physiological effects [54, 
55]. This suggests that the physiological role of Aβ in the 
nervous system may be altered under certain conditions, 
potentially leading to toxic pathological effects that will 
be discussed in the ensuing headings of this article.

Aβ as an antioxidant
Aβ is a peptide containing two crucial sites responsible 
for its redox function. The first site plays a significant 
role in binding transition metals, effectively reducing 
their participation in oxidative damage. The second site, 
located in the lipophilic portion at the C-terminus of the 
peptide, acts as a trap for free radicals and participates 
in metal reduction, thereby exerting antioxidative and 
pro-oxidative effects. Aβ demonstrates a higher affin-
ity for copper (Cu) than for iron (Fe) when it comes to 
metal binding, and its binding capacity matches that of 
chelating agents such as EDTA. The slow reduction of 
transition metals by Aβ suggests that it functions as an 
endogenous scavenger, gradually neutralizing these met-
als [54]. Cell studies have confirmed the protective and 
antioxidative effects of Aβ, reducing apoptotic death in 
neuronal cultures and decreasing lipoprotein oxidation in 
cerebrospinal fluid and blood plasma, possibly due to its 
chelating ability over metals, particularly Cu [55–57].

In the context of AD, cerebrospinal fluid (CSF) pos-
sesses a property that helps protect against oxidative 
damage, which is crucial in the development of the dis-
ease [58]. This property is closely associated with the 
level of Aβ1–42, a specific form of Aβ protein, in the 
CSF. Aβ1–42 have a higher affinity for binding to met-
als, enabling it to chelate or bind to metals effectively. 
This metal-chelating ability is believed to contribute to 
its superior antioxidative role in the CSF by preventing 
oxidative damage caused by metals. The antioxidative 
aspects of CSF correlate more strongly with Aβ1–42 
levels than with ascorbate levels, which is an important 
antioxidant in the CSF [59]. Overall, these findings sug-
gest that Aβ1–42 and its metal-chelating function play a 
significant role in the ability of the CSF to protect against 
oxidative damage, potentially impacting the progression 
of AD.
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Notably, cells overexpressing Aβ exhibited lower ROS 
production and reduced susceptibility to metal damage. 
In cortical neuron cultures, inhibiting β- and γ-secretases 
or aggregating Aβ antibodies reduces cell viability; 
however, this effect is completely reversed by adding 
Aβ1–40 [60]. In a relevant study involving neural stem 
cells (NSCs), it was found that oligomers of Aβ1–42, 
at a concentration of 1 µM, promoted the survival and 

differentiation of striatal and hippocampal NSCs. Nota-
bly, this beneficial effect was not observed when Aβ1–40 
or Aβ25–35 was administered, nor with the fibrillar 
forms of these peptides [61]. In initial in vivo studies con-
ducted in rats, the implantation of Aβ in the hippocam-
pus did not result in any observed neurotoxic effects from 
a morphological standpoint [62]. Furthermore, subse-
quent studies investigating the long-term administration 

Fig. 2  Two pathways delineate the fate of APP: the physiological route, where alpha-secretase cleaves APP to yield neuroprotective sAPPα and the 
benign C83 fragment, promoting neuronal health; and the pathophysiological cascade involving β-secretase and γ-secretase, producing toxic C99 (β-
CTF) and subsequent Aβ peptides, notably Aβ42, leading to oligomerization, plaque formation, synaptic dysfunction, and neuronal damage. The former 
pathway emphasizes beneficial effects on neuronal function and signaling, whereas the latter links Aβ aggregates to neurotoxicity, oxidative stress, and 
inflammation, hallmarking AD progression
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of different Aβ peptides (1–40, 1–38, 25–35) at various 
doses (ranging from 5 ng to 10 µg) in the cortex and hip-
pocampus of adult rats did not reveal any discernible 
toxic effects when compared to the control group [63].

Interestingly, the direct administration of low concen-
trations of Aβ into the brains of young animals, includ-
ing monkeys and rodents, has not been observed to 
cause neuronal damage. However, in older animals, Aβ 
can impact neurons. The underlying reasons for this 
age-dependent disparity are not yet well comprehended, 
although it is speculated that higher levels of free met-
als in the brains of older animals or a decline in natural 
antioxidative defenses associated with aging may con-
tribute to this phenomenon. Intriguingly, Aβ may exhibit 
antioxidant properties [64]. In experimental models of 
mitochondrial dysfunction caused by inhibitors of mito-
chondrial complexes I and III, such as rotenone and anti-
mycin, there was a notable rise in oxidative stress and 
a significant increase in Aβ production. Importantly, 
the use of antioxidants has been shown to reverse this 
heightened Aβ production, highlighting their potential 
in mitigating the effects of mitochondrial dysfunction 
on Aβ accumulation [65]. Prior research has primar-
ily emphasized the antioxidant properties of nonfibril-
lar Aβ. Nonetheless, a recent study put forth the notion 
that even in its aggregated form, within the concentra-
tion range of 2 to 20 µM, Aβ can diminish the generation 
of hydroxyl radicals and hydrogen peroxide in synthetic 
nonbiological systems. Furthermore, it has the potential 
to safeguard proteins and lipids against oxidation in iso-
lated mitochondria obtained from rat brains [66].

As shown above, some studies suggest that Aβ’s pri-
mary physiological function is as an endogenous anti-
oxidant, causing increased production in normal aging. 
This leads to oxidative stress, resulting in a chronic redox 
imbalance in AD, where overproduction becomes toxic.

Aβ as a neuroprotector
In a study conducted by Giuffrida et al., synthetic Aβ 
1–42 monomers exhibited neuroprotective effects in 
neuronal culture. When administered at a concentra-
tion of 0.1 µM, these monomers prevented cell death 
induced by the deprivation of trophic factors such as 
insulin. Additionally, at concentrations ranging from 30 
to 100 nM, they provided protection against the excito-
toxic effects induced by NMDA, both before and after 
the excitotoxic stimulus. Notably, this protective effect 
is associated with activation of the phosphatidylinositol 
3-kinase (PI-3  K) pathway. Interestingly, when Aβ 1–42 
monomers with the Arctic (E22G) mutation were used, 
no neuroprotective effects were observed. This suggests 
that the altered peptide conformation resulting from this 
mutation significantly affects the ability of Aβ to exert its 
protective effects [67]. Another study provided further 

confirmation that nonfibrillar Aβ 1–42, at concentra-
tions of up to 1 µM, has the ability to decrease cell death 
and inhibit the entry of intracellular calcium triggered 
by NMDA receptor activation. However, this protective 
effect was not observed when AMPA receptor activation 
was induced. These findings suggest that the neuropro-
tective properties of nonfibrillar Aβ 1–42 are specific to 
NMDA receptor-mediated processes and may not extend 
to AMPA receptor-mediated mechanisms [68].

Interestingly, in a study, brain slice cultures from a 
mouse model of AD were treated with N-terminal Aβ 
fragments (N-Aβcore) to investigate their effects on 
astrogliosis, microgliosis, and synaptic alterations. The 
researchers also examined the impact of N-terminal 
Aβ fragments on neuron/glial cultures and a microg-
lial cell line exposed to pathological concentrations of 
Aβ. The results demonstrated that N-terminal Aβ frag-
ments had several beneficial effects, including mitigat-
ing Aβ-induced astrogliosis and microgliosis, protecting 
against oxidative stress, mitochondrial dysfunction, and 
apoptosis in astrocytes and microglia, reducing the 
expression and release of proinflammatory mediators in 
activated microglial cells, and rescuing Aβ-induced syn-
aptic loss. These findings emphasize the protective role of 
N-terminal Aβ fragments in alleviating neuroinflamma-
tion and synaptic damage associated with the develop-
ment of AD [69].

Aβ as a memory consolidator
In initial electrophysiological studies performed on hip-
pocampal slices, it was observed that Aβ at concentra-
tions in the nanomolar range (100–200 nM) facilitated 
long-term potentiation (LTP) and increased synaptic 
currents mediated by NMDA receptors (NMDAr), but 
had no impact on currents mediated by AMPA recep-
tors (AMPAr) [70, 71]. Subsequent investigations using 
hippocampal slices revealed that administration of Aβ 
1–40 at a concentration of 83 nM restored the impaired 
ability to generate LTP resulting from prolonged incu-
bation of the slices. Notably, this restorative effect was 
reversed when the cholesterol synthesis was inhibited. 
These findings led the authors to propose that Aβ 1–40 
may enhance the dynamics and availability of membrane 
cholesterol, thereby contributing to its facilitatory effects 
on synaptic plasticity [72].

Accordingly, Aβ modulates these glutamatergic recep-
tors, facilitating LTP and contextual fear memories, while 
high picomolar concentrations disrupt glutamate clear-
ance, resulting in aberrant activation of NMDA recep-
tors and synaptic dysfunction, underscoring the intricate 
nature of Aβ’s impact on glutamatergic signaling [73].

Another study confirmed that applying low concen-
trations of Aβ 1–42 (200 pM) to hippocampal slices 
enhances LTP, which is associated with improved 
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reference memory and context fear memory in vivo [74, 
75]. The study also found that the positive effect of Aβ on 
synaptic plasticity may be mediated by α7 receptors, as 
the administration of α7-nicotinic antagonists suppresses 
LTP [74]. In an in vivo study conducted on rats, it was 
demonstrated that sequestering endogenous Aβ using a 
monoclonal antibody against the Aβ ectodomain had a 
significant impact on the retention of short- and long-
term memory in an inhibitory avoidance task. The anti-
body was infused into the hippocampus prior to training. 
Interestingly, this effect was not observed when the anti-
body was administered after the training sessions. These 
findings were consistent with the effects observed when 
mecamylamine, a nicotinic cholinergic receptor antago-
nist, was administered. Notably, the study also revealed 
that learning impairment could be reversed by adminis-
tering exogenous human Aβ 1–42 directly into the hip-
pocampus after training. This finding highlights the role 
of Aβ in memory consolidation [76].

Likewise, in another study, both in vitro and in vivo 
experiments were conducted to investigate the effects of 
simultaneous administration of anti-Aβ antibodies and 
interference RNA on various cognitive measures such 
as LTP, spatial reference memory, and contextual fear 
conditioning. The results showed that this combination 
treatment altered these cognitive functions. However, 
these effects could be reversed by administering Aβ 1–42 
at specific concentrations (200–300 pM). Notably, the 
study also found that the positive effects of Aβ 1–42 were 
absent in mice that lacked the α7-nicotinic cholinergic 
receptor. This suggests that the α7-nicotinic choliner-
gic receptor may be involved in mediating the beneficial 
effects of Aβ 1–42 on cognitive function [75].

Nonetheless, in a dose-response study, the hormetic 
effect of Aβ 1–42 on LTP and spatial memory in the 
Morris maze was examined. The findings revealed that 
Aβ 1–42 had stimulatory effects within a specific dose 
range of 2 pM to 2 nM. However, at higher concentra-
tions ranging from 2 to 20 µM, negative effects were 
observed. These results suggest that the effects of Aβ can 
be ambivalent and dependent on the dose administered. 
Furthermore, the study highlights that the positive effects 
of Aβ may be attributed to its direct interaction with the 
α7-cholinergic nicotinic receptors [77].

Aβ has the potential to enhance LTP by increasing 
the release of acetylcholine, a neurotransmitter involved 
in learning and memory [78], into the synaptic cleft. 
Moreover, Aβ may augment synaptic strengthening by 
increasing the likelihood of depolarization of postsyn-
aptic neurons. Experimental studies administering low 
concentrations of Aβ into the hippocampus of mice have 
revealed improved memory retention in two memory 
tasks [79]. Additionally, these studies demonstrated 
elevated acetylcholine production specifically in the 

hippocampus, indicating a potential connection between 
Aβ, acetylcholine, and memory enhancement [79, 80]. 
These findings provide valuable insights into the intricate 
role of Aβ in synaptic function and memory processes, 
contributing to our understanding of neurodegenerative 
disorders, such as AD.

At varying concentrations, Aβ exerts contrasting effects 
on the α7-nicotinic acetylcholine receptors. At picomo-
lar concentrations, Aβ directly activates these receptors, 
whereas at nanomolar concentrations, it blocks and deac-
tivates these receptors. Notably, studies have shown that 
picomolar concentrations of Aβ42 enhance LTP and facil-
itate memory consolidation in mice. Conversely, nano-
molar concentrations of Aβ impair memory functions. 
The effectiveness of Aβ-mediated memory enhancement 
is contingent on the presence of α7-nicotinic acetylcho-
line receptors. These findings emphasize the intricate 
and concentration-dependent interplay between Aβ, 
α7-nicotinic acetylcholine receptors, and memory pro-
cesses [81–83].

Aβ as a regulator of blood brain barrier (BBB) and 
angiogenesis
According to the vascular hypothesis, alterations in the 
cerebral vasculature system, including disruption of the 
BBB and angiogenesis, may contribute to the develop-
ment of AD [84, 85]. However, it has been observed that 
non-pathological Aβ peptides can regulate angiogenesis 
[86] and potentially protect against BBB leakages [33, 87, 
88]. Research indicates that Aβ peptides may function as 
a protective seal, preserving the integrity of the BBB and 
preventing cerebrovascular changes [87, 89].

A study highlighted the potential role of Aβ in main-
taining the integrity of the cerebral vasculature. When 
Aβ deposits were cleared through immunotherapy in 
a mouse model with cerebral amyloid angiopathy, there 
were instances of cerebral microhemorrhage, suggest-
ing that Aβ may play a role in preventing vascular leak-
age [90]. Additionally, in another experiment, non-AD 
mice were exposed to Chlamydia pneumoniae, a bacte-
rium known to disrupt the BBB, which surprisingly led 
to the deposition of Aβ in the brain [91, 92]. These find-
ings imply that Aβ production may be triggered as a pro-
tective response when the BBB is disturbed, thus serving 
as a sealant to counteract the effects of such disruptions. 
This suggests a potential relationship between Aβ levels, 
vascular integrity, and BBB maintenance.

Aβ exerts contrasting effects on angiogenesis in a dose-
dependent manner. Specifically, at nanomolar concen-
trations, Aβ promotes endothelial cell proliferation and 
angiogenesis, whereas at micromolar concentrations, it 
inhibits proliferation, induces morphological changes, 
and causes cell death [93, 94]. Notably, Aβ peptides 
demonstrate functional similarity to fibroblast growth 
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factor-2 and exhibit synergistic activity in enhancing 
angiogenesis [95, 96]. Furthermore, studies utilizing 
zebrafish models have revealed that Aβ enhances blood 
vessel branching, as evidenced by increased branching in 
response to human monomeric Aβ42 [93]. Conversely, 
zebrafish embryos lacking APP exhibit vascular abnor-
malities, which can be partially restored by Aβ injec-
tion [97]. Additionally, the inhibition of β-secretase, an 
enzyme involved in Aβ production, leads to vascular 
defects. However, further investigation of the effects of 
picomolar concentrations of Aβ on angiogenesis would 
contribute to a more comprehensive understanding of its 
physiological function [98].

Most importantly, Aβ peptides exert a dose- and con-
formation-dependent influence on angiogenesis. Spe-
cifically, the oligomeric form of Aβ peptides displays 
anti-angiogenic activity, whereas the fibrillar forms lack 
this effect [99]. The amino acid sequence HHQKLVFF 
has been identified as the component responsible for 
this anti-angiogenic activity [100]. Conversely, Aβ35–
42, which contains a pro-angiogenic motif, exhibits a 
pro-angiogenic effect [100, 101]. When incubated with 
human umbilical vein endothelial cells, Aβ35–42 pro-
motes increased formation of endothelial tip cells, fur-
ther supporting its proangiogenic properties [102].

AD’s pathological features related to Aβ plaques
In AD, abnormalities in APP processing lead to the gen-
eration of excess Aβ, a protein fragment derived from 
APP. This abnormal processing involves enzymes called 
secretases, with β-secretase cleaving APP to produce 
sAPPβ [103] and a longer fragment called C99. Subse-
quently, C99 is further cleaved by γ-secretase, resulting 
in the release of Aβ peptides [104], including the more 
common form, Aβ40, and the more toxic form, Aβ42 
[105–107].

Notably, the length of Aβ peptides can vary; Aβ pep-
tides ranging from 38 to 43 amino acids have been 
observed, and different forms of Aβ have varying degrees 
of amyloidogenicity. For instance, Aβ1–42 and Aβ3–40 
are considered more amyloidogenic, meaning that they 
have a higher tendency to form amyloid plaques asso-
ciated with AD pathology. In contrast, Aβ1–40 and 
Aβ1–38 are less amyloidogenic [108, 109]. APP process-
ing and subsequent Aβ production mainly occur within 
the endosomal compartment and the trans-Golgi net-
work of cells. This suggests that these subcellular local-
izations are where most Aβ is generated before being 
secreted through exocytosis [109]. In addition to extra-
cellular deposition, intracellular accumulation of Aβ has 
been observed in both animal models of AD and human 
patients [108–110]. However, the significance of intra-
cellular Aβ remains uncertain and is an area of ongoing 
research.

Aβ and proteases
Aβ can undergo cleavage by various proteases, including 
insulin-degrading enzyme [111], neprilysin [112], BACE1 
[113], and cathepsin B (specifically for Aβ1–42) [114]. 
Insulin-degrading enzyme (IDE), neprilysin, and cathep-
sin B play roles in rendering Aβ non-amyloidogenic, 
meaning they help prevent the aggregation and formation 
of amyloid plaques. The importance of Aβ11–40, which 
is generated by BACE1 cleavage at the β’ site, is still not 
fully understood. Other modifications to Aβ can occur as 
well. For example, the formation of pyroglutamate at the 
amino-terminal glutamic acid residue leads to the gener-
ation of truncated pyroglutamate Aβ3–40/42, which has 
a high propensity to form amyloid plaques. Inhibition of 
the enzyme responsible for pyroglutamate formation has 
shown promise in reducing amyloidosis and improving 
cognition in mouse models of AD [115].

Insulin-degrading enzyme (IDE)
IDE, also known as Insulysin, is a highly conserved zinc 
metalloprotease that is present in various tissues, includ-
ing the brain [116]. While its primary function is to 
degrade insulin, IDE also plays a crucial role in the deg-
radation of other peptides, including Aβ. IDE recognizes 
Aβ peptides and enzymatically cleaves them at specific 
sites, resulting in the breakdown of Aβ into smaller frag-
ments, helps prevent the accumulation of Aβ and the 
subsequent formation of plaques in the brain. The degra-
dation of Aβ by IDE is significant in maintaining the bal-
ance between Aβ production and clearance [117, 118].

However, in AD, IDE function may become impaired 
or overwhelmed as a result of oxidative stress and inflam-
mation. For instance, In AD, chronic inflammation is 
observed in the brain, and inflammatory molecules 
can alter IDE expression or activity levels [119]. Pro-
inflammatory cytokines, such as interleukin-1β (IL-1β) 
and tumor necrosis factor-alpha (TNF-α), have been 
shown to suppress IDE expression and activity, leading 
to reduced Aβ degradation [120, 121]. Moreover, genetic 
variations in the IDE gene have also been associated with 
altered IDE function and an increased risk of AD [122, 
123]. Indeed, when IDE is unable to efficiently degrade 
Aβ, there is an increase in Aβ levels in the brain; the 
accumulation of Aβ can promote the formation of amy-
loid plaques, which can trigger a cascade of events lead-
ing to neuroinflammation, neuronal dysfunction, and 
ultimately, cognitive decline in AD.

Neprilysin
Neprilysin, which is a type II integral membrane protein 
belonging to the zinc metalloendopeptidase family, has a 
large extracellular domain responsible for substrate bind-
ing and enzymatic activity [124]. Neprilysin can cleave 
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various peptides, including neuropeptides, hormones, 
and Aβ peptides [125].

In AD, neprilysin plays a critical role in the degradation 
and clearance of Aβ peptides in the brain [126, 127]. To 
clarify, neprilysin targets Aβ at specific sites, breaking it 
down into smaller fragments that are more soluble. These 
smaller fragments can be efficiently cleared from the 
brain through enzymatic degradation or clearance mech-
anisms like the BBB [128–131].

Cathepsin B
Cathepsin B, which is a lysosomal cysteine protease, plays 
a role in Aβ metabolism and AD. It is primarily found in 
lysosomes and can cleave Aβ1–42, a form of Aβ peptide, 
at specific sites, generating smaller fragments [132].

Cathepsin B, through its cleavage of Aβ peptides, 
can influence their aggregation and neurotoxicity, with 
increased activity potentially enhancing Aβ degradation 
and clearance; however, impaired cathepsin B function 
or lysosomal dysfunction can compromise Aβ clearance, 
leading to peptide accumulation and amyloid plaque 
formation. Factors such as oxidative stress, inflamma-
tion, and changes in the lysosomal environment regulate 
cathepsin B activity, which not only affects Aβ metabo-
lism but also contributes to neurodegeneration by dam-
aging neurons and disrupting lysosomal function [114, 
133]. Further research is needed to fully understand 
cathepsin B’s role in Aβ metabolism and its potential as a 
therapeutic target for AD.

Aβ sequence alteration
Certain modifications in the Aβ sequence, such as the 
conversion of aspartate to isoaspartate at residue 23, have 
been reported to increase Aβ aggregation, potentially 
contributing to AD pathology [134]. Isoaspartate for-
mation in the Aβ peptide sequence has been attributed 
to several factors, including oxidative stress, aging, and 
reduced activity of enzymes involved in protein repair 
mechanisms. The nonenzymatic conversion of aspartate 
residues to isoaspartate can lead to altered protein struc-
ture, stability, and function. In the case of Aβ peptides, 
isoaspartate formation promotes the formation of toxic 
oligomers and fibrils, which are central to the develop-
ment of amyloid plaques in AD [135, 136].

Isoaspartate-modified Aβ peptides not only contribute 
to the formation of amyloid plaques but also have det-
rimental effects on neuronal function. They can impair 
synaptic plasticity, disrupt calcium homeostasis, induce 
neuroinflammation, and trigger oxidative stress, all of 
which are associated with neurodegeneration in AD. 
Additionally, isoaspartate-modified Aβ peptides have 
been shown to have a higher resistance to degradation 
and clearance mechanisms in the brain, leading to their 
prolonged accumulation [136, 137].

Interestingly, in hereditary cases and animal models of 
AD, there is typically an increase in the production of Aβ 
peptides or an elevated ratio of Aβ42 to Aβ40. This sug-
gests that genetic mutations or experimental factors lead 
to an overproduction of Aβ, contributing to the devel-
opment of AD pathology. However, in AD patients, the 
levels of Aβ in the CSF do not show an overall increase. 
Instead, there is a consistent observation of reduced lev-
els of Aβ42 in the CSF, which serves as a biomarker for 
AD. This decrease in Aβ42 is likely due to impaired clear-
ance mechanisms, resulting in the accumulation of Aβ 
in the brain, particularly in the form of amyloid plaques. 
The precise mechanisms underlying impaired clearance 
and the dynamics of Aβ metabolism in AD are still under 
investigation. Nonetheless, measuring Aβ42 levels in the 
CSF is an important diagnostic tool for AD, helping to 
assess disease progression and response to treatments 
[138].

Aβ oligomers
In recent years, there has been mounting evidence indi-
cating the significant role of oligomers in AD. Research 
experiments have demonstrated that oligomers possess 
toxic properties both in in vivo [139] and in vitro [140]. 
Furthermore, it has been observed that the learning and 
memory impairments caused by oligomers can be allevi-
ated by promoting the formation of fibrils [141].

Earlier investigations utilizing the FAD APP Indi-
ana mutation have revealed that the neurotoxic effects 
induced by Aβ do not necessarily rely on Aβ accumula-
tion in plaques [142]. Animal models of AD have pro-
vided additional support for this notion, as the presence 
of oligomers in these models was associated with the 
manifestation of disease symptoms [143]. Moreover, the 
quantity of oligomers extracted from human AD brain 
tissue exhibited a stronger correlation with disease symp-
toms compared to the number of amyloid plaques [144, 
145].

Aβ oligomers also exert detrimental effects on the 
brain, manifesting in synaptic dysfunction, excitotoxic-
ity, and neuronal damage. By interfering with NMDA 
receptors, particularly NR2A [146] and GluN2B sub-
units [147], Aβ oligomers disrupt the delicate balance of 
calcium, resulting in an excessive influx of this ion into 
neurons. Consequently, synaptic plasticity and the abil-
ity to learn are impaired [148]. Moreover, Aβ oligomers 
disturb the equilibrium of glutamate, a primary excit-
atory neurotransmitter, and interact with synaptic pro-
teins, leading to their depletion and compromising the 
release of neurotransmitters [20, 149]. The exact mecha-
nisms underlying the inhibitory effects of Aβ oligomers 
on NMDA-mediated synaptic transmission are still not 
fully understood [150]. However, a study [151] sought 
to investigate this phenomenon by using brain extracts 
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from AD patients and hippocampal slice cultures. The 
researchers focused on the impact of Aβ oligomers, 
specifically Aβ dimers, on NMDA receptor function. 
The study found that Aβ dimers, a specific type of Aβ 
oligomer, were particularly potent in inhibiting NMDA-
mediated synaptic transmission. These dimers had a 
significant impact on the normal functioning of NMDA 
receptors, impairing synaptic transmission. Interestingly, 
higher molecular weight Aβ oligomers and insoluble 
aggregates were capable of releasing Aβ dimers, suggest-
ing a dynamic relationship between different forms of Aβ 
in the brain. Additionally, Aβ oligomers disrupt the post-
synaptic density, a specialized structure at the postsynap-
tic membrane, leading to the loss of dendritic spines and 
synapse loss.

In addition to synaptic dysfunction, Aβ oligomers also 
induce oxidative stress [152], which inflicts damage upon 
cellular components and impairs the defense mecha-
nisms against oxidative damage. These oligomers dis-
rupt the homeostasis of ions like calcium and the normal 
functioning of neurons, resulting in neuronal injury and, 
ultimately, cell death [153].

Notably, Aβ monomers undergo a structural change 
from their soluble form to a beta-sheet-rich conforma-
tion, leading to the formation of small soluble oligomers. 
These oligomers act as seeds and encourage the aggrega-
tion of Aβ peptides into larger insoluble aggregates, such 
as fibrils. The precise structures and sizes of Aβ oligo-
mers are still under investigation, but it is believed that 
small soluble oligomers, such as dimers and trimers, are 
particularly neurotoxic [154, 155].

Impaired clearance mechanisms, which involve enzy-
matic degradation and cellular uptake by microglia [156] 
and other phagocytic cells, contribute to the accumula-
tion of Aβ in the brain [156, 157]. However, Aβ oligo-
mers can hinder the clearance of Aβ aggregates and 
can interact with microglia and disrupt their ability to 
effectively clear Aβ [158]. Aβ oligomers interfere with 
the internalization and degradation of Aβ by binding to 
microglial receptors, such as RAGE and low-density lipo-
protein receptor-related protein 1 (LRP1). This impairs 
the uptake and clearance of Aβ aggregates by microg-
lia, contributing to their accumulation in the brain [159, 
160].

Aβ oligomers exert neurotoxic effects, contributing to 
neuronal damage and cell death. They interact with neu-
ronal membranes, forming ion channels or pores that 
disrupt the ionic homeostasis of cells, particularly cal-
cium dysregulation [161]. This excessive influx of calcium 
triggers downstream signaling pathways associated with 
oxidative stress, mitochondrial dysfunction, and synaptic 
impairment. Aβ oligomers also generate ROS, leading to 
oxidative damage to cellular components, including lip-
ids, proteins, and DNA. The accumulation of oxidative 

damage further contributes to neuronal dysfunction and 
cell death [162, 163].

Another mechanism by which Aβ oligomers contribute 
to Aβ accumulation is the impairment of proteostasis. Aβ 
oligomers disrupt the delicate balance of protein fold-
ing and degradation within neurons. They can interact 
with molecular chaperones, such as heat shock proteins 
(HSPs), and interfere with their function. Chaperones 
play a crucial role in facilitating proper protein fold-
ing and preventing protein aggregation. Aβ oligomers 
can sequester chaperones, leading to the misfolding and 
aggregation of Aβ and other proteins [164–167]. Fur-
thermore, Aβ oligomers impair the activity of proteolytic 
systems, such as the ubiquitin-proteasome system and 
autophagy-lysosomal pathway. This hinders the degrada-
tion of misfolded proteins, including Aβ itself, contribut-
ing to their accumulation [168–171] (Fig. 3).

It is important to note that further research is needed 
to fully elucidate the underlying mechanisms and the 
precise role of Aβ oligomers in AD pathology. However, 
these findings provide valuable insights into the potential 
mechanisms by which Aβ oligomers contribute to neuro-
degeneration in AD.

Aβ toxicity
Aβ toxicity is mediated by multiple mechanisms includ-
ing oxidative stress, mitochondrial dysfunction, altera-
tions in membrane permeability, inflammation, synaptic 
dysfunction, and excitotoxicity through interactions with 
neurotransmitter receptors [172–176].

The pro-oxidant effect of the Aβ peptide has been 
extensively studied using paramagnetic electron reso-
nance (PER) techniques [177], although the exact mech-
anism behind this effect is still a subject of debate. Aβ 
possesses metal-binding sites within its first 15 amino 
acids, particularly with a high affinity for copper ions 
(Cu2+), and is known to interact with metallic chelants 
[56]. The binding of Aβ to Cu2 + occurs through the 
nitrogen atoms in histidine residues’ imidazole rings, 
with oxygen atoms provided by tyrosine 10, glutamic acid 
5 (Glu5), or water molecules [178]. These interactions 
play a role in the pro-oxidant properties of Aβ, contribut-
ing to oxidative damage.

The Aβ peptide has been observed to possess the abil-
ity to reduce Cu2 + and Fe3 + ions to their lower oxidation 
states, namely Cu + and Fe2 + respectively. Consequently, 
molecular oxygen can react with these reduced metals, 
resulting in the generation of superoxide anions. These 
anions can then combine with hydrogen atoms to form 
hydrogen peroxide. Furthermore, hydrogen peroxide 
may subsequently react with additional reduced metal 
ions, ultimately leading to the production of hydroxyl 
radicals through a process known as the Fenton reaction. 
Additionally, the radical form of Aβ has the capacity to 
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extract protons from neighboring lipids or proteins. This 
extraction can lead to the formation of lipid peroxides 
and carbonyls [178]. Notably, studies have provided evi-
dence supporting the role of metals in Aβ’s toxicity. In 
these experiments, the removal of metals from the reac-
tion medium or the use of deferoxamine, a metal chela-
tor, effectively reduced the toxicity levels of Aβ in cellular 
cultures. This suggests that the presence of metals, and 
their interaction with Aβ, contribute to the harmful 
effects of Aβ in cellular systems [179, 180].

It has been proposed that the reduction of metals is 
facilitated by a methionine residue located at position 
35, as its sulfide group readily donates electrons [181]. 
Supporting this hypothesis, copper-bound methionine 
sulfoxide has been found within the amyloid plaques of 
AD patients [182]. However, the exact role of this resi-
due remains a topic of discussion, as one study demon-
strated the oxidation of neurotransmitters even when Aβ 
peptides lacking the Met35 residue were bound to met-
als. Additionally, external reducers such as dopamine or 
ascorbate have been suggested to initiate redox cycles 
of metallic ions without requiring peptide autoxidation 
[183]. Furthermore, the formation of tyrosyl radicals 
from the 10th tyrosine residue of Aβ contributes to the 
cross-linking of Aβ molecules, leading to the formation 
of Aβ oligomers [178, 184].

An additional mechanism related to Aβ-induced toxic-
ity involves the upregulation of the divalent metal trans-
porter 1 (DMT1). Increased expression of DMT1 has 
been observed in senile plaques of AD patients, as well as 
in APP/SS1 transgenic mice and cellular lines that over-
express APP. This upregulation of DMT1 is associated 
with higher levels of iron in cells exposed to Aβ. These 
findings suggest that disturbances in iron homeostasis 
may contribute to the increased oxidative stress induced 
by Aβ. The dysregulation of iron levels and the subse-
quent generation of reactive oxygen species can further 
exacerbate the pathological processes associated with AD 
[185].

The severity of synaptic loss in AD patients has been 
shown to have a stronger correlation with cognitive 
impairment rather than the accumulation of Aβ depos-
its or neurofibrillary tangles [186]. Notably, studies have 
consistently reported significant reductions in corti-
cal synapses, both in terms of overall numbers and per 
neuron, in AD patients. Furthermore, there is a notable 
decrease in the levels of presynaptic markers (such as 
synaptophysin) and postsynaptic markers (such as synap-
topodin and PSD-95) in AD patients compared to healthy 
individuals [187]. Interestingly, disturbances in synaptic 
transmission have been observed early in the disease pro-
gression, occurring prior to the development of typical 

Fig. 3  Aβ oligomers have a detrimental impact on various receptors in the brain, including Frizzled receptors, PrPc, NMDA receptors, insulin receptors, 
and NGF receptors. Their interaction with these receptors leads to tau phosphorylation, activation of GSK-3β, synaptic dysfunction, excitotoxicity, disrup-
tion of insulin signaling, impairment of NGF signaling, and ultimately, cell death. These complex interactions contribute to the progression of AD and 
underscore the importance of understanding and targeting Aβ oligomers to develop effective therapeutic strategies
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neuropathological lesions [188]. Aβ soluble oligomers, 
rather than fibrillar forms, have been identified as culprits 
in impairing LTP through various mechanisms, including 
the reduction of PSD-95 levels and negative regulation of 
glutamatergic receptors [189]. However, it is important 
to note that fibrillar forms of Aβ also contribute to synap-
tic damage in AD. Specifically, Aβ aggregates have been 
found to inhibit NMDAr-dependent LTP and promote 
long-term depression (LTD) in hippocampal neurons, 
potentially linked to disruptions in glutamate reuptake 
[190]. Some experiments have provided insights into the 
damaging effects of Aβ oligomers on synaptic transmis-
sion, although their precise mechanism is still unclear. 
Notably, when Aβ 1–42 was administered intra-axonally 
in a giant squid’s axon, it resulted in alterations in elec-
trophysiological parameters and bidirectional fast axonal 
transport. However, no observable effect was observed 
when Aβ oligomers were administered at the extracellu-
lar level [191, 192].

In contrast, an intriguing experimental report has pro-
vided evidence that synaptic activity exerts a dual effect 
on Aβ. Firstly, it reduces the intracellular levels of Aβ, 
potentially mediated by the action of neprilysin. Sec-
ondly, synaptic activity promotes the extracellular secre-
tion of Aβ, leading to a decrease in its synaptic toxicity. 
These findings strongly support the hypothesis that the 
primary mechanism of Aβ’s toxicity occurs within the 
intracellular milieu. Furthermore, recent studies have 
unveiled the crucial role of Tau protein in mediating the 
detrimental effects of Aβ on synaptic functionality. Nota-
bly, investigations have demonstrated that hippocampal 
slices obtained from animals lacking Tau protein exhibit 
remarkable resistance to the harmful impact of Aβ 1–42 
on LTP [193].

Aβ accumulation and BBB
Aβ accumulation is indeed associated with the compro-
mise of the BBB in certain conditions, particularly in 
AD [194]. For instance, Aβ plaques has been shown to 
disrupt the BBB, as it induces inflammation and oxida-
tive stress, and it also directly interacts with BBB com-
ponents; as a result, the BBB becomes compromised, 
which leads to heightened permeability and the entry 
of detrimental substances into the brain. Inflammatory 
mediators, in such condition, contribute to the damage 
of endothelial cells, thereby disrupting tight junctions 
(TJs) and persisting BBB permeability [195, 196]. A study 
provided evidence that different concentrations of beta-
amyloid (Aβ1–42), both high and low, can cause changes 
in TJ proteins, specifically claudin-5, occludin, and zona 
occludens-1 (ZO-1). These alterations in TJ proteins 
resulted in increased permeability of the BBB, as dem-
onstrated by an FD-40 penetration assay [197]. This sug-
gests that Aβ has the ability to disrupt the distribution of 

TJ proteins, leading to compromised integrity of the BBB 
[198].

Aβ and prion protein (PrP)
An intriguing recent discovery involves the interac-
tion between Aβ and cellular PrP. A study highlighted 
in the statement revealed that Aβ oligomers, consisting 
of approximately 100 molecules, exerted their inhibi-
tory effect on NMDA-mediated synaptic transmission 
only when they could bind to the cellular form of PrP. 
In mice lacking PrP, this interaction was absent, and Aβ 
peptides did not exhibit inhibitory or toxic effects. More-
over, other interactions between APP or Aβ with PrP 
have been described, along with reciprocal modulation of 
AD or scrapie disease progression in mice. These findings 
suggest that the interaction between Aβ and PrP plays a 
significant role in the pathogenesis and progression of 
AD and related prion diseases. [199]. Notably, cellular 
PrP has been shown to inhibit BACE1-mediated Aβ pro-
duction. By inhibiting BACE1, PrP effectively reduces the 
production of Aβ. This finding suggests that PrP may play 
a role in regulating Aβ levels and could potentially have 
implications for the development of therapeutic strate-
gies targeted at reducing Aβ production in AD [200].

Aβ and glial cells
Research on the relationship between Aβ and glial cells 
is expanding to understand if neuroinflammation triggers 
or sustains Aβ dyshomeostasis; thus far, most studies in 
vitro and in murine models have supported neuroinflam-
mation as a key pathogenic event in AD. In the context 
of AD, there is interaction between different Aβ species 
and receptors found on microglia and astrocytes, which 
initiates an innate immune response. The accumulation 
of Aβ in the brain triggers a process known as microg-
lial “priming,” making them more susceptible to second-
ary inflammation [201, 202]. Consequently, activated 
microglia become a characteristic pathological feature of 
AD. These activated microglia surround Aβ plaques and 
fibrils, forming a protective barrier and contributing to 
the clearance of Aβ from the brain [203–205]. However, 
when microglial activity becomes dysregulated, it can 
worsen the aggregation of brain proteins, further exacer-
bating the progression of the AD [205, 206].

The presence of Aβ aggregates, including oligomers, 
protofibrils, and fibrils, promotes inflammation [207–
209]. Microglia express cell surface receptors that enable 
them to bind to these aggregates, leading to neuroinflam-
mation and neurodegeneration. Neurotrophic factor 
TGF-β1 plays a crucial role in stimulating Aβ clearance 
by microglia [210, 211]. On the other hand, TNF-α plays 
a pro-inflammatory role in AD [208, 211–214]. To clar-
ify, TGF-β1 promotes the clearance of Aβ by microg-
lia, enhancing their phagocytic activity and potentially 
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reducing Aβ accumulation in the brain. This mechanism 
may exert a protective effect against the pathological fea-
tures of AD [215, 216]. Conversely, TNF-α, a pro-inflam-
matory cytokine, contributes to the immune response 
and inflammation in AD. Elevated levels of TNF-α in AD 
brains indicate the presence of a pro-inflammatory envi-
ronment, leading to chronic inflammation and neuronal 
damage. The immune response and inflammation in AD 
involve complex interactions among various factors and 
cell types [217, 218]. Further investigation is necessary 
to fully comprehend these processes and explore their 
potential as therapeutic targets for AD treatment.

During early AD pathogenesis, Aβ oligomers, proto-
fibrils, and fibrils accumulate in the extracellular space, 
triggering a pathological cascade [219]. Microglia are 
responsible for phagocytosing these Aβ forms and clear-
ing dying cells. The function of microglia, the immune 
cells of the brain, is modulated by TREM2 (Triggering 
Receptor Expressed on Myeloid Cells 2). TREM2 plays a 
role in the response to Aβ plaques, which are character-
istic features of AD. When microglia detect Aβ plaques, 
TREM2 activation stimulates the production of inflam-
matory cytokines. Inflammatory cytokines are signal-
ing molecules that can promote an immune response 
and contribute to inflammation. In the context of AD, 
the activation of microglia and the release of inflam-
matory cytokines, facilitated by TREM2, are part of the 
immune response against Aβ plaques. However, exces-
sive or chronic inflammation can have detrimental effects 
on neuronal health. Therefore, the regulation of microg-
lial function by TREM2 and the balance of inflammatory 
responses are important areas of study in understand-
ing the underlying mechanisms of AD pathology [210, 
220–222]. In addition to microglia, hypertrophic reactive 
astrocytes can also surround Aβ plaques. Upon exposure 
to Aβ, these astrocytes release pro-inflammatory mol-
ecules, contributing to the inflammatory environment in 
the brain [213, 223–225].

Astrocytes are integral to the brain’s response to Aβ 
accumulation in AD, influencing Aβ dynamics through 
various cellular mechanisms. These glial cells can both 
promote and mitigate amyloid pathology, playing a multi-
faceted role in disease progression [226–228].

Astrocytes contribute to amyloid accumulation primar-
ily through impaired Aβ clearance. They are equipped 
with enzymes such as neprilysin and IDE that degrade 
Aβ. However, in AD, the expression and activity of these 
enzymes are often reduced, leading to less efficient deg-
radation of Aβ and its subsequent accumulation in the 
extracellular space [229, 230]. Additionally, astrocytes 
usually uptake Aβ via receptors like LRP1, but this pro-
cess becomes less effective in AD, further contributing to 
the build-up of Aβ [231, 232].

Inflammatory responses also play a significant role in 
promoting amyloid accumulation. Reactive astrocytes, 
which are characterized by hypertrophy and increased 
expression of glial fibrillary acidic protein (GFAP) [227], 
release pro-inflammatory cytokines such as IL-1β, TNF-
α, and IL-6. These cytokines sustain a chronic inflamma-
tory environment that disrupts normal Aβ processing 
and clearance [233–235]. Reactive astrocytes also pro-
duce ROS, which cause oxidative stress and damage neu-
ronal and glial cells, further impairing Aβ metabolism 
[236, 237]. Furthermore, astrocytes support amyloid 
plaque formation through gliosis and scar formation. 
Indeed, astrocytes surrounding Aβ plaques undergo glio-
sis, forming a glial scar that isolates these plaques. While 
this may protect surrounding neurons from the toxic 
effects of Aβ, it also creates a barrier that prevents effi-
cient clearance of plaques [238, 239]. Additionally, astro-
cytes secrete ApoE and other molecules that facilitate Aβ 
aggregation, stabilizing the plaques and potentially exac-
erbating amyloid pathology [240].

The interaction between astrocytes and microglia is 
pivotal in the context of Aβ accumulation and neuroin-
flammation in AD. These interactions, mediated through 
complex signaling pathways, significantly impact disease 
progression. Astrocytes and microglia communicate 
extensively via cytokines and chemokines, modulating 
each other’s activity [241]. Astrocytes release chemokines 
like CCL2 (MCP-1), which attract microglia to sites of 
Aβ deposition. Once there, astrocyte-derived cytokines 
such as IL-1β and TNF-α can activate microglia, induc-
ing a reactive state. Activated microglia, in turn, release 
their own cytokines, creating a feedback loop that ampli-
fies neuroinflammation. This bidirectional signaling 
can sustain a chronic inflammatory state that hinders 
Aβ clearance and promotes further amyloid deposition 
[242–244].

Aβ and nuclear factor-κB (NF-κB)
The NF-κB family, comprising NF-κB1 (p105/p50), 
NF-κB2 (p100/p52), RelA (p65), RelB, and c-Rel, is piv-
otal in cellular processes, particularly inflammatory 
responses. NF-κB governs a multitude of genes, many of 
which are implicated in inflammation. Its activation trig-
gers the transcription of target genes, thereby fostering 
an inflammatory response. NF-κB activation occurs via 
two primary pathways: The canonical pathway and the 
non-canonical pathway. The canonical pathway orches-
trates inflammatory responses by sequestering NF-κB in 
the cytoplasm and subsequently liberating dimers [245]. 
Conversely, the non-canonical pathway is initiated by 
TNFR superfamily members, leading to the recruitment 
and activation of NF-κB-inducing kinase (NIK). Dysregu-
lation of NF-κB signaling is associated with diseases such 
as chronic inflammation and cancer [246].
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In AD, Toll-like receptors (TLRs) are overexpressed 
on microglia and neurons, resulting in the activation of 
the NF-κB signaling pathway and subsequent produc-
tion of proinflammatory factors [247]. Early activation of 
microglia plays a pivotal role in AD development, con-
tributing to the establishment of chronic inflammation. 
Therefore, gaining a comprehensive understanding of 
NF-κB’s involvement in AD is essential. Currently, there 
is ongoing research and development of drugs, including 
NF-κB inhibitors, aimed at targeting this pathway in the 
context of AD [248].

In addition, the activation of NF-κB by bacteroides 
fragilis lipopolysaccharide triggers a cascade of events, 
leading to increased Aβ plaque accumulation and tau 
hyperphosphorylation. Consequently, this results in the 

impairment of oligodendrocytes, causing myelin injury 
and neurotoxicity [249]. Moreover, NF-κB activation in 
astrocytes fosters Aβ42 accumulation and the produc-
tion of pro-inflammatory cytokines, such as IL-1, IL-6, 
and TNF-α, thereby intensifying neurodegeneration in 
AD [250]. The intricate involvement of NF-κB signaling 
in reactive microglia and astrocytes underscores its pro-
found impact on AD progression, highlighting its poten-
tial as a promising therapeutic target [251]. (For further 
information, see [252, 253]) (Fig. 4).

In AD, elevated levels of NF-κB have been also observed 
in the cerebral cortex, coinciding with increased levels 
of BACE1. NF-κB, particularly the p65 subunit, binds 
to the BACE1 promoter, leading to the upregulation of 
β-secretase expression and the amyloidogenic processing 

Fig. 4  Aβ plays a role in triggering the activation of NF-κB, a central regulator of inflammation, through various pathways in neurons and microglia cells, 
contributing to the development of AD. In microglia cells, one pathway by which Aβ induces NF-κB activation is the Toll-like receptor (TLR) pathway. 
Aβ interacts with TLR2 and TLR4, leading to the recruitment of adaptor proteins like MyD88. This activates downstream signaling molecules, including 
interleukin-1 receptor-associated kinases (IRAKs). The phosphorylation of IRAKs leads to the activation of the transforming growth factor-beta-activated 
kinase 1 (TAK1) complex. The TAK1 complex, along with the inhibitor of κB kinase (IKK) complex, phosphorylates and degrades IκB, releasing NF-κB from its 
inhibitory state. NF-κB then translocates into the nucleus, where it forms a transcriptional complex with coactivators and binds to κB sites in the promot-
ers of proinflammatory genes such as IL-1β and TNF-α, promoting their expression. In neurons, Aβ can activate NF-κB through the T-cell receptor (TCR) 
pathway. Aβ peptides interact with major histocompatibility complex class II (MHC-II) molecules on antigen-presenting cells like microglia. This triggers 
TCR signaling in T cells, leading to the release of proinflammatory cytokines, including IFN-γ. IFN-γ binds to its receptors on neurons, initiating Janus 
kinase (JAK) and signal transducer and activator of transcription (STAT) signaling. The JAK-STAT pathway activates transcription factors, including STAT1 
and STAT3, which collaborate with NF-κB to enhance its activity. This collaboration promotes the expression of proinflammatory genes. Furthermore, Aβ 
can activate NF-κB through the tumor necrosis factor receptor (TNFR) pathway in both neurons and microglia cells. By interacting with TNFR, Aβ triggers 
the recruitment and activation of TNFR-associated factor (TRAF) proteins, particularly TRAF2 and TRAF6. These proteins activate the IKK complex, which 
includes IKKα, IKKβ, and IKKγ. The activated IKK complex phosphorylates IκB, leading to its ubiquitination and degradation. The degradation of IκB releases 
NF-κB, allowing its translocation into the nucleus. In the nucleus, NF-κB forms a transcriptional complex that promotes the transcription of proinflam-
matory genes. Overall, these pathways highlight how Aβ can initiate NF-κB activation in both microglia cells and neurons, leading to the expression of 
proinflammatory genes and contributing to the inflammatory processes observed in AD [252, 253]
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of APP [254]. This process contributes to the formation 
of amyloid plaques. Additionally, Aβ peptides can stimu-
late NF-κB activation, further exacerbating AD pathol-
ogy [255]. Notably, Aβ40 peptide activates NF-κB and 
induces the expression of pro-apoptotic genes, while also 
promoting the accumulation of Aβ42 aggregates [256]. 
Aβ (25–35) peptide causes neuronal toxicity through 
oxidative stress and is accompanied by increased NF-κB 
signaling [257]. Understanding the role of NF-κB in AD 
is crucial for developing potential therapeutic interven-
tions, including NF-κB inhibitors.

Aβ and tau protein
In AD, the accumulation of Aβ plaques and the formation 
of NFTs composed of abnormal tau protein are two key 
pathological features. Aβ accumulation is believed to ini-
tiate a cascade of events that lead to tau pathology [258]. 
Aβ can promote the hyperphosphorylation of tau, dis-
rupt the stability of microtubules, induce oxidative stress 
and inflammation, and impair synaptic function [259].

Indeed, studies have demonstrated that incubating 
neurons with a concentration of 5 µM Aβ can activate 
the p38 MAPK signaling pathway, resulting in the hyper-
phosphorylation of tau protein [260–262]. This activation 
of p38 MAPK disrupts the normal function of tau, lead-
ing to the formation of NFTs and instability of microtu-
bules. The specific mechanisms by which Aβ activates the 
p38 MAPK pathway and induces tau hyperphosphoryla-
tion are still being investigated. It is believed that Aβ can 
trigger intracellular signaling events, potentially involv-
ing receptors or oxidative stress, which culminate in the 
activation of p38 MAPK. Once activated, p38 MAPK 
can directly phosphorylate tau or activate downstream 
kinases that contribute to tau hyperphosphorylation. 
This abnormal phosphorylation of tau impairs its ability 
to bind to microtubules, leading to their destabilization 
and subsequent disruption of neuronal structure and 
function [41, 263].

These processes contribute to the aggregation of tau 
into NFTs, which further disrupt neuronal function and 
contribute to cognitive decline. Additionally, tau pathol-
ogy can spread throughout the brain, propagating the 
disease process from one region to another [264]. The 
interaction between Aβ and tau appears to have syn-
ergistic effects, exacerbating neuronal dysfunction and 
neurodegeneration in AD [265]. Understanding the rela-
tionship between these two pathological features is cru-
cial for developing effective treatments for AD.

Aβ and APOE ε4 allele
Most importantly, the presence of the APOE ε4 allele, a 
genetic variant associated with AD, is a significant risk 
factor for both late-onset and early-onset forms of the 
disease [266]. Individuals carrying the APOE ε4 allele 

may experience earlier cognitive decline, even before 
the age of 60, compared to non-carriers [267]. Of note, 
homozygosity for the APOE ε4 allele further increases 
the risk of developing AD [268]. APOE ε4 influences vari-
ous brain signaling pathways involved in lipid transport, 
synaptic function, glucose metabolism, and cerebrovas-
cular health [269]. The APOE ε4 allele is associated with 
increased accumulation of Aβ plaques, neurotoxic Aβ 
species, and intraneuronal Aβ accumulation. It also cor-
relates with higher cerebral Aβ deposition as detected 
by neuroimaging and cerebrospinal fluid biomarkers. 
The impact of APOE ε4 on AD risk and progression is 
likely mediated through its effects on Aβ metabolism. 
Age-related changes and interactions between APOE ε4 
and metabolic processes further exacerbate Aβ-related 
pathology [270]. Understanding the role of APOE ε4 and 
its interaction with age and Aβ accumulation is impor-
tant for developing predictive models and potential ther-
apeutic strategies for AD.

The APOE genotype has a profound impact on Aβ 
deposition in both humans and animal models. Spe-
cifically, individuals with an APOE ε4 allele exhibit a 
strong association with increased levels of Aβ, including 
the toxic oligomeric form detected in post-mortem AD 
brains [271, 272]. Moreover, throughout the progres-
sion of the disease, APOE ε4 exacerbates intra-neuronal 
Aβ deposition [273], plaque formation [274, 275], and 
the development of cerebral amyloid angiopathy within 
the cerebrovasculature [276, 277]. Brain Aβ metabolism 
is differentially influenced by ApoE isoforms [278], and 
when combined with amyloid mouse models, the pres-
ence of apoE4 intensifies the severity of Aβ deposition 
compared to apoE2 or apoE3 [279–281].

One primary mechanism is impaired Aβ clearance, 
as APOE ε4 is less efficient in lipid transport and has 
reduced affinity for receptors like LRP1 and SORL1, lead-
ing to decreased Aβ removal from the brain. APOE ε4 
also promotes Aβ aggregation by enhancing fibril forma-
tion and influences APP processing, increasing the pro-
duction of the aggregation-prone Aβ42 isoform [282, 
283].

Neuroinflammation is another critical pathway, with 
APOE ε4 associated with increased activation of microg-
lia and astrocytes, leading to the release of pro-inflam-
matory cytokines and ROS, contributing to neurotoxicity 
and further Aβ accumulation [284, 285]. Additionally, 
APOE ε4 is linked to BBB dysfunction, allowing more 
peripheral Aβ and inflammatory factors to enter the 
brain [286, 287]. Mitochondrial dysfunction and oxida-
tive stress are further exacerbated by APOE ε4, leading 
to reduced ATP production and increased ROS, which 
damage cellular components. This isoform also disrupts 
synaptic function by promoting the accumulation of toxic 
Aβ oligomers, leading to cognitive decline [288, 289].
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Aβ and BACE1
In mouse models, the absence of the BACE1 protein, 
known as β-secretase, completely eliminates β-secretase 
activity in the brain and cultured neurons [290, 291]. In 
contrast, mice overexpressing a mutated form of the APP 
gene associated with AD produce high levels of brain Aβ 
and develop Aβ plaques. By breeding BACE1-deficient 
mice with the APP-overexpressing mice, it was found 
that the resulting mice lacking BACE1 lacked all forms of 
brain Aβ, APPsβ, and C99, proving that BACE1 is the pri-
mary β-secretase required for Aβ generation in the brain 
[291, 292]. These findings highlight the crucial role of 
BACE1 in the production of Aβ and provide insights into 
the mechanisms underlying AD.

Recent studies have shown that BACE1 deficiency and 
the ablation of Aβ can rescue memory deficits in Tg2576 
mice, a type of AD brain [293]. The study revealed that 
BACE1-/-•Tg2576 bigenic mice, which lack Aβ, did 
not exhibit memory deficits or cholinergic dysfunction 
in the hippocampus. In contrast, Aβ-overproducing 
Tg2576 monogenic mice displayed pronounced deficits 
in memory function [294]. These findings strongly sup-
port BACE1 as a promising therapeutic target for AD and 
provide direct evidence for the amyloid hypothesis in liv-
ing organisms. In aged APP/PS1 double transgenic mice, 
which show accelerated Aβ accumulation and memory 
deficits associated with AD, the deletion of BACE1 com-
pletely eliminates the deposition of amyloid plaques and 
prevents deficits in spatial reference memory [295–298]. 
Research using BACE1 knockout mice has shown impair-
ments in emotional and cognitive processes, which may 
indicate mechanism-based toxicities from total BACE1 
inhibition [293, 294, 297].

BACE1 is a critical enzyme for the generation of Aβ, 
implying that Aβ may have regular physiological func-
tions related to memory, neuronal function, and poten-
tially potassium channel expression regulation [293]. 
Disrupting Aβ production is associated with impaired 
memory performance [299, 300]. However, BACE1 defi-
ciency does not uniformly affect all types of learning 
associated with the hippocampus, indicating that Aβ’s 
role in cognitive function and its normal physiological 
function in vivo require further research [293].

Developing BACE1 inhibitors to completely suppress 
its enzymatic activity in vivo may pose challenges. How-
ever, a study by Singer et al. demonstrated that partial 
reduction of BACE1 through RNA interference improved 
amyloid pathology and cognitive deficits in APP Tg mice, 
suggesting that even moderate inhibition of BACE1 could 
be therapeutically beneficial. These findings shed light on 
the potential of targeting BACE1 activity as a treatment 
strategy for AD, emphasizing the importance of explor-
ing approaches that modulate BACE1 levels or activity 
rather than complete inhibition [301]. Moreover, BACE1 

knockout mice exhibit normal spatial memory function, 
suggesting that complete inhibition of BACE1 may not 
impact learning abilities. However, the dosage of BACE1 
affects the burden of Aβ plaques, particularly in young 
animals, indicating that BACE1 plays a role in Aβ pro-
duction. These findings emphasize the complex relation-
ship between BACE1, Aβ burden, and cognitive function, 
highlighting the need for further research to understand 
the precise role of BACE1 in AD [294].

Nonetheless, a study revealed that in older mice, 
decreasing BACE1 levels did not affect the burden of Aβ 
plaques, indicating that BACE1 is not a limiting factor 
in aged mice. Additionally, older mice with a 50% reduc-
tion in BACE1 levels, specifically in the APPswe; PS1ΔE9 
model, showed significant impairment in the Morris 
water maze, indicating that partial BACE1 suppression 
alone is insufficient to improve cognitive deficits in aged 
mice. The age-dependent effects of partially suppressing 
BACE1 expression seem to be complex, potentially influ-
enced by different forms of the APP [294, 302].

Aβ and receptors
Soluble oligomeric forms of Aβ have been found to 
interact with a range of receptors, including lipids, pro-
teoglycans, and specific proteins present on the surface 
of neuronal cells. Several receptors associated with Aβ 
toxicity have been identified, such as the Aβ-binding p75 
neurotrophin receptor (P75NRT), the LRP, cellular PrPc, 
metabotropic glutamate receptors (mGluR5), α subunit 
containing nicotinic acetylcholine receptor (α7nAChR), 
NMDAR, β-adrenergic receptor (β-AR), erythropoietin-
producing hepatoma cell line receptor (EphR), and paired 
immunoglobulin-like receptor B (PirB). These receptors 
play a role in mediating the toxic effects of Aβ and con-
tribute to the pathogenesis of AD [303].

The interactions between Aβ and these receptors are 
believed to generate and transmit neurotoxic signals 
within neurons, leading to cellular defects such as mito-
chondrial dysfunction and activation of the endoplasmic 
reticulum stress response. These cellular defects contrib-
ute to the progressive neurodegeneration observed in 
AD. Furthermore, some of these Aβ receptors are likely 
to internalize Aβ peptides into neurons, leading to the 
manifestation of distinct cellular defects. This internal-
ization process may contribute to the spread and propa-
gation of Aβ pathology within the brain [304, 305].

On the whole, the extracellular accumulation of Aβ in 
neuritic plaques and its binding to various receptors are 
key features of AD. The interaction between Aβ and these 
receptors can trigger neurotoxic signals, resulting in cel-
lular defects and contributing to the progression of the 
disease. Understanding these Aβ/receptor interactions 
is important for unraveling the underlying mechanisms 
of AD’s pathology and developing potential therapeutic 
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interventions. Table  1 shows summarize receptors 
affected by Aβ in AD.

Prospective and conclusion
AD poses a significant challenge in the field of neuro-
science, primarily due to the complex nature of its pro-
gression, which involves various interconnected factors. 
A key aspect of understanding AD lies in comprehend-
ing how Aβ is metabolized and cleared in the brain. 
Researchers are extensively exploring the molecular 
mechanisms governing Aβ production, aggregation, and 
clearance in order to gain crucial insights into the under-
lying processes. Advanced imaging techniques, pro-
teomics, and genetic studies are indispensable tools that 
provide deeper insights into Aβ accumulation and pave 

the way for the identification of novel therapeutic targets 
and strategies aimed at modulating its metabolism and 
enhancing its clearance.

The pursuit of potential treatments for AD revolves 
around innovative approaches targeting Aβ. Promis-
ing avenues include monoclonal antibodies, small mol-
ecules, and gene therapies, which aim to either reduce 
Aβ production or enhance its clearance from the brain. 
These strategies hold immense potential in combatting 
Aβ accumulation and its detrimental effects, offering the 
possibility of altering the course of the disease. Further-
more, researchers acknowledge the complexity of AD 
and the need to address multiple pathological processes 
simultaneously. Combination therapies that target vari-
ous aspects of AD pathology, beyond Aβ alone, represent 
a compelling approach. By concurrently addressing neu-
roinflammation, abnormalities in tau proteins, synaptic 
dysfunction, and Aβ, these combination therapies offer 
a more comprehensive approach to mitigating AD pro-
gression. In addition, longitudinal studies that observe 
individuals over extended periods are pivotal in shap-
ing our understanding of AD progression and treatment 
responses. These studies provide invaluable insights into 
the dynamic nature of the disease, informing the refine-
ment of treatment strategies and enhancing the effective-
ness of personalized medicine approaches.

In the realm of AD studies, it is crucial to acknowledge 
that Aβ plays a dual role and that comprehensive inves-
tigations must encompass other aspects related to Aβ as 
well as the broader factors contributing to AD develop-
ment. While Aβ is strongly associated with AD and its 
accumulation is a characteristic feature, its precise role 
and impact on disease progression remain complex and 
multifaceted. AD is a multifactorial disease influenced by 
neuroinflammation, tau pathology, synaptic dysfunction, 
vascular factors, genetic predispositions, and lifestyle fac-
tors, among others. Understanding the intricate interplay 
between Aβ and these various factors is vital for a holis-
tic understanding of AD pathogenesis and for identifying 
novel therapeutic targets and strategies.
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Table 1  List the receptors in AD that are impacted by Aβ
Receptor Function Results in AD Ref
Aβ-binding p75 
neurotrophin 
receptor 
(P75NTR)

In AD, Aβ activates 
P75NTR, triggering 
signaling pathways 
promoting neuronal 
death.

Contributes to pro-
gressive neurode-
generation in AD.

 
[306–
308]

Low-density 
lipoprotein 
receptor-
related protein 
(LRP)

Its dysfunction leads to 
Aβ accumulation.

Impaired Aβ clear-
ance contributes to 
plaque formation 
in AD.

 [309, 
310]

Cellular prion 
protein (PrPc)

Interaction with Aβ 
in AD contributes to 
neurotoxic effects and 
possible aggregation.

Role in Aβ-induced 
cellular events 
and possible 
aggregation.

 [150, 
311]

Metabotropic 
glutamate 
receptor 5 
(mGluR5)

Aβ-mGluR5 interaction 
disrupts synaptic func-
tion, contributing to 
cognitive deficits.

Disruption leads to 
synaptic dysfunc-
tion and cognitive 
deficits.

 [150, 
312, 
313]

α7 subunit-
containing 
nicotinic acetyl-
choline recep-
tor (α7nAChR)

Aβ-α7nAChR interac-
tion disrupts cho-
linergic signaling, 
contributing to cogni-
tive deficits.

Disruption impairs 
cholinergic signal-
ing and cognitive 
functions.

 [314]

N-methyl-
D-aspartic 
acid receptor 
(NMDAR)

Aβ-NMDAR interaction 
disrupts function, lead-
ing to impaired plastic-
ity and synaptic loss.

Dysfunction con-
tributes to synaptic 
loss and cognitive 
decline.

 [315, 
316]

β-adrenergic 
receptor (β-AR)

Aβ-β-AR interaction 
triggers neurotoxic 
signals within neurons.

Contributes to cellu-
lar dysfunction and 
neuronal signaling 
issues.

 [155, 
317]

Erythropoietin-
producing 
hepatoma cell 
line receptor 
(EphR)

Aβ-EphR interaction 
disrupts synaptic func-
tion and connectivity.

Leads to impaired 
synaptic func-
tion and neuronal 
connectivity.

 
[318–
320]

Paired immu-
noglobulin-like 
receptor B 
(PirB)

Aβ-PirB interaction 
disrupts normal 
function, impacting 
synaptic plasticity and 
connectivity.

Results in disrupted 
synaptic plastic-
ity and neuronal 
connectivity.

 [321]
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PrP	� prion protein
TREM2	� triggering receptor expressed on myeloid cells 2
NF-κB	� nuclear factor-κB
TLRs	� Toll-like receptors
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