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SHORT REPORT

Database-assisted screening of autism 
spectrum disorder related gene set
Éva Kereszturi1*   

Abstract 

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social and communication 
difficulties, along with repetitive behaviors. While genetic factors play a significant role in ASD, the precise genetic 
landscape remains complex and not fully understood, particularly in non-syndromic cases. The study performed 
an in silico comparison of three genetic databases. ClinVar, SFARI Gene, and AutDB were utilized to identify relevant 
gene subset and genetic variations associated with non-syndromic ASD. Gene set enrichment analysis (GSEA) 
and protein–protein interaction (PPI) network analysis were conducted to elucidate the biological significance 
of the identified genes. The integrity of ASD-related gene subset and the distribution of their variations were statisti-
cally assessed. A subset of twenty overlapping genes potentially specific for non-syndromic ASD was identified. GSEA 
revealed enrichment of biological processes related to neuronal development and differentiation, synaptic function, 
and social skills, highlighting their importance in ASD pathogenesis. PPI network analysis demonstrated functional 
relationships among the identified genes. Analysis of genetic variations showed predominance of rare variants 
and database-specific distribution patterns. The results provide valuable insights into the genetic landscape of ASD 
and outline the genes and biological processes involved in the condition, while taking into account that the study 
relied exclusively on in silico analyses, which may be subject to biases inherent to database methodologies. Further 
research incorporating multi-omics data and experimental validation is warranted to enhance our understanding 
of non-syndromic ASD genetics and facilitate the development of targeted research, interventions and therapies.

Keywords Autism spectrum disorder, ASD-related genes, Genetic variation, Syndromic ASD, Non-syndromic ASD, 
Gene set enrichment analysis, ASD-specific databases

Background
Autism spectrum disorder (ASD) is a neurodevelopmen-
tal condition of varying severity with lifelong impact that 
can be recognized from early childhood and is character-
ized primarily by difficulties with social interaction and 
communication, and limited or repetitive patterns of 
thinking and behavior. Although its prevalence is esti-
mated at 1%, it has been on a steadily increasing trend 

worldwide [1]. According to systematic public health 
data, the prevalence of ASD in the United States has 
increased from 1.47% to 2.76% in the last ten years [2, 3], 
but similar changes are also observed in Europe [4] and 
Asia [5]. The prevalence of autistic disorder is approxi-
mately four times higher in males than in females, and 
the gender differential is even higher in milder forms of 
ASD [6]. The hereditary nature of this condition is now a 
clear scientific fact, with some uncertainty about its exact 
extent. A meta-analysis found a heritability of 0.64‒0.91 
[7], which has since been confirmed by others [8], giving 
a currently accepted heritability rate for this condition of 
0.7‒0.8 [9]. A concordance of 98% for monozygotic twins 
and 53% for dizygotic twins has been found [7], and the 
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sibling recurrence rate is estimated to be as high as 30% 
[10].

All these data point out a clear genetic predisposition, 
and the highly complex genetic nature of ASD is undeni-
able. To date, thousands of genetic variants in hundreds 
of genes have been identified, which can range from sin-
gle nucleotide changes to the appearance of entire extra 
chromosomes, from rare mutations to very common 
polymorphisms, from de novo variants to hereditary 
ones [11]. Undoubtedly, most is known about the genetic 
background of ASD-associated syndromes with severe 
genetic abnormalities, which account for merely 20‒35% 
of all ASD cases. In contrast, in vast majority of indi-
viduals diagnosed with non-syndromic ASD, the genetic 
components are still largely unidentified [12].

The objective of this study is to conduct an in silico bio-
informatics comparison between multiple ASD-specific 
genetic databases that are currently accessible online. 
Although these databases contain primarily genetic 
information related to severe syndromes, which often 
manifest differently and are largely associated with well-
defined genetic anomalies, their overlap with prominent 
autistic symptoms may indicate a subset of genes spe-
cific to ASD and independent of the syndromic condi-
tions. This gene set may serve as a valuable resource for 
increasing the efficiency of genetic targeting of the sig-
nificantly more common non-syndromic ASD.

Methods
Data acquisition
Three databases were used to select the most relevant 
genes and genetic variations associated with ASD. Clin-
Var is a freely accessible, public archive of reports of 
human variations classified by diseases, in the pre-
sent case ASD, together with supporting evidence ([13] 
https:// www. ncbi. nlm. nih. gov/ clinv ar/ assessed on 10 
May 2023). The SFARI Gene ([14] https:// gene. sfari. 
org/ assessed on 24 May 2023) and AutDB ([15] http:// 
autism. minds pec. org/ autdb/ Welco me. do assessed on 4 
May 2023) are autism-specific databases in which risk 
genes are scored according to a set of strict annotation 
rules based on the evidence supporting their association 
with autism. For the exact process of gene selection, see 
the Results section. Variations in the selected genes were 
downloaded from the ClinVar and AutDB databases. 
In the case of ClinVar, in addition to the de novo muta-
tions in the “Time of origin” category, variants with ger-
mline, maternal, and paternal inheritance were merged 
under the heading “familial”, as AutDB also distinguishes 
between these two groups. The number of affected genes 
was determined by examining the ClinVar records indi-
vidually, whereas AutDB allows for the filtering of this 
parameter. The search for “molecular consequences” was 

conducted on the ClinVar interface, while the data down-
loaded from AutDB were filtered individually.

Gene set enrichment analysis (GSEA)
The ShinyGO 0.77 tool [16] was employed to assess the 
correlation between the selected gene set and their bio-
logical function, as well as the functional network derived 
from the Gene Ontology (GO) database. OMIM disease 
data were also applied to assess the disease-relevance 
of the identified subset of genes. To increase reliability, 
the false discovery rate (FDR) threshold was reduced to 
0.01 in all analyses, and only the first 10 significant hits 
selected by the FDR and sorted by fold enrichment (FE) 
were considered.

Construction of protein–protein interaction (PPI) network
The PPI network of the ASD-related gene selection 
was generated and visualized using STRING 12.0 ([17] 
https:// string- db. org/ assessed on 24 January 2024) with 
a minimum level of confidence < 0.4 to analyze the func-
tional interactions among proteins.

Statistics
Methods integrated into the software described above 
were used to statistically assess the integrity of the shared 
genes. Alterations in the distribution of genetic varia-
tions between databases were assessed using χ2-test for 
pairwise comparisons between genes. For multiple test-
ing, Benjamini–Hochberg method was applied using 
sequential modified Bonferroni correction. Differences 
with a p < 0.05 value were considered to be statistically 
significant.

Results
Selection of relevant ASD‑related genes
The screening process of the massive amount of ASD-
specific genetic data from the three databases, the algo-
rithm of the searches and the number of hits obtained in 
the different steps are summarized in Fig.  1A. The tens 
of thousands of hits for the search term “autism” in the 
ClinVar database were narrowed to those with patho-
genic annotation, and then further processed with the 
168 genes that were listed at least 20 times. At the time of 
the analysis SFARI Gene and AutDB contained 1128 and 
1364 ASD-specific genes, respectively. In the former case, 
the 146 genes with at least 20 ASD-specific reports were 
considered. The latter database ranks the ASD relevance 
of genes on a 5-point scale, of which 201 genes with 4 
and 5 asterisks meaning strong probable association 
were included in the present study. A total of 20 overlap-
ping genes were identified in the comparison of the three 
independent hit lists (Fig. 1B). To determine the relative 
importance of the 20 powerful hits, all positive scientific 
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reports were downloaded and summarized from all three 
databases (Fig.  1C). Interestingly, the citation order dif-
fered between databases, for instance, while MEPC2 was 
most cited in ClinVar (439), AutDB (110) and the overall 
ranking (582), it was only in the middle range in SFARI 
Gene (33).

GSEA of selected genes most relevant for ASD
In order to elucidate the biological role of the identified 
gene set, functional enrichment analysis was performed 
using ShinyGO 0.77 with GO terms. Regarding GO Bio-
logical Process (GOBP), “Social behavior” and “Biologi-
cal processes in intraspecies interaction” were found the 
be the most enriched (101.2-fold and 97.5-fold) with 
the highest FDR (4.5 both) (Fig.  1D). Although “Syn-
apse organization” only resulted in 20.8-fold enrich-
ment, it was characterized by the highest FDR value 
(4.6) (Fig.  1D). The top 10 GOBPs also included “Syn-
apse assembly”, “Cell part morphogenesis”, “Cell junction 
organization”, “Chemical synaptic transmission”, “Cell 
morphogenesis in differentiation”, “Neuron projection 
development” and “Neuron differentiation” with FDR 
values ranging from 4.4 to 2.3 (Fig.  1D). The hierarchi-
cal clustering tree summarizes the correlation among 
significantly enriched GOBPs (Fig.  1E). The analysis 
revealed two main clusters. One of them contained 
processes related to neuronal cell differentiation and is 
mainly hallmarked by the TRIO and AUTS2 genes, the 
other could be further subdivided into two well-defined 
subclusters. While GABRB3 was the common gene in 
the synaptic function group, the subcluster of social skills 
shared CHD8. The network analysis of the top 10 GOBPs 
revealed a well-defined, compact network containing all 
items (number of nodes = 10) with the maximum num-
ber of possible edges (9) for each member of the network, 
highlighting the close functional correlation between 
them (Fig.  1F). GSEA for the overlapping 20 genes was 
also performed from the perspective of disease based on 
OMIM data using ShinyGO 0.77. The analysis revealed 
only two conditions, of which “Autism” was characterized 
by an exceptionally high FE (447-fold) and FDR (6.9), and 
low p-value (1.2E−07) (Fig. 1G).

To validate the results presented above, GSEA was also 
performed separately on independent gene lists from 
the three databases used (see Fig. 1A). For the 168 genes 
from ClinVar, only three GOBPs were found to be com-
mon to the selected shared genes (Additional file 1: Fig. 
S1A). Although “Social behavior” also received the high-
est FE in this analysis, it was markedly lower than the 
value obtained for the shared gene list (17.9 vs 101.2) 
and had a much more modest FDR (2.5 vs 4.5). Hierar-
chical clustering identified less clear clusters (Additional 
file 1: Fig. S1B), and accordingly the network analysis of 
GOBPs suggested a network with only 9 nodes instead of 
maximal 10, with the number of edges varying between 
0 and 7 (Additional file  1: Fig. S1C). The OMIM based 
GSEA only identified “Autism” with modest FE (63.3 vs 
447) and FDR (3.7 vs 6.9) compared to the shared gene 
set (Additional file  1: Fig. S1D). Similar trends were 
observed when examining the gene list of the other two 
databases (Additional file 1: Fig. S2 and Additional file 1: 
Fig. S3). Two GOBPs overlapped with the shared gene set 
for SFARI Gene (Additional file 1: Fig. S2A) and only one 
for AutDB (Additional file 1: Fig. S3A), and none of them 
was “Social behavior”. Both were characterized by mod-
est FEs coupled with relatively high FDRs (Additional 
file 1: Fig. S2A and Additional file 1: Fig. S3A), as well as 
uncertain hierarchical clusters (Additional file 1: Fig.S2B 
and Additional file 1: Fig. S3B) and incoherent networks 
(Additional file 1: Fig. S2C and Additional file 1: Fig. S3C) 
relative to the shared gene set. The OMIM-based GSEAs 
of the gene lists of both ASD-specific databases showed 
an enrichment of six clinical conditions that only par-
tially overlapped (Additional file  1: Fig. S2B and Addi-
tional file 1: Fig. S3B). Although “Autism” had the highest 
FE value for the SFARI Gene, it was well below the value 
for the overlapping gene list (110.1 vs 447, Additional 
file 1: Fig. S2D), which was also observed for the analysis 
with AutDB data (39.8 vs 447, Additional file 1: Fig. S3D).

In silico protein–protein interaction analysis
To further analyze the functional relationship between 
the shared 20 genes at the protein level, a protein–protein 
interaction network was also generated using STRING 
12.0 (Fig. 2A). Of the 20 selected proteins, 17 contributed 

(See figure on next page.)
Fig. 1 Screening of genes highly association with ASD and bioinformatic analysis of their biological interactions. A Search terms and sorting 
parameters with the number of hits in each stage for each database. B Venn diagram representation of overlapped genes. C Ranking of the 20 
shared ASD-related genes based on the total number of reports from each database. The diagram depicts the overall ClinVar/SFARI Gene/AutDB 
report counts. GSEA of the 20 overlapping ASD genes for GOBPs (D), and their hierarchical clustering (E) and network analysis (F). The hierarchical 
clustering tree summarizes the correlation among significant pathways, with common genes clustered together. In network analysis two nodes 
are connected if they share 20% or more genes. Darker nodes are more significantly enriched gene sets. Bigger nodes represent larger gene sets. 
Thicker edges represent more overlapped genes. G GSEA of the 20 overlapping ASD genes for OMIM Disease database. For each GSEA performed, 
the FDR threshold was reduced to 0.01, and only the first 10 significant hits selected by the FDR and sorted by FE were considered
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Fig. 1 (See legend on previous page.)
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to the predicted PPI map with 64 edges and a PPI enrich-
ment p-value of 1.0E-16, meaning that there are more 
interactions between proteins than would be expected 
for a random set of proteins of the same size and degree 
distribution drawn from the genome. This enrichment 
indicates that proteins as a group are most likely biologi-
cally related.

Analysis of genetic variations in selected genes
Four (Frequency, Variation length, Time of origin and 
Molecular consequence) of the six dimensions of genetic 
variations associated with ASD and described elsewhere 
[11] were further analyzed for the 20 selected genes. The 
amount of genetic variation types in the different cat-
egories was downloaded from both the ClinVar and the 
AutDB databases. The “Frequency” dimension was an 
exception, as rare/common data could only be extracted 
from AutDB. In the “Frequency” category, rare variations 
were predominant for all 20 selected genes (Fig. 2B). The 
single-gene and multiple-gene affected variation types in 
the “Variation length” dimension showed significantly dif-
ferent patterns for variants in UBE3A, GABRB3, AUTS2, 
NRXN1 and SHANK3 genes (Fig. 2C). When comparing 
de novo and familial variations, all but three common 
ASD genes were revealed to have significantly different 
distribution profiles (Fig.  2D). While ClinVar contains a 
higher proportion of familial variations, AutDB is a col-
lection of de novo mutations. Seven types of molecular 
consequences were also compared (Fig. 2E). Not surpris-
ingly, significant distributional differences were detected 
in the majority of the 20 shared genes. The numbers of 
gene variations belonging to different genetic variation 
types, as well as the p- and adjusted p-values are given in 
Additional file 1: Tables S1, S2 and S3, respectively.

Discussion
ASD presents a significant public health challenge, with 
increasing prevalence worldwide. This neurodevelop-
mental condition exhibits a complex etiology involv-
ing both genetic and environmental factors. Although 
understanding the genetic underpinnings of ASD would 
be crucial for developing targeted interventions and 
therapy, the genetic predisposing factors responsible for 
the condition have remained largely hidden despite many 

recent advances. Therefore, the aim of the present study 
was to compare ASD-specific genetic databases to iden-
tify shared genetic components associated with autism, 
independent of syndromic conditions, and elucidate their 
biological significance by in silico analysis.

The question is legitimately raised as to what is the 
point of searching for target genes in the era of whole 
genome sequencing, and even further narrowing down 
the list of them based on certain considerations. How-
ever, it must not be forgotten that the vast majority of 
information derived from sequencing data can only be 
accessed after appropriate bioinformatic analysis. Fur-
thermore, to target relevant genetic information, it is 
necessary to know what to look for, and the ASD-specific 
gene list created in the present work can provide a useful 
and accurate tool for this purpose.

Undoubtedly, however, estimates of the number and 
composition of ASD-relevant genes vary widely among 
research groups, used databases, and clinical sequenc-
ing panels. A recent review of a gene set associated with 
autism and neurodevelopmental disorders (NDD) com-
piled a list of 83 high-confidence and NDD candidate 
genes using five disease-oriented databases. Remark-
ably, 14 of these were found to be in common with the 
20 genes identified in the present work (MECP2, WAC 
, GRIN2B, STXBP1, PTEN, TCF4, POGZ, DYRK1A, 
ADNP, AUTS2, CHD2, SYNGAP1, DDX3X, UBE3A), 
but it should also be noted that, unlike the present study, 
they included cases of NDD, developmental disorder 
and intellectual disability, as a broader phenotype [18]. 
Another approach aimed to identify autism genes in the 
human genome based on patterns of gene–gene interac-
tions and topological similarity of genes in the interac-
tion network [19]. Using 760 autism-related genes from 
the SFARI Gene and OMIM databases as positive con-
trols, all human genes were prioritized for ASD suscepti-
bility. When comparing the first 50 hits, only three were 
found to be in common with those found in the present 
work (WAC , NRXN1, UBE3A).

In addition to the database analyses, some large 
exome sequencing studies have also been performed 
to refine the list of ASD predominant genes. While 
only four (CHD8, PTEN, SHANK3, NRXN1) of the 53 
autism-related genes identified in one study were found 

Fig. 2 Examining PPI between members of the shared gene list, and comparing the distribution of differently classified genetic variants using 
ClinVar and AutDB data. A PPI network of the 20 shared ASD-specific proteins. Thicker edges represent more overlapped proteins. Distribution 
of genetic variant types of the 20 overlapping ASD genes by Frequency (B), Variation type (C), Time of origin (D) and Molecular consequence (E) 
based on ClinVar and AutDB. The distribution profiles of genetic variant type categories are represented on a percentage scale. For each gene, 
the total number of genetic variation types in a given category was considered to be 100% and their distribution was plotted. The significant 
adjusted p-values per gene between the two databases are indicated as follows: * p < 0.05; ** p < 0.01; *** p < 0.001

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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to be common with our gene set [20], in another work, 
all 20 genes were present among their 381 hits [21]. 
However, whereas the former study worked exclusively 
with samples of ASD diagnosed individuals, the latter 
mainly examined NDD cases. Other large-scale whole-
genome or exome sequencing studies of families with 
children affected by ASD have primarily focused on the 
role of rare inherited variants in the development of 
the condition. Ruzzo and colleagues identified 69 genes 
associated with ASD risk, including 24 that passed a 
stringent statistical correction [22]. It is noteworthy 
that there is a considerable degree of overlap (11 genes) 
between the gene list identified by the aforementioned 
study and the genes selected in the present work (WAC 
, SHANK3, GRIN2B, POGZ, NRXN1, DYRK1A, CHD8, 
ADNP, CHD2, SYNGAP1, PTEN). A comparable meth-
odology has identified 72 genes linked to ASD, which 
is also in substantial concordance with our curated 
gene list (overlapping genes: WAC , GRIN2B, STXBP1, 
CHD8, PTEN, SHANK3, POGZ, NRXN1, DYRK1A, 
ADNP, AUTS2, CHD2, SYNGAP1) [23]. In contrast, 
other studies that also emphasized the role of rare 
genetic variants demonstrated no [24] or minimal [25] 
overlap (SYNGAP1) with the present study. It should 
be noted, however, that the latter researches were con-
ducted with relatively smaller populations of a few tens 
of individuals.

The comparison of gene expression levels of ASD and 
control samples in different tissues may also open prom-
ising perspectives. Compared to an updated list of 109 
genes found to be significantly dysregulated in individu-
als with autism from several recent ASD expression stud-
ies, merely one (SHANK3) was found to be shared with 
ours [26]. A further study, which is unique within the 
field, compared whole genome and RNA sequencing data 
from postmortem dorsolateral prefrontal cortex samples 
of nearly two hundred individuals across prenatal and 
postnatal development for various neuropsychiatric con-
ditions, including ASD [27]. Of the 97 genes identified 
as ASD-related, 14 exhibited overlap with the gene set 
identified in the present study (GABRB3, WAC , GRIN2B, 
STXBP1, CHD8, PTEN, TCF4, SHANK3, POGZ, NRXN1, 
DYRK1A, ADNP, CHD2, SYNGAP1). Furthermore, nine 
of these exhibited alterations in expression across the 
temporal developmental scale delineated in the study, 
with three displaying an increasing trend (WAC , STXBP1, 
SHANK3) and six exhibiting a decreasing trend (CHD8, 
TCF4, POGZ, NRXN1, DYRK1A, ADNP). However, the 
Human Protein Atlas data indicate that the expression 
of all 20 genes we delineated was observed in the human 
cortex, with STXBP1 exhibiting the highest expression, 
and only four genes (GABRB3, STXBP1, GRIN2B, and 
NRXN1) were specific to this tissue [28].

The partial overlap with the literature draws attention 
to the careful applicability of these databases, as they still 
contain subjective elements, both in the ranking algo-
rithm of ASD-related genes included (which may vary 
significantly from database to database) and in the defin-
ing method of ASD phenotype and diagnosis [29].

The ASD phenotype is a well-defined common feature 
of several well-characterized genetic syndromes with 
quite diverse symptoms (e.g. Rett-, Fragile X- and Down 
syndrome, Neurofibromatosis, Tuberous sclerosis [11]). 
Accordingly, as in their phenotype, there is a probable 
overlap in their genotype as well, which was attempted 
to be identified in the presented work by analyzing and 
comparing in silico databases. The molecular biological 
and clinical examination of the relatively narrow set of 
genes and their variants thus mapped may actually bring 
researchers closer to elucidating the genetic predisposi-
tion of the non-syndromic cases that constitute the vast 
majority of ASD patients. In addition, the highly ASD 
related gene set selected in this work may provide guid-
ance for the design of more targeted, population-based 
genetic screening tests in large samples by predicting 
genetic hotspots of the condition.

Limitations
The study relied only on in silico analyses, which may 
be subject to database biases and limitations. Further-
more, these databases may occasionally overlap, while 
using very different algorithms to rank the role of a gene 
in ASD. The applicability of the narrowed list of shared 
genes to non-syndromic ASD is further limited by the 
fact that most of the genetic information currently avail-
able in ASD databases is linked to various severe syn-
dromes. It is also indisputable that, similar to other in 
silico analyses, the screening conditions defined at the 
beginning of the study can always be considered subjec-
tive to a certain extent, and therefore may influence the 
final result to varying degrees.

Conclusions
Overall, these findings contribute to our understanding 
of the genetic landscape of ASD and provide insights 
into potential molecular mechanisms underlying the 
disorder. The identified genes and enriched biological 
processes offer promising targets for further research 
and therapeutic development. However, it is essential 
to acknowledge the limitations of in silico analyses and 
the need for experimental validation to confirm the 
functional significance of the identified gene set. Mov-
ing forward, collaborative efforts integrating multi-
omics data and leveraging advanced computational 
methodologies will be crucial for unraveling the com-
plexities of ASD genetics. By elucidating the molecular 
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basis of ASD, a significant step can be taken toward 
personalized interventions and improved outcomes for 
individuals affected by this condition.
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Additional file 1: Figure S1. GOBP and OMIM Disease GSEA of ASD-related 
genes selected exclusively from the ClinVar database, and hierarchical 
clustering and network analysis of enriched GOBPs. GSEA of the 168 ASD 
genes identified in ClinVar for GOBPs (A), and their hierarchical clustering 
(B) and network analysis (C). The hierarchical clustering tree summarizes 
the correlation among significant pathways. In network analysis two 
nodes are connected if they share 20% or more genes. Darker nodes are 
more significantly enriched gene sets. Bigger nodes represent larger gene 
sets. Thicker edges represent more overlapped genes. D GSEA of the 168 
ASD genes identified in ClinVar for OMIM Disease database. For each GSEA 
performed, the FDR threshold was reduced to 0.01, and only the first 10 
significant hits selected by the FDR and sorted by FE were considered. 
Figure S2. GOBP and OMIM Disease GSEA of ASD-related genes selected 
exclusively from the SFARI Gene database, and hierarchical clustering 
and network analysis of enriched GOBPs. GSEA of the 146 ASD genes 
identified in SFARI Gene for GOBPs (A), and their hierarchical clustering 
(B) and network analysis (C). The hierarchical clustering tree summarizes 
the correlation among significant pathways. In network analysis two 
nodes are connected if they share 20% or more genes. Darker nodes 
are more significantly enriched gene sets. Bigger nodes represent larger 
gene sets. Thicker edges represent more overlapped genes. D GSEA of 
the 146 ASD genes identified in SFARI Gene for OMIM Disease database. 
For each GSEA performed, the FDR threshold was reduced to 0.01, and 
only the first 10 significant hits selected by the FDR and sorted by FE were 
considered. Figure S3. GOBP and OMIM Disease GSEA of ASD-related 
genes selected exclusively from the AutDB database, and hierarchical 
clustering and network analysis of enriched GOBPs. GSEA of the 201 ASD 
genes identified in AutDB for GOBPs (A), and their hierarchical clustering 
(B) and network analysis (C). The hierarchical clustering tree summarizes 
the correlation among significant pathways. In network analysis two 
nodes are connected if they share 20% or more genes. Darker nodes 
are more significantly enriched gene sets. Bigger nodes represent larger 
gene sets. Thicker edges represent more overlapped genes. D GSEA of 
the 201 ASD genes identified in AutDB for OMIM Disease database. For 
each GSEA performed, the FDR threshold was reduced to 0.01, and only 
the first 10 significant hits selected by the FDR and sorted by FE were 
considered. Table S1. Case numbers of genetic variation types of the 20 
shared genes for the “Variation length” dimension from ClinVar and AutDB, 
with p and adjusted p-values for the given genes. Adjusted p-values less 
than 0.05 are highlighted in bold italics. Table S2. Case numbers of genetic 
variation types of the 20 shared genes for the “Time of origin” dimension 
from ClinVar and AutDB, with p and adjusted p-values for the given genes. 
Adjusted p-values less than 0.05 are highlighted in bold italics. Table S3. 
Case numbers of genetic variation types of the 20 shared genes for the 
“Molecular Consequence” dimension from ClinVar and AutDB, with p and 
adjusted p-values for the given genes. Adjusted p-values less than 0.05 are 
highlighted in bold italics.
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