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Abstract
DHPS deficiency syndrome is an ultra-rare neurodevelopmental disorder (NDD) which results from biallelic 
mutations in the gene encoding the enzyme deoxyhypusine synthase (DHPS). DHPS is essential to synthesize 
hypusine, a rare amino acid formed by post-translational modification of a conserved lysine in eukaryotic initiation 
factor 5 A (eIF5A). DHPS deficiency syndrome causes epilepsy, cognitive and motor impairments, and mild facial 
dysmorphology. In mice, a brain-specific genetic deletion of Dhps at birth impairs eIF5AHYP-dependent mRNA 
translation. This alters expression of proteins required for neuronal development and function, and phenotypically 
models features of human DHPS deficiency. We studied the role of DHPS in early brain development using a 
zebrafish loss-of-function model generated by knockdown of dhps expression with an antisense morpholino 
oligomer (MO) targeting the exon 2/intron 2 (E2I2) splice site of the dhps pre-mRNA. dhps knockdown embryos 
exhibited dose-dependent developmental delay and dysmorphology, including microcephaly, axis truncation, and 
body curvature. In dhps knockdown larvae, electrophysiological analysis showed increased epileptiform activity, 
and confocal microscopy analysis revealed reduced arborisation of GABAergic neurons. Our findings confirm that 
hypusination of eIF5A by DHPS is needed for early brain development, and zebrafish with an antisense knockdown 
of dhps model features of DHPS deficiency syndrome.
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Introduction
Post-translational modification is a core cellular strategy 
to rapidly alter protein activity in response to environ-
mental stimuli. Over 200 post-translational modifica-
tions are mediated by enzymes which facilitate diverse 
reactions including phosphorylation, ubiquitination, gly-
cosylation, palmitoylation, sulfation, methylation, small 
ubiquitin-like modifier (SUMO)-ylation, and nitrosyl-
ation, among others. A unique post-translational modi-
fication is hypusination, limited to eukaryotic translation 
factor 5  A (eIF5A) proteins [1]. Hypusination enables 
eIF5A activation via enzymatic conversion of a conserved 
lysine to the novel amino acid hypusine (Nϵ-4-amino-
2-hydroxybutyl(lysine)). This reaction occurs in two 
steps: (1) lysine residue modification by deoxyhypusine 
synthase (DHPS), using the polyamine spermidine as a 
cofactor, to form the intermediate deoxyhypusine; (2) 
hydroxylation of this residue by deoxyhypusine hydrox-
ylase (DOHH) in an oxygen-dependent reaction [2] to 
form hypusine.

Hypusinated eIF5A (eIF5AHYP) has key cellular func-
tions: (1) facilitating initiation, elongation or termination 
during the translation of cell type-specific transcripts 
[1, 3–6]; (2) suppressing ribosomal stalling by stabiliz-
ing tRNA-ribosomal P-site interaction, facilitating pep-
tide bond formation for consecutive polyprolines and 
other tripeptide motifs [7, 8]; and (3) nonsense-mediated 
decay (NMD) of mRNA transcripts with premature stop 
codons [9]. eIF5AHYP is critical to translate long polypep-
tides [10].

eIF5A, as well as the DHPS and DOHH enzymes 
required for activation by hypusination, are essential for 
eukaryotic cell viability and growth. In yeast, eIF5AHYP 
controls cell proliferation and is required for polarized 
cell growth during mating by regulating the translation of 
polyproline-rich formins [11]. In plants, eIF5A activation 
by hypusination is essential for growth during develop-
ment and for environmental stress responses [12].

The DHPS-DOHH-eIF5A pathway relies on an oxy-
gen-sensing mechanism. In yeast, DOHH deficiency 
impairs hydroxylation of the deoxyhypusine residue in 
eIF5A, decreasing N-terminal translation of proteins 
in mitochondrial respiration, oxidative stress response, 
and protein folding. eIF5A hypusination adapts cellular 
metabolism to oxygen levels [2].

In mammals, the DHPS-DOHH-eIF5A pathway is 
implicated in disease pathogenesis and in aging. In the 
Drosophila brain, hypusinated eIF5A levels decline 
with age, but can be increased by dietary spermidine, 
and genetic attenuation of eIF5AHYP levels induces pre-
mature aging (e.g., reduced mitochondrial respiration) 
[13]. Spermidine supplementation in mice boosts eIF5A 
hypusination and improves cognitive function [14].

Mice with T-cell-specific deletions of Dohh and Dhps 
develop severe intestinal inflammatory disease, support-
ing the role of hypusination in T cell activation and dif-
ferentiation, long associated with polyamine synthesis 
[15]. Conversely, mice with a myeloid-specific deletion of 
Dhps revealed that eIF5AHYP promotes a pro-inflamma-
tory macrophage M1-like phenotype [16].

Cancer-related signaling pathways regulated by eIF5A-
HYP include MYC, p53, and hypoxia-inducible factor 
1-alpha (HIF1A). Overexpression of eIF5A is linked to 
colorectal, gastric, esophageal, lung, breast, ovarian, 
cervical, bladder, prostate, and hepatocellular cancers. 
Therefore, small-molecule inhibitors of hypusination that 
target DHPS or DOHH are potential anti-neoplastics 
[17].

In humans, mutations in the DHPS-DOHH-eIF5A 
pathway cause neurodevelopmental disorders. A rare, 
autosomal dominant disorder caused by heterozygous 
pathogenic EIF5A variants results in developmental 
delay, intellectual disability, microcephaly, and facial dys-
morphism [18]. Rare, autosomal recessive biallelic patho-
genic missense and truncating DOHH variants cause 
developmental delay, intellectual disability, microceph-
aly, facial dysmorphism, and epilepsy [19]. DHPS defi-
ciency causes an ultra-rare, autosomal recessive disorder 
caused by biallelic pathogenic variants that reduce DHPS 
enzyme activity (~ 18–25% of normal), with features sim-
ilar to the eIF5A and DOHH deficiency syndromes [20].

Homozygous knockout mouse models of DHPS, 
DOHH and eIF5A are early embryonic lethal, underscor-
ing the essential role of this pathway in early development 
[21–23]. In mice, conditional knockout mouse models of 
these genes support their developmental roles. Mice with 
conditional genetic deletions of Dhps or Eif5a induced by 
the Emx1-Cre driver (primarily expressed in the cortex 
and hippocampus from E9.5 onwards) show gross defects 
in forebrain development, reduced growth, and prema-
ture death [24]. Mice with a brain-specific deletion of 
Dhps initiated at birth (via intraventricular injection of an 
adeno-associated virus with CMV-driven Cre expression) 
exhibited spontaneous seizures, impaired growth, and 
death before 6 weeks of age. Moreover, proteomic analy-
sis of brain tissue using quantitative mass spectrometry 
revealed that these brain-specific Dhps knockout mice 
had changes in numerous proteins involved in neuronal 
growth, function, and secretion [3].

In patients and animal models, the DHPS-DOHH-
eIF5A pathway disorders primarily impact the brain. 
While conditional mouse knockouts provide valuable 
data on the role of eIF5AHYP in postnatal brain develop-
ment and function, zebrafish models can probe the role 
of hypusination in early brain development. A zebrafish 
model for eIF5A deficiency revealed mild microcephaly 
and micrognathia [18, 25]. A zebrafish model for DHPS 
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deficiency focused on pancreas development [26]. Here, 
we characterize a zebrafish DHPS deficiency model, 
assessing the impact of reduced dhps expression on early 
brain development and activity.

Results
Generation of a zebrafish model for DHPS deficiency
Antisense morpholino oligomers (MOs) were designed 
targeting the AUG start codon of the zebrafish dhps 
mRNA (dhps AUG MO), and the E2I2 splice site of the 
zebrafish dhps pre-mRNA (dhps E2I2 MO) (Fig.  1A). 
Knockdown efficacy of the dhps E2I2 MO was analyzed 
by reverse transcriptase PCR (RT-PCR), which con-
firmed aberrant splicing (loss of exon 2) after microinjec-
tion of the dhps E2I2 MO, resulting in the appearance of 
a 172-bp amplicon and reduction of the 375-bp amplicon 
versus the control morpholino (Ctrl MO) and uninjected 
wild-type (Wt) larvae (Fig.  1B). Western blot analysis 
revealed a reduction in dhps protein levels in knock-
down embryos generated using the dhps AUG MO and 
the dhps E212 MO. dhps knockdown embryos also had 
strongly reduced levels of both eif5aHYP and eif5aTOTAL, 
with a striking reduction of larger polypeptides (Fig. 1C 
and D).

Phenotypic analysis of dhps knockdown zebrafish
Phenotypic analysis of zebrafish larvae at 5 days post-fer-
tilization (dpf), microinjected at one-cell stage with exon 
2/intron 2 (E2I2) dhps E2I2 MO (7.92 ng) or with dhps 
AUG MO (11.55 ng), revealed that both antisense MOs 
caused similar dysmorphologies. dhps knockdown larvae 
were microcephalic with axis truncation, hyperpigmenta-
tion, cardiac edema, uninflated swim bladders, and body 
curvature, developmental delay and higher death rate 
at early stages compared to uninjected Wt and Ctrl MO 
(Fig.  2A). In control groups (Wt, n = 168 and Ctrl MO, 
n = 148), 96% of larvae exhibited normal development. In 
the dhps E2I2 MO group (n = 180), 13% of larvae exhib-
ited significant dysmorphology, 38% moderate dysmor-
phology, and 16% mild dysmorphology. In the dhps AUG 
MO group (n = 126), 4% of larvae exhibited severe dys-
morphology, 7% moderate dysmorphology, and 13% mild 
dysmorphology (Fig. 2B).

Partial rescue of dysmorphology in dhps knockdown larvae 
by expression of dhps mRNA
To control for antisense MO specificity, in vitro tran-
scribed wild-type zebrafish dhps mRNA was co-injected 
with the dhps E2I2 MO to rescue the knockdown phe-
notype. Co-injection of in vitro transcribed dhps mRNA 
with dhps E2I2 MO reduced the number of larvae with 
dysmorphology and developmental delay, increasing in 
the percentage of normally developed larvae. In the dhps 
E2I2 MO group (n = 371), only 34% of embryos exhibited 

normal development, 41% mild dysmorphology, and 17% 
moderate dysmorphology, while in the group co-injected 
with dhps E2I2 MO and dhps mRNA (n = 179), 49% of 
embryos exhibited normal development, 31% mild dys-
morphology, and 16% moderate dysmorphology. In con-
trol groups (Wt, n = 163 and dhps mRNA, n = 111) more 
than 94% of embryos exhibited normal development. 
These results demonstrate a partial rescue of the effects 
of dhps antisense MO (Fig. 3B, and C).

Electrophysiological analysis of dhps knockdown zebrafish 
larvae
Local field potential (LFP) recordings from the optic tec-
tum revealed epileptiform events in 4-dpf dhps knock-
down larvae. LFP recording of brain activity of 4-dpf 
dhps knockdown larvae revealed spontaneous electro-
graphic discharges with high amplitude (≥ three-fold 
baseline) versus controls (Fig.  4A). Quantification of 
ictal-like events revealed that uninjected Wt larvae 
(n = 20) had a mean of 0.25 ± 0.14(SEM), Ctrl MO larvae 
(n = 22) had mean of 0.68 ± 0.24(SEM) and dhps E2I2 MO 
larvae (n = 23) had a mean of 3.74 ± 1.27(SEM). A signifi-
cant increase was observed in the dhps knockdown group 
using the one-way ANOVA test (p ≤ 0.02) (Fig. 4B).

Reduced GABAergic neuronal arborization in dhps 
knockdown larvae
Confocal microscopy analysis of dhps knockdown lar-
vae derived from a transgenic reporter line with GAB-
Aergic-specific expression of mCherry assessed the 
effects of reduced dhps function on GABAergic neuron 
development. In zebrafish larvae, GABAergic neurons 
project arbors from the optic tectum to the tectal neuro-
pil  (Fig. 5A). Confocal microscopy revealed significantly 
reduced arborization of GABAergic neurons in dhps 
knockdown larvae (Fig. 5B). Quantification of the GAB-
Aergic neuronal arborization by Sholl analysis revealed 
a decreased dendritic arborization (p<0.0001, Table 1) in 
larvae with reduced dhps expression (Fig. 5C).

Discussion
Our zebrafish loss-of-function model of DHPS deficiency 
by antisense knockdown of dhps expression mimicked 
features of the human DHPS deficiency syndrome. The 
zebrafish showed developmental delayed with epilepti-
form discharges, as well as microcephaly, axis trunca-
tion, and body curvature. Electrophysiological analysis of 
dhps knockdown larvae showed increased epileptiform 
activity, while confocal microscopy analysis revealed sig-
nificantly reduced arborisation and complexity in GAB-
Aergic neurons.

The epileptiform discharges in dhps knockdown 
larvae paralleled the epileptiform activity on elec-
troencephalography (EEG) and seizures in DHPS 
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deficiency syndrome patients [20], and in mice with 
a brain-specific knockout of Dhps induced by post-
natal intraventricular injection of a Cre-expressing 
AAV vector [3]. Seizures were not reported in patients 
with loss-of-function EIF5A mutations [18], nor in an 

eIF5A-deficient zebrafish model [18, 25]. Patients with 
DOHH mutations have seizures [19]. Our findings 
suggest that for the seizure phenotype, the brain is 
more sensitive to reduced eIF5A hypusination caused 
by mutations in DHPS or DOHH, while patients with 

Fig. 1 Generation of the DHPS deficiency zebrafish model. (A) The first three exons and introns of the dhps gene and selected targeting sites of two anti-
sense morpholino oligomers and PCR primers are shown, as well as the predicted amplicon lengths. (B) RT-PCR analysis confirmed the predicted lengths 
of the dhps mRNA amplicons from Wt, Ctrl MO and dhps E2I2 MO larvae with two biological repeats. While the length of the PCR amplicon covering the 
first three exons of dhps mRNA is 375 bp (b) in Wt, Ctrl MO, and dhps E2I2 MO larvae, in the latter two, additional bands appear (a and c). Appearance of 
the 172-bp amplicon (c), indicating deletion of exon 2 from the dhps mRNA, and reduction in amount of the 375-bp amplicon (b), together confirm partial 
knockdown of dhps. Appearance of an approximately 450-bp amplicon (a) in dhps E2I2 MO larvae may be due to partial activation of a cryptic splice site 
induced by antisense blockage of the E2I2 splice site. (C) Analysis of protein expression in dhps knockdown zebrafish. Zebrafish embryos (2 dpf ) with 
knockdown by dhps E2I2 MO or dhps AUG MO were analyzed by Western blot for expression of DHPS, eIF5ATOTAL, eIF5AHYP, and total protein (as visualized 
by REVERT™). (D) Densitometric data for the relative expression of DHPS, eIF5ATOTAL, and eIF5AHYP, normalized on the basis of total protein as quantified 
by REVERT™ staining
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neurodevelopmental disorders caused by autosomal 
dominant EIF5A mutations do not exhibit seizures as 
remaining eIF5AHYP levels may be sufficient to prevent 
epileptiform activity and seizures.

Confocal microscopy analysis of dhps knockdown 
zebrafish using a transgenic reporter line revealed sig-
nificantly reduced GABAergic neuron aborization. Loss 
of inhibitory GABAergic inputs may contribute to neu-
ronal hyperexcitability, but mouse model studies are 
needed to confirm these findings. Moreover, cell type 
analyses in knockdown zebrafish brains could determine 
if this phenotype results from overall neuronal loss or a 
selective loss of GABAergic neurons. Brain magnetic 
resonance imaging scans of DHPS deficient patients are 
normal [OD et al., unreported data], suggesting that the 
brain morphology phenotypes in our zebrafish and other 
mouse models [3, 24] are more pronounced than the 
human phenotype.

Since hypusination of eIF5A is a key regulator of 
autophagy [14, 27], and autophagy is critical during axo-
nal and presynaptic development [28], impaired autoph-
agy during zebrafish and mouse brain development in the 
DHPS deficiency syndrome models should be explored as 
a pathogenic mechanism. Our analysis of protein expres-
sion in dhps knockdown zebrafish reveal a striking reduc-
tion in expression of larger proteins. Ongoing studies 
using proteomic and transcriptomic analysis of embry-
onic brains with reduced hypusination beginning during 
early development may identify key molecular and cel-
lular changes at different developmental stages and may 
elucidate the role of eIF5AHYP in the translation of certain 
proteins (e.g., long polypeptides [10] and neurosecretory 
factors [5]). We need to better understand the reductions 
in total eIF5A and eIF5AHYP levels seen in dhps knock-
down zebrafish, which are similar to those in conditional 
cell-specific mouse models of DHPS loss [4, 5].

Overexpression of dhps mRNA in wild-type embryos 
did not cause a deleterious phenotype, suggesting that 
gene therapy strategies that involve overexpression of 
DHPS may show benefit for DHPS deficiency syndrome 
patients. Conversely, only partial rescue of the dhps 
knockdown phenotype was achieved by overexpression 
of dhps mRNA, which may be due to the limited half-
life of dhps mRNA after microinjection at the single-cell 
stage.

Our overall findings support that hypusination of eIF5A 
is important for early brain development, and zebraf-
ish with reduced dhps expression are a useful model for 
DHPS deficiency syndrome. Future experiments with this 
model will evaluate anti-seizure medications using the 
seizure phenotype, as well as other therapeutic modali-
ties and endpoints. Generation of zebrafish models of 
neurodevelopmental disorders caused by mutations in 
the DHPS-DOHH-eIF5A pathway that incorporate spe-
cific patient mutations into the genetically engineered 
lines could dissect the phenotypic differences observed 
between these related diseases.

Methods
Zebrafish husbandry
Wild-type (Wt) adult zebrafish (Danio rerio; AB strain; 
CVE-KIT) were maintained at 28.5  °C on a 14-h/10-h 
light/dark cycle under standard aquaculture conditions, 
and fertilized eggs were collected via natural spawning. 
Embryos were raised in embryo medium (E3; 1.5 mmol/L 
HEPES, pH 7.6, 17.4 mmol/L NaCl, 0.21 mmol/L KCl, 
0.12 mmol/L MgSO4, and 0.18 mmol/L Ca[NO3]2), 
under the same conditions as adults. For all zebrafish 
experiments conducted at NCMM, larvae up to 7 days 
post-fertilization (dpf) were used.

Fig. 2 Phenotypic analysis of dhps knockdown zebrafish at five days post-fertilization (5 dpf ). (A) Lateral view photographs of representative Wt, Ctrl 
MO, dhps E2I2 MO, and dhps AUG MO larvae, scale bar: 0.5 mm. (B) Chi-square analysis revealed significant differences between knockdown and control 
groups with regard to the percentages of larvae exhibiting normal development, mild and moderate dysmorphology (p<0.0001)
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Antisense morpholino oligomers (MOs) and 
microinjections
11.55 ng of a translation-blocking MO (dhps AUG MO: 
5’  G G T T A T G G A T G T A A A T C C G G C T T T T) targeting 
the AUG start codon of the zebrafish dhps mRNA and 

7.92 ng of splice site-blocking MO targeting the exon 2/
intron 2 splice site of the zebrafish dhps pre-RNA (dhps 
E2I2 MO: 5′   C A C G A T C A G T C T G T C A C T C A C C A T 
C) were used to achieve partial knockdown of zebrafish 
dhps. Fluoresceinated standard control MO was used as 

Fig. 3 Partial rescue of dhps knockdown larvae by expression of dhps mRNA at 1 day post-fertilization (1 dpf ). (A) Map of pIVT construct with zebrafish 
dhps cDNA. (B) mRNA overexpression partially shifted the more severe phenotypic categories of dhps knockdown to less severe categories. Chi-square 
analysis showed significant differences between control, knockdown and rescue groups with regard to the percentages of embryos exhibiting normal 
development, mild and moderate dysmorphology (P<0.0001). (C) Definition of observed phenotypic categories and sample size of each group
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a negative control (Ctrl MO) (11.55 and 7.92 ng respec-
tively). MOs were designed and synthesized by Gene 
Tools LLC (Philomath, Oregon, USA) and injected into 
1-2-cell stage embryos [26].

Reverse transcriptase PCR (RT-PCR)
Efficiency of knockdown was determined by RT-PCR, 
using primers that amplify across the predicted deletion: 
5′  G C G C T G T G A A A T G T G A G T G A A A C and 5′  G T T T 
G A C G T G T A G C C C A G G A A T. The PCR amplicon was 
385  bp in the control embryos and 172  bp in the dhps 
MO-injected embryos, and was visualized by standard 
agarose gel electrophoresis [26].

Western blot analysis
Zebrafish embryos were evaluated by Western blot analy-
sis, adapting methods previously described [3]. Specifi-
cally, 30–40 zebrafish embryos (2 dpf ) were lysed in 400 
µL of buffer containing 50 mM Tris, pH 8.0, 150 mM 
NaCl, 0.05% deoxycholate, 0.1% IGEPAL CA-630, 0.1% 
SDS, 0.2% sarcosyl, 10% glycerol, 1 mM DTT, 1 mM 
EDTA, 10mM NaF, protease inhibitors (#11836170001, 
Roche), phosphatase inhibitors (#4906845001, Roche), 
2 mM MgCl2, and 0.05% v/v Benzonase (Millipore) and 
were intermittently vortexed to facilitate protein extrac-
tion. Protein was quantified using the DC Protein Assay 
Kit II (#5000112, Bio-Rad) followed by SDS-PAGE 
(4–20% gel). Separated protein (20  µg) was transferred 
to PVDF membranes and blocked in Odyssey Blocking 

Buffer (#927-40100, LI-COR Biosciences) at room 
temperature for 1  h. Membranes were incubated with 
REVERT (#926-11016; LI-COR Biosciences) to permit 
visualization of total protein. Subsequent incubation with 
primary antibodies diluted in Intercept Blocking Buffer 
(#927-70001; LI-COR Biosciences) was performed over-
night at 4 °C. Membranes were washed twice with TBST 
buffer prior to incubation with near infrared, fluorescent 
dye-conjugated secondary antibodies at room tempera-
ture for 1 h. Following additional washes with TBST buf-
fer, the membranes were imaged using an Odyssey CLx 
Imaging System and images were analyzed using the CLx 
Image Studio Version 5.2 Software (LI-COR Biosciences).

The following primary antibodies were used at the 
dilutions indicated: mouse anti-deoxyhypusine synthase 
(1:2000; Santa Cruz, #sc-365077), mouse anti-eIF5ATOTAL 
(1:2000; BD Biosciences, #611977), and rabbit anti-
eIF5AHYP (1:5000; Millipore, #ABS1064-I). Densitometric 
data are graphed as relative expression.

mRNA rescue
To generate dhps RNA, zebrafish dhps cDNA was cloned 
into the pIVT expression construct [Addgene plasmid 
122139; 29], which was linearized through restriction at 
the 3’ end of the ORF and used as a template to gener-
ate dhps mRNA using T7 RNA polymerase in an in vitro 
transcription reaction.

Fig. 4 LFP recording of dhps knockdown larvae. (A) Snapshot of LFP signal recorded from 4-dpf Wt, Ctrl MO and dhps E2I2 MO larvae. (B) One-way ANOVA 
revealed that the frequency of ictal-like events in dhps knockdown larvae was significantly increased compared to control larvae (p ≤ 0.02). Each record-
ing was performed over a period of 20 min. (C) Each pie chart shows percentage of larvae with more than 3 ictal-like events during 20 min of recording. 
While in Ctrl MO larvae less than 10% of larvae had more than 3 ictal-like events, in dhps E2I2 MO-injected larvae, more than 43% of larvae had more than 
3 ictal-like events
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Local field potential (LFP) recording
Recordings were obtained from tecta at 4 dpf [30]. Sei-
zure detection was performed through visual inspec-
tion and automated using a custom-written R script to 
minimize bias and artifacts due to muscle contractions. 

Recorded frequencies were divided 1-100, 100–250, 
and 250–500 Hz bands. If amplitude exceeded 3× back-
ground, the event was considered a seizure based on 
high-frequency oscillations (> 100  Hz) [31]. Power 
spectrum was analyzed using Clampfit 10.7 software 

Fig. 5 GABAergic neuronal dendritic arborization. (A) Larval head with location of optic tectum (blue) and neuropil (light yellow) where that GABAergic 
neurons project their arbors. (B) Confocal microscopy revealed that dhps knockdown larvae have less complex dendritic arborization in the GABAergic 
neurons. (C) GABAergic neuronal arbors were quantified in zebrafish larvae at three different ages (3, 5, and 7 dpf ). At all three developmental ages, via 
one way ANOVA there was a significant reduction in the number of neuronal arbors in the dhps knockdown larvae (dhps E2I2 MO) versus both wild-type 
control larvae (Wt) and control MO-injected larvae (Crtl MO) (see also Table 1 below)
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(Molecular Devices). 20-minute-long recordings were 
used to compute the power spectrum from larvae at 4 
dpf, and each condition was averaged per group [32].

Confocal microscopy and quantification of arbors
To visualize GABAergic neurons, wild-type and dhps 
E2I2 MO-microinjected embryos were treated from 1 
dpf with 0.003% phenylthiourea to prevent pigmentation. 
Larvae were anesthetized in 0.001% tricaine (Sigma), 
fixed for 3 h at room temperature with 4% paraformalde-
hyde, mounted on glass slides, and imaged using confo-
cal microscopy. A dorsal z-stack of the optic tectum was 
collected using a 40x lens and a z-resolution of 0.44 μm. 
For Sholl analysis [33, 34], images were filtered using the 
3D-Median filter in ImageJ. A z-projection of the tectum 
was generated, and the resulting image was converted 
to a thresholded binary image. Arborization extent was 
quantified using Sholl analysis (plug-in; http://imagej.
net/Sholl_Analysis). The number of intersections was 
normalized against the number of neurons in the imaged 
area; this value was statistically analyzed [32].
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