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Abstract 

Working memory (WM) is essential for the temporary storage and processing of information required for complex 
cognitive tasks and relies on neuronal theta and gamma oscillations. Given the limited capacity of WM, researchers 
have investigated various methods to improve it, including transcranial alternating current stimulation (tACS), which 
modulates brain activity at specific frequencies. One particularly promising approach is theta-gamma peak-coupled-
tACS (TGCp-tACS), which simulates the natural interaction between theta and gamma oscillations that occurs 
during cognitive control in the brain. The aim of this study was to improve WM in healthy young adults with TGCp-
tACS, focusing on both behavioral and neurophysiological outcomes. Thirty-one participants completed five WM 
tasks under both sham and verum stimulation conditions. Electroencephalography (EEG) recordings before and after 
stimulation showed that TGCp-tACS increased power spectral density (PSD) in the high-gamma region at the stimu-
lation site, while PSD decreased in the theta and delta regions throughout the cortex. From a behavioral perspec-
tive, although no significant changes were observed in most tasks, there was a significant improvement in accu-
racy in the 14-item Sternberg task, indicating an improvement in phonological WM. In conclusion, TGCp-tACS 
has the potential to promote and improve the phonological component of WM. To fully realize the cognitive 
benefits, further research is needed to refine the stimulation parameters and account for individual differences, such 
as baseline cognitive status and hormonal factors.
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Introduction
Working memory
Working memory (WM) is crucial for the temporary 
storage and processing of information and supports 
higher cognitive abilities such as logical thinking, prob-
lem solving and the understanding of complex concepts 

[1–3]. Baddeley’s model of WM is widely used in cog-
nitive psychology and is divided into three interrelated 
components [3]: the visuospatial sketchpad, which han-
dles visual and spatial information [4, 5]; the phonologi-
cal loop, which processes verbal and auditory data [6]; 
and the central executive, which orchestrates these com-
ponents and performs key functions such as updating 
WM representations (updating function), transitioning 
between task rules (switching function), and inhibit-
ing irrelevant responses (inhibition function) [7]. WM 
has a limited capacity and its impairments are associ-
ated with neurological and psychiatric disorders such as 
schizophrenia, mild cognitive impairment (MCI), atten-
tion-deficit/hyperactivity disorder (ADHD), and Alzhei-
mer’s disease (AD), indicating the critical role of WM in 
mental health [8–12]. Various cognitive tests have been 
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developed to assess WM functionality, each tailored to 
evaluate different components and functions, such as the 
visuospatial sketchpad and inhibitory function [13–15]. 
Even in abbreviated form, these tasks have been shown 
to be effective for measuring various WM components 
and have provided valuable insights into the structure of 
our cognitive processes [16].

Brain oscillations and brain stimulation
Brain oscillations or neuronal oscillations are the rhyth-
mic electrical activity generated by neuronal tissue in 
response to stimuli [17]. These oscillations occur in dif-
ferent frequency bands—delta, theta, alpha, beta and 
gamma—and are involved in several functional pro-
cesses in the brain [18, 19]. All neuronal oscillations are 
involved in WM processing, especially the theta and 
gamma frequencies [20]. The interaction between neu-
ronal oscillations is referred to as cross-frequency cou-
pling (CFC), which can manifest itself in various forms 
[21]. One of the best-known forms of coupling associ-
ated with WM processing is theta/gamma phase-ampli-
tude coupling (PAC), in which the amplitude of gamma 
oscillations is modulated by the phase of theta waves. 
This phenomenon is often referred to as the theta/
gamma neural code [22–24]. The theta/gamma PAC is 
thought to support the representation and maintenance 
of multiple WM elements. Two models have been pro-
posed: one assumes that each gamma wave within a 
theta cycle represents a single memory item, with WM 
capacity possibly limited by the number of gamma waves 
that can fit into a theta cycle [25, 26]. The second model 
assumes that an entire gamma burst within a theta cycle 
encodes a single memory item [27, 28].

Brain oscillations can be modulated by various meth-
ods, e.g. sensory entrainment [29, 30], non-invasive 
brain stimulation (NIBS) [31, 32] and invasive tech-
niques [33, 34]. Among the NIBS methods, transcranial 
electrical stimulation (tES) and transcranial magnetic 
stimulation (TMS) are widely used in both research 
and clinical settings [35, 36]. tES, which includes tech-
niques such as transcranial direct current stimulation 
(tDCS) and transcranial alternating current stimulation 
(tACS), is particularly favored for its accessibility, toler-
ability, and cost-effectiveness [37, 38]. tDCS affects neu-
ronal activity by either increasing excitability through 
anodal stimulation or decreasing excitability through 
cathodal stimulation [39–42]. In contrast, tACS modu-
lates brain function by using fluctuating currents to 
synchronize cerebral networks at specific frequencies—
a capability that tDCS does not offer [43, 44]. The pre-
vailing view is that tACS directly influences neuronal 
networks in the cortex during stimulation [45, 46], with 
its aftereffects—such as increased oscillatory activity 

post-stimulation—likely resulting from synaptic changes 
promoted by spike-timing-dependent plasticity (STDP) 
[47, 48]. Given the link between irregular cortical oscil-
lations, CFC and various neuropsychiatric and neurode-
generative disorders [44, 49–51], tACS holds promise for 
treating brain diseases and improving cognitive function 
through frequency- and phase-specific modulation of 
cortical oscillations [52, 53]. However, to achieve opti-
mal stimulation, various parameters such as location, 
intensity, frequency and dosage need to be carefully 
considered. As there are no standardized protocols yet, 
these factors need to be carefully adjusted to achieve 
effective results.

Transcranial‑alternating current stimulation and working 
memory
Numerous research studies have investigated the effects 
of tACS on WM [54–57], with a particular focus on 
theta and gamma frequencies, which have attracted 
considerable interest due to their potential to improve 
WM performance [58–64]. However, the results are 
inconsistent, likely due to differences in study methods, 
such as differences in stimulation parameters, target 
areas, intensity, and participant characteristics [54, 56, 
60–72]. This variability underscores the need for more 
standardized research. Individual factors also appear 
to influence the efficacy of tACS in improving WM. 
Evidence suggests that tACS may be particularly effec-
tive for individuals with lower baseline performance 
and when applied during more cognitively demanding 
tasks [66, 68, 70, 71, 73–76]. Among the various tACS 
techniques investigated, theta/gamma peak-coupled-
tACS (TGCp-tACS) has shown particular promise. In 
this innovative approach, gamma bursts are synchro-
nized with the peaks of theta waves to improve WM 
[77]. Initial studies, especially applied to the left frontal 
cortex, have yielded encouraging results [77]. In par-
ticular, TGCp-tACS, which delivers gamma bursts in 
the range of 80–100 Hz synchronized with the peaks of 
theta waves oscillating around 6 Hz, has been associated 
with significant improvements in visuospatial WM [77]. 
In another study, the potential of TGCp-tACS was con-
firmed by demonstrating improved performance in the 
modified Sternberg task when stimulation occurred at 
tuned frequencies [78]. Despite these positive results, 
further research is needed to confirm the efficacy of 
TGCp-tACS, optimize stimulation protocols, and inves-
tigate its broader application in different cognitive tasks 
and populations.

Building on the limited yet promising research regard-
ing TGCp-tACS and its impact on WM, this study 
aimed to evaluate the effects of this non-invasive stimu-
lation technique applied to the left frontal cortex. Both 
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the behavioral effects, in particular the stimulation-
induced changes in performance across five different 
WM tasks, and the neurophysiological effects, reflected 
in TGCp-tACS-induced alterations in the electroen-
cephalography (EEG) power spectrum, in healthy young 
adults were investigated. To increase detection sensitiv-
ity, we used a comprehensive set of five different WM 
tasks, each designed to assess different aspects of WM 
function. An overview of the tasks used to assess WM 
components in this study is provided in Additional File 
1, which also outlines the methods and frameworks fre-
quently employed in related research [94–116]. Detailed 
descriptions of the tasks used in this study can be found 
in the “Materials and Methods” section.

Materials and methods
The study was approved by the Ethics Committee of 
the Third Faculty of Medicine of Charles University in 
Prague and complied with the principles of the Dec-
laration of Helsinki. Exclusion criteria included metal 
implants in the head, implanted electronic devices, sei-
zures, mental or neurological disorders, strokes, sub-
stance abuse, history of neurological problems or head 
trauma, use of psychotropic drugs, use of drugs that 
alter neuronal activity, and left-handedness. Before par-
ticipating in the study, the volunteers provided written 
informed consent. This study involved 31 right-handed, 
non-color-blind medical students (16 females, ages 
19.8 ± 1.61) with normal or corrected-to-normal vision. 
None of the participants had any contraindications 
to tACS, and all were naïve to both the tasks and the 
stimulation.

Experimental procedure
Two sessions (sham and verum stimulation) were per-
formed at least 72 h apart. The order of the sessions was 
counterbalanced between the participants. All subjects 
attended a face-to-face introductory session to familiar-
ize them with the laboratory and the procedure. Each 
session consisted of 1) a 5-min pre-stimulation EEG 
recording in the resting state (eyes-open), followed by 
2) a 5-min resting state EEG recording (eyes-closed), 3) 
a 20-min sham or verum stimulation during which par-
ticipants completed the WM task battery, 4) a 5-min 
post-stimulation EEG recording in the resting state 
(eyes-open), followed by 5) a 5-min resting state EEG 
recording (eyes-closed). Figure  1 illustrates the experi-
mental setup.

EEG recording and stimulation setup
All experiments were performed in a laboratory free 
of sound and electromagnetic signals. The Starstim® 
wireless hybrid tES-EEG neurostimulator system with 

NIC v2.0.11.7 software (Neuroelectrics Ltd., Barce-
lona, Spain) was used for electrical stimulation and EEG 
recording. EEG was recorded with Ag/AgCl electrodes 
placed at 20 standard positions according to the inter-
national 10–20 system. EEG activity was recorded at 20 
scalp locations (Fp1, Fp2, Fz, F3, F4, F7, F8, Cz, C3, C4, 
T7, T8, Pz, P3, P4, P7, P8, Oz, O1 and O2). Electrical 
stimulation was provided by five NG-Pistim electrodes 
(1 cm radius and π  cm2 contact area) filled with conduc-
tive EEG gel (a next-generation hybrid electrode that can 
be used for EEG monitoring and stimulation). The cen-
tral electrode was placed over F3, and four return elec-
trodes were equally spaced around the central electrode 
(Fp1, Fz, C3, F7) so that high focal stimulation of the left 
frontal cortex was achieved. The stimulation signal had a 
sampling rate of 1 MHz and an analogue-to-digital pre-
cision of 14 bits (≈0.5 μA), and the electrode impedance 
was kept below 10 kOhm.

Theta/gamma peak coupled‑tACS protocol
An alternating current of 1  mA peak to baseline was 
applied for 20  min (including 10  s fade-in and 10  s 
fade-out time). Stimulation consisted of two overlap-
ping components: a continuous slow theta wave at 6 Hz 
(0.6  mA peak to baseline) and gamma bursts at 80  Hz 
(0.4  mA peak to baseline). Gamma bursts lasted 50  ms 
during each peak and were synchronized with the con-
tinuous theta wave. The temporally accurate fusing of 
the components was achieved by dedicated hardware 
and monitored with an oscilloscope. tACS was applied 
for 20 min while participants performed the WM battery 
test. The procedure and stimulation characteristics (cur-
rent intensity and frequency) in the sham condition were 
identical to those in the verum condition, except for the 
stimulation duration, which was only 30 s and then auto-
matically switched off.

WM test battery
The test subjects were seated 50 cm in front of a PC with 
a 24" monitor (resolution 2560 × 1440, 60  Hz) and the 
WM tests were carried out using the E-prime® software. 
Before carrying out the actual experiment, they com-
pleted a number of standard exercises for each task. The 
order of the tasks was counterbalanced and pseudor-
andomized between subjects during the actual experi-
ment. The WM test battery comprised the following five 
subtests [Visuospatial WM task, Sternberg task, Digit 
Symbol Substitution Test (DSST), Flanker task and Wis-
consin Card Sorting Test (WCST)], which correspond to 
the specific components of WM; the description of each 
task can be found in Table 1.
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EEG preprocessing
The EEG data were preprocessed using a customized 
MATLAB script based on the EEGLab Toolbox [79]. 
First, the raw EEG data were imported into EEGLab and 
the positions of 20 electrodes were identified, including 
FP1, FP2, F7, F3, Fz, F4, T7, C3, C4, T8, P7, P3, P4, P8, 
O1, Oz and O2. The EEG data were then resampled to 
256 Hz and the direct current (DC) offset was eliminated 
before filtering the data. A high-pass finite impulse 
response (FIR) filter with a cut-off frequency of 0.5  Hz 
was then applied. Artifact rejection of the EEG data 
was performed using the EEGLAB plugin clean_raw-
data, where channels were flagged as bad if they had a 
prolonged flatness of more than 5 s, showed significant 
noise values (defined as a low signal-to-noise ratio with 
a standard deviation of more than 4), or had poor cor-
relation with neighboring channels. Artifact subspace 
reconstruction (ASR) algorithms were then used to 

remove corrupted data segments. The raw data time 
series were visually inspected to remove any additional 
artifacts, followed by the application of average refer-
encing. To remove artifacts due to eye movements and 
muscle activity, an independent component analysis 
(ICA) algorithm was run, and then the IClabel plugin 
was used to identify and remove artifactual components. 
All removed channels were then interpolated to main-
tain data integrity. Data preprocessing was performed 
according to the instructions in the EEGLAB tutorials 
and established pipelines.

Power spectrum analysis
The time series data was initially transformed into the 
frequency domain using the fast Fourier transform (FFT) 
based on the Welch method. A Hamming window of 
256 points with a 50% overlap (128 points) was applied. 

Fig. 1 Experimental setup of the study. Session # 1 and session # 2 are separated by at least 72 h. TGCp-tACS: theta/gamma peak coupled 
transcranial-alteranating current stimulation; WM:working memory; EEG: electroencephalography
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The power spectra obtained from these windows were 
averaged and then converted to a logarithmic scale. 
The mean power spectral density (PSD) for the delta (δ: 
1–4 Hz), theta (θ: 4–7 Hz), alpha (α: 8–12 Hz), beta (β: 
13–30  Hz), gamma (γ: 30–70  Hz), and high gamma (γ: 
70–100 Hz) bands across 20 channels was then plotted 
on a two-dimensional (2D) topographic map.

Statistical analysis
Generalized Linear Mixed-Effects Model (GLMM) 
fitted by Penalized Likelihood (PL) were used to ana-
lyze the behavioral data, accounting for the complex 
data structure, including repeated measures on the 
same participants in different conditions. In addition, 

a paired t-test was used to determine PSD differences 
between groups. The null hypothesis was rejected at 
probability values below 0.05. To minimize type I error, 
the false discovery rate (FDR) method was used for 
multiple comparisons. Statistical PSD analysis was per-
formed using FieldTrip implemented in the EEGLAB 
environment [79, 80].

Results
Behavioral results
Visuospatial WM
In the Visuospatial WM task, the statistical analysis 
primarily focused on accuracy and reaction time (RT) 
under two conditions: 2 stimuli (2 red rectangles) and 

Table 1 Description of working memory task battery

WM: working memory

WM task WM component Task description

Visuospatial WM task Visuospatial sketchpad In the Visuospatial WM task, participants were presented with a sequence of red 
and blue rectangles displayed at different angles for 500 ms. The aim is to memo-
rize the angles of the red rectangles located on a particular side of the screen, 
which is indicated by an arrow. After a retention time of 900 ms, participants 
were shown a test screen that could correspond to the memory screen. If the test 
screen exactly matched the memory screen, participants were asked to press “1” 
on the keyboard; if they did not match, they were instructed to press “2”. On each 
trial, two or four red rectangles (stimuli) appeared continuously, accompanied 
by 2, 3, 4, 5 or 6 distracting blue rectangles. Each participant went through nine 
cycles with a total of 72 trials

Sternberg WM task Phonological loop In the Sternberg task, participants were first presented with a mix of green 
and black letters and were asked to memorize only the black ones, ignoring 
the green ones. Each letter was displayed for 1000 ms. Following this, they were 
shown a series of red letters, each displayed for 3000 ms, and the participants 
had to respond within this time frame. Their task was to decide if a specific red 
letter matched any of the black letters they had memorized. They pressed “1” 
on the keyboard if it matched and “2” if it didn’t. This task was conducted in four 
cycles, each with two parts. In the first part, participants memorized eight letters 
and then responded to 14 test letters (14-item condition), In the second part, they 
memorized a different set of eight letters and responded to 10 test letters (10-
item condition), which is less cognitively demanding

Digit Symbol Substitution Test (DSST) Central executive compo-
nents and processing speed

In the DSST Test, participants needed to quickly match numbers to their corre-
sponding symbols using a provided key. When symbols appeared on the screen, 
they had to identify the correct numbers accurately and swiftly. They had 180 s 
to create as many correct digit-symbol pairs as possible within this time

Flanker Task Central executive: Inhibition In the flanker task, participants had to determine the direction of the middle 
arrow in a row of arrows. They pressed “1” on the keyboard when the arrow 
pointed to the left and “2” when it pointed to the right. The task comprised 141 
trials, each displayed for 1000 ms, and fell into one of three categories: congru-
ent, neutral, or incongruent. The participates had to respond within a 1 min 
timeframe for each trial. In the congruent condition, the center arrow matched 
the direction of the surrounding arrows (e.g., <  <  <  < <). In the incongruent 
condition, the middle arrow pointed in the opposite direction of the surround-
ing arrows (e.g., <  <  >  < <), creating a conflict. In the neutral condition, the mid-
dle arrow was flanked by neutral symbols, providing a different challenge (e.g., 

)

Wisconsin Card Sorting Test (WCST) Central executive: Switching In the WCST, participants are asked to categorize cards according to various 
criteria, such as color, number or shape of symbols. Over the course of 42 trials, 
each lasting 5000 ms, the participants sort the cards according to dynami-
cally changing criteria. The categorization rule is changed after every 14 cards, 
so that the participants have to adapt their sorting strategy flexibly. After each 
sorting attempt, the participants receive feedback informing them of the correct-
ness or incorrectness of their performance
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4 stimuli (4 red rectangles). RT is the interval between 
the presentation of a stimulus and the participant’s 
response to it. The analysis revealed that TGCp-tACS 
did not have a significant effect on either measure. For 
the 2-stimuli condition, TGCp-tACS resulted in a non-
significant change in accuracy by 1.92% (p = 0.22, 95% CI 
− 1.18 to 5.02%) and a non-significant increase in RT by 
5.06 ms (p = 0.59, 95% CI − 13.44 to 23.58 ms). For the 
4-stimuli condition, TGCp-tACS led to a non-significant 
change in accuracy by 0.91% (p = 0.64, 95% CI − 2.90 to 
4.72%) and a non-significant increase in RT by 17.42 ms 
(p = 0.07, 95% CI −  1.70 to 36.54  ms). These results 
indicate that TGCp-tACS does not significantly impact 
accuracy or RT in the Visuospatial WM task among 
young participants under both 2-stimuli and 4-stimuli 
conditions.

DSST
In the DSST analysis for young participants, TGCp-
tACS did not result in a significant change in accuracy 
or RT. Specifically, TGCp-tACS showed a negligible 
increase in accuracy of 0.07% (p = 0.72, 95% CI − 0.31 to 
0.45%). In terms of RT, TGCp-tACS resulted in a non-
significant decrease in RT of 18.18  ms (p = 0.07, 95% 
CI −  37.86  ms to 1.50  ms). These results indicate that 
TGCp-tACS has no significant effect on accuracy or RT 
in DSST in young participants.

Flanker task
In the Flanker task conducted with young participants, 
the statistical analysis primarily focused on RT because 
of the very low or nonexistent error rate. This lack of var-
iability in the data makes accuracy an unreliable meas-
ure for analysis. TGCp-tACS did not have a significant 
effect on RT across neutral, congruent, and incongru-
ent conditions. For the neutral condition, TGCp-tACS 
resulted in a non-significant decrease in RT by 3.69 ms 
(p = 0.19, 95% CI − 9.15 ms to 1.76 ms). In the congru-
ent condition, TGCp-tACS led to a negligible change in 
RT by − 0.36 ms (p = 0.90, 95% CI − 5.76 ms to 5.05 ms). 

For the incongruent condition, the change in RT was 
0.81 ms (p = 0.82, 95% CI − 6.19 ms to 7.82 ms) due to 
TGS-tACS. Table  2 shows the changes in RTs due to 
TGCp-tACS in different conditions of the Flanker task.

WCST
In the WCST, the statistical analysis focused primarily 
on the number of perseverative errors and the RT. The 
analysis revealed that the TGCp-tACS had no signifi-
cant effect on either measure. For the number of perse-
verative errors, TGCp-tACS resulted in a non-significant 
change of −  0.01 (p = 0.5, 95% CI −  0.03 to 0.02). In 
terms of RT, TGCp-tACS resulted in a non-significant 
reduction of 23.79  ms (p = 0.20, 95% CI −  59.76  ms to 
12.37  ms). These results show that TGCp-tACS has no 
significant effect on the number of perseverative errors 
or the RT in WCST in young participants.

Sternberg task
In the Sternberg task conducted with young participants, 
the statistical analysis revealed that TGCp-tACS did not 
have a significant effect on either accuracy or RT in the 
10-item condition, with a change in accuracy of 1.67% 
(p = 0.13, 95% CI −  0.49 to 3.82%) and a change in RT 
of 25.20 ms (p = 0.15, 95% CI − 9.03 to 59.43 ms). In the 
14-item condition, TGCp-tACS significantly improved 
accuracy by 2.84% (p = 0.01, 95% CI 0.63 to 5.06%). How-
ever, TGCp-tACS did not significantly affect RT in the 
14-item condition, with a change of − 18.61 ms (p = 0.22, 
95% CI − 48.18 to 10.96 ms). These results indicate a sig-
nificant improvement in accuracy in the 14-item condi-
tion but no significant impact on RT in either condition. 
Figure  2 illustrates the graphical representation of the 
accuracy changes in the different task conditions used in 
this study.

Electrophyisological results
Sham condition

– Eyes-open (immediately after completion of the 
task and sham stimulation) compared to eyes-open 
(before the task and sham stimulation).

• General decrease in delta and theta power in all 
brain regions.

• Statistically significant decrease in delta power at 
electrode P8 in the right parietal region. Figure 3 
shows topographic 2D maps depicting PSD distri-
bution across different electrodes in delta range, 
highlighting the statistically significant differences 
observed before and after sham condition with 
eyes-open.

Table 2 Reaction time changes due to theta/gamma peak-
coupled transcranial alternating current stimulation in different 
conditions of the Flanker task

RT: reaction time; TGCp-tACS: theta/gamma peak-coupled transcranial-
alternating current stimulation

Condition Change in RT (ms) 
due to TGCp‑tACS

p‑value 95% 
Confidence 
Interval

Neutral − 3.69 0.19 [− 9.15, 1.76]

Congruent <  <  <  <  < − 0.36 0.90 [− 5.76, 5.05]

Incongruent <  <  >  <  < 0.81 0.82 [− 6.19, 7.82]
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• Minimal increase in beta and gamma PSD values.

– Eyes-closed (at least 5  min after completion of the 
task and sham stimulation) compared to eyes-closed 
(before the task and sham stimulation).

• Minor fluctuations in PSD values in all frequency 
bands.

• Brain activity tended to return to the baseline val-
ues observed before the task.

Verum condition

– Eyes-open (immediately after completion of the 
task and verum stimulation) compared to eyes-open 
(before the task and verum stimulation).

• Statistically significant global decrease in delta 
PSD. For more details refer to Fig. 4

• Non-significant global decrease in theta PSD.
• Negligible changes in PSD at the other frequen-

cies.

– Eyes-closed (at least 5  min after completion of the 
task and verum stimulation) compared to eyes-
closed (before the task and verum stimulation).

• Statistically significant decrease in delta and theta 
power in a large cortical area.

• Statistically significant increase in PSD in the high 
gamma range (70–100 Hz) at the site of stimula-
tion (F3). For more details refer to Fig. 5.

Discussion
Behavioral outcomes
This study examined the effects of a single TGCp-tACS 
session on WM in young, healthy participants, focusing 
on both behavioral and neurophysiological outcomes. To 
increase sensitivity in detecting stimulation effects, five 
different WM tasks were used, each targeting a specific 
WM component (e.g., visuospatial sketchpad, phonolog-
ical loop, executive functions). Specifically, TGCp-tACS 
was found to significantly improve accuracy only on the 
14-item Sternberg task, which assesses the phonologi-
cal component of WM. Previous studies have primarily 
examined the effects of TGCp-tACS on the visuospatial 
sketchpad and phonological components of WM. Our 
results are in contrast to those of [77], who found signifi-
cant improvements in visuospatial WM using a visuos-
patial match-to-sample test with TGCp-tACS at a theta 
frequency of 6  Hz and gamma bursts between 80 and 

Fig. 2 Effect of TGCp-tACS on accuracy across various cognitive tasks. This bar graph illustrates the change in accuracy due to TGCp-tACS 
across various cognitive tasks. The error bars represent the 95% confidence intervals for each task condition. The change in accuracy 
was only statistically significant for the 14-item Sternberg task. TGCp-tACS: Theta/gamma peak coupled-transcranial-alternating current stimulation; 
VWM2: visuospatial working memory (2-stimulus); VWM4: visuospatial working memory (4-stimulus); DSST: Digit Symbol Substitution Task; 
Sternberg10: Sternberg task (10-item); Sternberg14: Sternberg task (14-item)
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100 Hz delivered to the left frontal cortex. In contrast to 
their results, we found only a slight and non-significant 
improvement in visuospatial WM. Furthermore, our 
study protocol differed somewhat from that of [78], who 
administered frequency-tuned TGCp-tACS to the left 
frontal cortex and reported improvements in a modi-
fied Sternberg task. Although we did not use frequency-
tuned TGCp-tACS, we found a significant improvement 
in the accuracy of the Sternberg task, but only at high 
cognitive demands. This suggests that despite the meth-
odological differences, there is a remarkable parallel in 
the results. Several factors could explain the behavio-
ral outcomes of TGCp-tACS in our study: The chosen 
intensity and frequencies of tACS (6 Hz and 80 Hz) may 
not have been optimally matched to the natural frequen-
cies required for effective neuromodulation [81]. The 
participants, high-performing medical students with an 
average age of 19.8  years, may have been close to their 
maximum potential for WM capacity and cognitive per-
formance, leading to ceiling effects. It is also possible 
that most of the tasks were not challenging enough to 
show a benefit of TGCp-tACS in these high-performing 
individuals.

Research has shown that hormonal fluctuations dur-
ing the menstrual cycle can significantly affect cognitive 
function, including memory, attention, and executive 
functions [82, 83]. Furthermore, [84] found that cor-
tical excitability in women, or the degree to which the 
cerebral cortex responds to stimuli, aligns with that of 
men only during the follicular phase of the menstrual 
cycle. In our study, which included 16 female partici-
pants, there was a minimum 72-h interval between the 
experimental and sham sessions, during which we did 
not specifically investigate the hormonal effects on WM 
outcomes. Therefore, it is possible that participants were 
in different phases of their menstrual cycle during each 
session, which could potentially influence the interpreta-
tion of the TGCp-tACS effects on WM.

Neurophysiological findings
Verum stimulation led to a significant increase in 
gamma power at the F3 position and a decrease in delta 
and theta power in several cortical regions. These effects 
were most pronounced in the eyes-closed EEG con-
dition, which was recorded at least five minutes after 
stimulation and task completion. This suggests that the 

Fig. 3 Topographic Maps of PSD Distribution in Delta Range: Sham Condition OE. Topographic 2D maps depicting PSD distribution across different 
electrodes in the delta range. These maps highlight statistically significant differences observed before and after the sham condition with eyes open 
(red dots). Statistical analysis was conducted using paired t-tests with false FDR correction for multiple comparisons (p < 0.05) utilizing the Fieldtrip 
toolbox. OE: eyes open; CE: eyes closed; Hz: hertz; PSD: Power spectral density; FDR: false discovery rate

Fig. 4 Topographic Maps of PSD Distribution in Delta Range: Verum Condition OE. Topographic 2D maps depicting PSD distribution 
across different electrodes in the delta range. These maps highlight statistically significant differences observed before and after the verum 
condition with eyes open (red dots). Statistical analysis was conducted using paired t-tests with FDR correction for multiple comparisons (p < 0.05) 
utilizing the Fieldtrip toolbox. OE: eyes open; CE: eyes closed; Hz: hertz; PSD: Power spectral density; FDR: false discovery rate
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external sensory input in the eyes-open condition and 
the task-related dynamic changes measured immediately 
after completion of stimulation may mask the actual 
effects of stimulation. In the post-sham eyes-open EEG 
recordings, there was a notable reduction in the PSD 
of the delta and theta frequency bands and minimal 
increase in the beta and gamma PSD, suggesting a shift 
to a more alert and focused state shortly after task com-
pletion. In contrast, with sham eyes-closed condition, 
brain activity largely returned to baseline at least five 
minutes following the end of the task completion, with 
only minor fluctuations in PSD in all frequency bands. 
This comparison suggests that the effects observed in 
the eyes-closed verum condition are due to the stimula-
tion itself. The reduced sensory input in the eyes-closed 
condition leads to a more pronounced resting state, 
which improves the detectability of the TGCp-tACS-
induced changes. As mentioned above, the persistent 
brain activity after tACS indicates lasting changes in 

synaptic plasticity rather than mere entrainment per 
se. By administering alternating currents at specific fre-
quencies, tACS can synchronize brain rhythms, which 
may affect the timing of presynaptic and postsynap-
tic spikes, thereby increasing or decreasing synaptic 
strength through STDP, leading to long-term potentia-
tion (LTP) and long-term depression (LTD), respectively 
[85]. It has been suggested that administration of tACS 
at frequencies at or slightly below the endogenous fre-
quency leads to LTP, while higher frequencies lead 
to LTD. In addition, STDP is associated with power 
changes in EEG frequency bands after stimulation [86]. 
In our study, the administered theta frequency of 6  Hz 
may have been significantly different from the endog-
enous frequencies of the participants, leading to LTD 
and a decrease in theta PSD. Conversely, the adminis-
tered gamma frequency of 80 Hz may have been closer 
to the endogenous gamma frequency, which likely led to 
LTP and an increase in gamma PSD. Furthermore, tACS 

Fig. 5 Topographic Maps of PSD Distribution in Delta, theta and high-gamma Ranges: Verum Condition CE. These maps highlight statistically 
significant differences observed before and after the verum condition with eyes closed (red dots). Statistical analysis was conducted using paired 
t-tests with false discovery rate (FDR) correction for multiple comparisons (p < 0.05) utilizing the Fieldtrip toolbox. OE: eyes open; CE: eyes closed; Hz: 
hertz; PSD: Power spectral density; FDR: false discovery rate
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could induce frequency-unspecific modulation of neu-
ronal oscillations [58], as indicated by decrease in delta 
PSD. The decrease in theta activity caused by LTD could 
indirectly diminish delta oscillations due to the strong 
coupling and interaction between these frequencies [87, 
88].

Limitations and future directions
The study is limited by several factors: suboptimal 
tACS frequencies, potential ceiling effects due to high-
performing participants, insufficiently challenging WM 
tasks, uncontrolled hormonal fluctuations, reliance on 
a single tACS session, and the specific characteristics of 
the participants limit the generalizability of the findings 
to a broader population.

To better determine the effects of TGCp-tACS on 
WM, several strategies can be used:

1) Recruit participants from different educational and 
occupational backgrounds to show how TGCp-tACS 
affects different cognitive levels and to attenuate 
potential ceiling effects.

2) Ensure that the cognitive tasks are sufficiently chal-
lenging for high achieving young adults.

3) Stimulation parameters such as frequency and inten-
sity should be tailored to the unique neurophysi-
ological characteristics of each individual, and the 
administration of multiple stimulation sessions (e.g., 
5 sessions/ week for several weeks) could enhance 
the stimulation effects [89, 90].

4) Consider hormonal influences on WM in females 
by conducting verum and sham sessions in the same 
menstrual phase, ideally 28 days apart to reduce var-
iability [91, 92]. Starting the first session in the fol-
licular phase may align women’s cortical excitability 
with that of men, enabling a more accurate compari-
son [93].

Conclusion
Application of TGCp-tACS to the left frontal cortex of 
young, healthy adults resulted in a significant improve-
ment in accuracy on the cognitively demanding Stern-
berg task, which measures phonological WM. However, 
it had no significant effects on other WM components, 
indicating the need for further refinement of stimulation 
methods. Neurophysiological data showed that verum 
stimulation increased high-gamma PSD at the site of 
the stimulation and decreased theta and delta PSD 
throughout the cortex. Although these results are prom-
ising, further research is needed to optimize stimulation 

parameters, with a focus on modulating lower gamma 
frequencies and individual theta frequencies that can be 
accurately identified from EEG recordings either before 
stimulation or within a closed loop, as well as account-
ing for individual differences, such as baseline cognitive 
status and hormonal influences, to fully exploit the cog-
nitive enhancement potential of TGCp-tACS.
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