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Abstract
Background: Interactions between dopamine and glutamate in the prefrontal cortex are essential for cognitive 
functions such as working memory. Modulation of N-methyl-D-aspartic acid (NMDA) receptor functions by dopamine 
D1 receptor is believed to play a critical role in these functions. The aim of the work reported here is to explore the 
signaling pathway underlying D1 receptor-mediated trafficking of NMDA receptors in cultured rat prefrontal cortical 
neurons.

Results: Activation of D1 receptor by selective agonist SKF-81297 significantly increased the expression of NR2B 
subunits. This effect was completely blocked by small interfering RNA knockdown of Fyn, but not Src. Under control 
conditions, neither Fyn nor Src knockdown exhibited significant effect on basal NR2B expression. D1 stimulation 
significantly enhanced NR2B insertion into plasma membrane in cultured PFC neurons, a process obstructed by Fyn, 
but not Src, knockdown.

Conclusions: Dopamine D1 receptor-mediated increase of NMDA receptors is thus Fyn kinase dependent. Targeting 
this signaling pathway may be useful in treating drug addiction and schizophrenia.

Background
The prefrontal cortex (PFC) plays a well-established role
in working memory function [1,2] and dysfunction of
either dopamine D1 receptor or N-methyl-D-aspartic
acid (NMDA) receptor in this brain region has long been
believed to underlie the symptoms of schizophrenia and
other neuropsychiatric disorders [3-6]. Moreover, dop-
aminergic and glutamatergic afferents, which are from
midbrain, thalamus and cortical structures, converge
onto the spines of pyramidal neurons in PFC [7,8], pro-
viding the cellular basis for interactions between dop-
amine and glutamate signaling in the same neuron [5]. In
the past decade, extensive studies have focused on the
interactions between dopamine and NMDA receptors
[3,6,9-11]. Studies show that dopamine influences both
long-term potentiation and depression in PFC [12,13].
Moreover, some studies indicate that physical coupling

and functional cross-talk may occur between NMDA and
D1 receptors [5,14-16]. Despite the overwhelming evi-
dence of the role of D1 and NMDA receptors in synaptic
functions, the molecular mechanisms involved in these
interactions, particularly signaling pathways in D1-medi-
ated NMDA receptor trafficking, are still elusive.

Recent evidence indicates that NMDA receptors are
not static, as traditionally believed; instead they can move
into and out of synapses [17-20]. Indeed, D1 receptor
activation led to rapid trafficking of NMDA receptor sub-
units, with increased expression of NMDA receptor sub-
units NR1 and NR2B in the dendrites of cultured striatal
and prefrontal neurons [21,22]. The regulation of NMDA
receptor trafficking is a dynamic and potentially powerful
mechanism for the synaptic plasticity associated with
drug addiction, Alzheimer's disease and schizophrenia
[23]. Unfortunately, little is known about the signaling
pathways implicated in the regulation of NMDA receptor
trafficking. Previous studies have emphasized the impor-
tance of Src family kinases in this process. Src and Fyn,
the major members with the highest degree of primary
sequence homology, both exist in the postsynaptic den-
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sity (PSD) [24] and likely upregulate NMDA receptor
activity in the central nervous system (CNS) [25,26].
Activation of D1 receptors is known to enhance NMDA
receptor functions. Considering the importance of Src
and Fyn in NMDA receptor regulation [23,27-29], we
hypothesized that Src family kinases, especially Fyn and
Src, mediate D1 receptor activation-induced NMDA
receptor increase in PFC. We tested this hypothesis in
cultured PFC neurons and found that Fyn, but not Src, is
critical in D1 receptor activation-induced NMDA recep-
tor trafficking, particularly in surface insertion.

Results
Cultured prefrontal neurons express both D1 and NMDA 
receptors
To characterize the expression pattern of D1 and NMDA
receptors in cultured PFC neurons, we performed double
immunofluorescent staining of both D1 and NR2B recep-
tors in low-density cultures at 14 DIV. As shown in Figure
1, both D1 receptors and NR2B subunits exhibited tiny,
bright puncta along the dendrites, either appearing to be
associated with dendritic spines or located in the den-
dritic shafts (Figure 1A). The punctate stainings of D1
and NR2B subunits were largely colocalized in cultured

PFC neurons. These characteristic patterns of D1 and
NR2B distribution in the cultured neurons were further
confirmed at the protein levels in cultured PFC neurons
at 14 DIV and in adult rat PFC brain homogenate (Figure
1B). The expressions of D1 and NR2B, as well as NR1 and
NR2A subunits and PSD95, appeared to be abundant and
similar in prefrontal brain crude synaptosome and cul-
tured PFC neurons (Figure 1B). These results provided
solid evidence that, despite the less mature phenotype of
cultured prefrontal neurons, they contain all of the com-
ponents and machineries required for D1-NMDA inter-
actions.

D1 receptor stimulation increases NR2B expression in 
cultured PFC neurons
Although NMDA receptors are largely composed of NR1
(obligatory subunit), NR2A and NR2B, we focused on the
effect of D1 class-mediated regulation in NR2B traffick-
ing to test our hypothesis. This is because NR2B is the
major tyrosine-phosphorylated subunit in the post-syn-
aptic density [14,30,31] and NR2B subunits are the most
dynamic and mobile subunit in the NMDA receptors
[19,32]. In addition, tyrosine phosphorylation of NR2B at
Tyr1472 is dependent on Src/Fyn family kinases [32].

Figure 1 Expression of D1 and NMDA receptors in cultured PFC neurons. (A) Localization of D1 receptor and NR2B in cultured PFC neurons. PFC 
neurons in dissociated culture at 14 DIV were labeled for endogenous D1 and NR2B receptors with double immunofluorescent staining. Lower panel, 
images at higher magnification showing the colocalization of D1 and NR2B on the dendritic shafts and spines. Scale bars = 10 μm. (B) Analysis by West-
ern blotting shows the protein expression of D1 receptor and NMDA receptor subunits in neuronal lysates. Crude synaptosome (20 μg of protein) 
from adult rat cortex (lane 1) and 14 DIV cultured PFC neurons (lane 2) were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis 
(SDS-PAGE) and probed for NR1, NR2A, NR2B, D1, PSD95, and adaptin. Both adult rat cortex crude synptosome and cultured PFC neurons exhibited 
similar expressions of NMDA and D1 receptors, as well as synaptic protein, suggesting the validity of the experiments in primary cultured neurons.
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Although NR1 is an obligatory subunit of NMDA recep-
tors, it is known to be phosphorylated by serine kinases
PKC and PKA but not by tyrosine kinases [30,33,34],
whereas NR2A seems to be less affected by activation of
D1 receptors [21,22].

To study D1 receptor activation-mediated NR2B
expression in cultured PFC neurons, the cultures were
treated for 10 min with DMSO (0.1%) as vehicle control,
the selective dopamine D1 receptor agonist SKF-81297
(10 μM), or the dopamine D1 receptor antagonist SCH-
23390 (15 μM) followed by SKF-81297 (10 μM) for 10
min. The cultures were then restored to 37°C/5% CO2 in
normal medium for another 15 min to allow the receptor
trafficking. When the PFC neurons were treated with the
D1 agonist SKF-81297 alone, expression of NR2B sub-
units in cultured PFC neurons was significantly enhanced
compared with control, as shown in Figure 2 (puncta
number: 23.8 ± 0.93 in control vs 35.0 ± 1.09 in SKF, n =
20, p < 0.001; fluorescence intensity: 33,875 ± 2439 in
control vs 56,497 ± 3397 in SKF, n = 20, p < 0.01; Figure
2A and 2B). However, when cultured PFC neurons were
pretreated by D1 antagonist SCH-23390 followed by
SKF-81297 administration, the enhancement in NR2B
expression was significantly attenuated (puncta number:
21.8 ± 1.10 in SKF + SCH, n = 25, p < 0.001; fluorescence
intensity: 30,544 ± 2504 in SKF + SCH, n = 25, p < 0.001;
Figure 2A and 2B). These results were further confirmed
using Western blot analysis. After treatment, the homo-
genates from high-density cultured PFC neurons were
prepared and changes in NR2B protein expression were
probed by immunoblotting. SKF-81297 treatment
increased NR2B protein by 91.1% ± 14.51% compared
with control (n = 4; p < 0.001; Figure 2C) and the increase
was specifically blocked by pretreatment of SCH-23390
(Figure 2C and 2D). In contrast, D1 receptor stimulation
did not show any detectable effect on PSD95 expression
(Figure 2A). Since the D1-activation induced an increase
in total NR2B subunit staining, we asked whether this
increase is sensitive to the protein synthesis inhibitor ani-
somycin (see Additional File 1). These results indicate
that D1 receptor stimulation does increase NR2B expres-
sion, which may eventually increase the NMDA receptor
trafficking to membrane surface.

Fyn or Src knockdown has no effect on total NR2B 
expression in cultured PFC neurons
To test our hypothesis regarding the roles of Fyn and Src
in D1-NR2B interaction, we used Fyn- and Src-specific
small interfering RNAs (siRNAs) to transfect PFC neu-
rons at 11 DIV. First, we determined the efficiency of Fyn
and Src siRNA transfection in cultured PFC neurons.
Four hours after siRNA application, the neurons were
washed out and then maintained in neurobasal medium

(Gibco, Carlsbad, CA) at 37°C/5% CO2 for 48 h to allow
for detectable knockdown. The efficiencies of the trans-
fections were assessed with the neurons that stained with
antibodies of either anti-Fyn or Src. We found that both
Fyn and Src kinase expressions were significantly
decreased in the siRNA-transfected neurons. As shown
in Figure 3, Fyn knockdown caused more than 50% loss of
Fyn-positive puncta in dendrites (control: 52.3 ± 2.32, n =
30; Fyn knockdown: 28.6 ± 4.15, n = 20; p < 0.01; Figure
3A and 3C). Src siRNA transfection showed similar effi-
ciency (control: 56.2 ± 2.12, n = 30; Src knockdown: 25.3
± 1.76, n = 30; p < 0.001, Figure 3B and 3D). The siRNA
transfections also resulted in significant reductions of flu-
orescence intensity in dendrites in the immunostaining of
both Fyn (control: 74,609 ± 5758, n = 30; Fyn knockdown:
37,738 ± 7658, n = 20; p < 0.01; Figure 3A and 3C) and Src
(control: 67,844 ± 8,519, n = 30; Src knockdown: 48,418 ±
7427, n = 30; p < 0.01; Figure 3B and 3D). The efficiencies
of Fyn and Src siRNA transfections were further con-
firmed using Western blotting. Consistently, both kinases
were significantly reduced about 50% in protein expres-
sion (n = 3; p < 0.01; Figure 3E-H). In contrast, the Src
expression in Fyn siRNA transfection and Fyn expression
in Src siRNA transfection were unaltered, demonstrating
the siRNA knockdown specificity.

Recent studies have emphasized the importance of Src
family kinases in regulation of NMDA receptors in the
CNS, possibly in enhancing NMDA receptor function
[25,26]. However, the effects of Src family kinases on
NMDA receptor expression in cultured neurons remain
unexplored. To assess the functions of Fyn and Src in the
regulation of NMDA receptor, PFC neuronal cultures
were fixed and stained with antibody against NR2B after
Fyn or Src knockdown with siRNA transfection. Interest-
ingly, as shown in Figure 4, we found that neither Fyn nor
Src knockdown affected the basal NR2B expression in
cultured PFC neurons in either puncta number (28.6 ±
1.5 in control vs 31.7 ± 1.8 in Fyn knockdown, n = 30, p >
0.05; and 33.5 ± 1.98 in Src knockdown, n = 45, p > 0.05)
or fluorescence intensity (control: 41,670 ± 8,875, n = 30;
Fyn knockdown: 45,005 ± 4133, n = 30, p > 0.05; Src
knockdown: 48,515 ± 7,408, n = 45, p > 0.05; Figure 4A-
C). However, when both kinases were knockdown, all
neurons died after the treatment. The unaltered NR2B
expressions in siRNA knockdown were also confirmed by
Western blotting. The homogenates from high-density
cultured PFC neurons with either Fyn or Src knockdown
were prepared and the protein levels of NR2B subunits
were found to be unchanged under either Fyn or Src
knockdown conditions, with no statistical difference (n =
3; Fyn knockdown vs control, p = 0.137; Src knockdown
vs control, p = 0.100; Figure 4D).
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D1 receptor-mediated increases in NR2B expression and 
surface insertion depend on the Fyn, but not the Src, 
signaling pathway
We next examined the specific roles of Src and Fyn in D1
receptor-mediated modulation of NMDA receptor traf-
ficking. In our recent study [35], we found that D1 recep-

tor-mediated increase of NR2B insertion in cultured PFC
neurons was selectively blocked by Src family kinase
inhibitor PP2 but not by its analogue PP3. Because PP2 is
a general inhibitor of Src family kinases, here we further
differentiated the specific roles of the Src- or Fyn-depen-
dent signaling pathways in the D1-mediated regulation of

Figure 2 D1 receptor agonist SKF-81297 enhances the expression and clustering of NR2B subunit. (A) PFC neurons at 16 DIV were treated with 
vehicle (a, d, g, j), SKF-81297 (10 μM; b, e, h, k), or SKF in the presence of SCH (15 μM; c, f, i, l), respectively, and double labeled for endogenous NR2B 
(green) and PSD95 (red). Panel j, k and l are merged from respective NR2B (green) and PSD-95(red) staining. Scale bars = 10 μm. (B) Quantification of 
total NR2B immunofluorescence staining. White bars: NR2B puncta number; black bars: NR2B fluorescence intensity. SKF-81297 significantly increased 
total NR2B puncta number and immunofluorescence intensity compared with control. Results are presented as mean number and fluorescence in-
tensity of total NR2B puncta. Statistical analysis was performed using ANOVA followed by Tukey multiple comparison test (n = 20, ** p < 0.01, *** p < 
0.001). Data represent mean ± SEM. (C) Proteins were isolated at 16 DIV from cultured high-density PFC neurons treated with DMSO, D1 receptor ag-
onist SKF-81297, or SKF-81297 + SCH-23390. The proteins were resolved on SDS-PAGE and immunoblotted for NR2B and reprobed with tubulin. (D) 
Quantification of NR2B protein expression in PFC neurons. SKF-81297 significantly increased NR2B expression, which was completely blocked by pre-
treatment with SCH-23390 (n = 4, ** p < 0.01, *** p < 0.001). Integrated intensity was measured using Image J and control protein level of NR2B was 
set to 100% after being normalized to tubulin. These results indicate that D1 receptor stimulation does increase NR2B expression, which may eventu-
ally increase NMDA receptor trafficking to membrane surface.
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Figure 3 Efficiency of Src and Fyn knockdown in cultured PFC neurons. (A) 11 DIV PFC neurons were transfected for 48 h with Fyn siRNA and 
stained with anti-Fyn and PSD95. Fyn, but not PSD95, decreased dramatically after siRNA transfection. Scale bar = 10 μm. (B) 11 DIV PFC neurons were 
transfected for 48 h with Src siRNA and stained with anti-Src and PSD95. Similarly, Src, but not PSD95, was significantly reduced in transfected neurons. 
Scale bar = 10 μm. (C and D) Quantifications of Fyn and Src immunofluorescence in dendrites suggest the effective knockdown of both Fyn and Src 
kinases in the cultured PFC neurons (n = 30, ** p < 0.01, *** p < 0.001). (E-H) Total protein levels of Fyn and Src were determined by Western blotting 
after Fyn and Src siRNA transfection in cultured PFC neurons. The blots were stripped and reprobed with antitubulin as loading control and the siRNA 
knockdown specificities were demonstrated by re-probing the Src and Fyn, respectively. Integrated intensity analysis showed significant decreases in 
both Fyn and Src proteins after knockdown (n = 3, ** p < 0.01). Control protein levels of Fyn and Src were set at 100% after being normalized to loading 
control tubulin.
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Figure 4 Src and Fyn knockdowns have no effect on the overall expression or localization and clustering of NR2B subunit at basal condi-
tions. (A) 11 DIV PFC neurons were transfected with Fyn siRNA for 48 h and stained for endogenous NR2B (green) and PSD95 (red). Scale bars = 10 
μm. (B) 11 DIV PFC neurons were transfected with Src siRNA for 48 h and stained for endogenous NR2B (green) and PSD95 (red). Scale bars = 10 μm. 
(C) Quantification of total NR2B immunofluorescence staining showed that neither Fyn nor Src had a detectable effect on total NR2B puncta number 
or immunofluorescence intensity compared with the control group (p > 0.05). Data represent mean ± SEM. (D) Total protein levels of NR2B were de-
termined by Western blotting after Fyn and Src siRNA transfection in cultured PFC neurons. The blots were stripped and reprobed with antitubulin as 
loading control. Control protein levels of NR2B were set at 100% after being normalized to loading control tubulin (p > 0.05).
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NMDA receptor trafficking by using either Fyn or Src
siRNA knockdown in the cultured prefrontal neurons. As
described above, 72 hrs after the transfection of Fyn or
Src siRNA, PFC neuron cultures were treated with vehi-
cle DMSO (0.1%) or the D1 receptor agonist SKF-81297
(10 μM) for 10 min and were then restored to 37°C/5%
CO2 in normal medium for another 15 min. As shown in
Figure 5, the D1 receptor-mediated effects on NR2B

expression were completely blocked by Fyn knockdown
in both puncta number (control: 29.6 ± 2.5, n = 30; SKF
after Fyn knockdown: 30.2 ± 1.6, n = 25, p > 0.05) and flu-
orescence intensity (control: 41,876 ± 3,992, n = 30; SKF
after Fyn knockdown: 44,433 ± 3,992, n = 25, p > 0.05;
Figure 5A and 5B), as well as protein levels of NR2B (n =
3, p = 0.275; Figure 5C). In contrast, the D1 receptor-
mediated NR2B expression was unchanged after Src

Figure 5 D1 agonist induces no changes in NR2B expression after Fyn knockdown. Immunostaining revealed that neither NR2B nor PSD95 ex-
pression was changed by treatment with SKF-81297 (10 μM) in Fyn siRNA-transfected PFC neurons (d, e, f) compared with control (a, b, c). Scale bar 
= 10 μm. (B) Quantification of total NR2B immunofluorescence staining revealed that SKF-81297 (10 μM) had no clear effects on NR2B puncta number 
or fluorescence intensity in the dendrites of Fyn siRNA-transfected neurons compared with control group (p > 0.05). (C) Total protein levels of NR2B, 
which were determined by Western blotting after Fyn siRNA transfection followed by SKF treatment in cultured PFC neurons, were consistently un-
altered by treatment with SKF-81297 (10 μM, p > 0.05) although SKF-81297 (10 μM) induced a significant increase in NR2B expression in the control 
condition (*p < 0.05). Similarly, in neurons with Fyn siRNA, NR2B Tyr1472 phosphorylation level was not changed by treatment with SKF-81297 (10 
μM, p > 0.05). Integrated intensity analysis was performed using Image J software and the control protein level of NR2B or the Tyr1472 phosphorylation 
was set to 100% after being normalized by loading control tubulin.
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knockdown. D1 receptor stimulation still significantly
increased both puncta number (control: 27.6 ± 1.9, n =
15; Src knockdown: 45.9 ± 2.6, n = 25, p < 0.01) and fluo-
rescence intensity (control: 36,661 ± 3618, n = 15; Src
knockdown: 68,995 ± 5,773, n = 25, p < 0.01; Figure 6A
and 6B), as well as protein expression of NR2B (n = 3, p <
0.01; Figure 6C). These results strongly indicate that Fyn,
but not Src, is responsible for the D1 receptor-mediated

enhancement of NR2B expression in cultured prefrontal
neurons.

Previous studies in other brain regions have demon-
strated that activation of Src family kinases leads to phos-
phorylation of NR2B which appears to be important for
surface expression of this subunit [23,32]. Therefore, we
used a specific antibody to look at the phosphorylation
state of the NR2B subunit. We found that knockdown of
Fyn by siRNA blocked the phosphorylation of NR2B

Figure 6 Src knockdown has no effect on the D1 receptor-mediated localization and clustering of NR2B. (A) Immunostaining revealed that 
NR2B expression was significantly increased by SKF-81297 (10 μM) treatment in Src siRNA-treated PFC neurons, compared with the control group. 
Scale bar = 10 μm. (B) Quantification of total NR2B immunofluorescence staining revealed that SKF treatment increased total NR2B puncta number 
and fluorescence intensity in dendrites even after Src siRNA transfection, compared with control. Results are presented as the mean number of total 
NR2B puncta and mean intensity of fluorescence (**p < 0.01). Statistical analysis was performed by t test and the data represent mean ± SEM. (C) Sim-
ilarly, total protein or NR2B Tyr1472 phosphorylation levels of NR2B determined by Western blotting after Src siRNA transfection remained to be sig-
nificantly altered by SKF-81297 treatment in cultured PFC neurons (* p < 0.05). Control NR2B protein level or NR2B Tyr1472 phosphorylation level was 
set to 100% after being normalized by loading control tubulin.
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Tyr1472 after D1 activation (vehicle-transfected and non
SKF-81297 treatment control: 100%; vehicle-transfected
neurons treated with SKF-81297: 163.4% ± 2.4%, p < 0.05;
Fyn siRNA, non SKF-81297 treatment: 101.2% ± 2.5%, p
> 0.05; Fyn siRNA, SKF-81297: 92.2% ± 2.6%, p > 0.05; n =
3 in each group) (Figure 5C) while siRNA knockdown of
Src had no effect on D1-induced NR2B Tyr1472 phos-
phorylation (vehicle-transfected and non SKF-81297
treatment control: 100%; vehicle-transfected neurons
treated with SKF-81297: 156.7% ± 2.5%, p < 0.05; Src
siRNA, non SKF-81297 treatment: 99.5% ± 2.5%, p > 0.05;
Src siRNA, SKF-81297: 162.2 ± 3.6%, p < 0.05; n = 3 in
each group) (Figure 6C). This indicates that under our
experimental conditions, Fyn phosphorylates NR2B
while Src does not.

Finally, we used a surface biotinylation assay to examine
whether Fyn and Src affect NR2B trafficking under this
condition. We found that treatment of high-density PFC
cultured neurons with D1 receptor agonist SKF-81297
significantly increased the ratio of surface/total NR2B
expression compared with the control group (n = 3, p <
0.01; Figure 7). As Figure 4 shows, neither Fyn nor Src
knockdown affected total protein levels of NR2B expres-
sion (Fyn knockdown: n = 3, p = 0.45; Src knockdown: n =
3, p = 0.10). In contrast to the almost unaltered surface
NR2B expression under conditions of activation of D1
agonist SKF-81297 after Src knockdown (n = 3, p < 0.05;
Figure 7B and 7D), however, the D1 effects on the surface
NR2B expression were completely blocked by Fyn knock-
down (n = 3, p = 0.448; Figure 7A and 7C). Taken
together, these results demonstrate that D1 receptor acti-
vation specifically increases surface NR2B expression by a
Fyn-dependent signaling pathway, whereas Src is not
involved.

Discussion
We have demonstrated that D1 receptor activation-medi-
ated enhancement of NR2B expression, in the cultured
PFC neurons depends on the Fyn but not Src signaling
pathway by taking the advantage of siRNA knockdown.
Our data provide evidence of a novel molecular mecha-
nism involved in the D1-NMDA interaction in prefrontal
neurons.

Interaction of D1 and NMDA receptors in PFC has long
been proposed to contribute to synaptic plasticity and to
cognitive functions. Pharmacologic blockade of either D1
or NMDA receptor results in many cognitive deficits
such as decreases in spatial working memory [1,36,37].
Physiologically, D1 receptor stimulation potentiates the
NMDA receptor responses in PFC neurons in vitro [5,9-
11,38]. The D1-dependent NMDA receptor enhancement
in PFC appears to be critical both for physiological regu-
lation of synaptic strength in working memory function

[6,39] and for disorders such as drug addiction [40] and
schizophrenia [3].

NMDA receptors are essential for long-lasting changes
in synaptic efficacy such as long-term plasticity. Consid-
erable evidence indicates that NMDA receptors are not
static residents in synapses but instead can move in and
out [5], whereby they may regulate receptor function and
synaptic plasticity [23]. On the other hand, neuronal
activity drives not only local receptor synthesis but also
receptor insertion into the plasma membrane, lateral dif-
fusion between synaptic and extrasynaptic sites, and
receptor endocytosis [23,41,42]. Thus, the notion has
been emerging that activity-dependent NMDA receptor
trafficking provides a potentially powerful mechanism for
the regulation of synaptic efficacy and remodeling. It is
increasingly appreciated that NMDA receptor trafficking
dysregulation may contribute to neuropsychiatric disor-
ders such as drug addiction [43], Alzheimer's disease [44],
and schizophrenia [45]. Therefore, understanding the
role of D1 receptor stimulation in modulating NMDA
receptor trafficking is vital in order to elucidate the
mechanisms underlying synaptic plasticity and neuropsy-
chiatric disorders.

Increasing evidence suggests that Src family kinases
play essential roles in the regulation of NMDA receptor
by D1 receptor activation [46,47]. Our recent study [35]
shows that D1 receptor-mediated increase in NR2B sur-
face expression and synaptic function in PFC was selec-
tively blocked by Src family kinase inhibitor PP2. The Src
family of protein tyrosine kinases expressed in the ner-
vous system includes Src, Fyn, Yes, Lck and Lyn. Because
of the high homology between the family members,
determining the role of specific members of the Src fam-
ily kinases in the regulation of NMDA receptor traffick-
ing has been challenging. Whereas Src has been clearly
shown to play a role in the regulation of NMDA receptors
[28,48] and in the induction of long-term potentiation in
hippocampal CA1 [28,49], gene-targeted deletion of Src
failed to show apparent neurological phenotypes [28,29].
Several confounding factors may explain these conflicting
results. Pharmacological tools for specific blockade of Src
or Fyn are lacking. In addition, Src family kinases may
have both specific and overlapping functions in various
physiological processes [50]. Therefore molecular redun-
dancy among Src family kinases may lead to functional
compensation, thus confounding the phenotype of
knockout mice. In other words, knockout mice might not
be the ideal tools to study the specific functions of Src
family members. To determine whether and which spe-
cific Src kinases have a role in D1-induced NMDA recep-
tor trafficking, we took the siRNA approach. Indeed, as
recent study [51] has shown, siRNA knockdown
approach has some advantages over the gene knockout
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approach in studying the function of closely related fam-
ily members such as MAGUKS in glutamate receptor
trafficking. Using the siRNA approach, we found that
dopamine D1-activation induced NMDA receptor traf-
ficking depends on Fyn, but not Src signaling pathway.

NMDA receptor tyrosine phosphorylation at position
1472 (Tyr1472) might stabilize NMDA receptors on the
cell surface, thereby increasing NMDA receptor
responses. Accordingly, Src family kinase activation
might inhibit NMDA receptor endocytosis [32,52]. We
observed the effect of D1 receptor stimulation on the sur-
face expression of the NR2B subunit in cultured PFC neu-

rons, consistent with previous studies [21,22]. D1
receptor agonist treatment leads to significant increase in
NR2B dendritic localization and colocalization with
PSD95. Fyn knockdown effectively blocks the NMDA
receptor increase after D1 activation, whereas Src knock-
down exhibits no clear effect, suggesting that Fyn, but not
Src, is involved in D1 receptor modulation of NMDA
receptor expression. Our data agree with numerous
recent studies in which Tyr1472 phosphorylation was
found to be required for proper NR2B localization at syn-
apses in the striatum [21,46], hippocampus [32],
amygdala [53], and PFC [22]. It should be mentioned that

Figure 7 Fyn, but not Src, affects the surface NR2B expression after D1 receptor stimulation. (A and B) Surface biotinylation of NMDA receptors 
in high-density PFC neurons at 14 DIV. PFC neurons at12 DIV were transfected with Fyn siRNA for 48 h. The PFC neurons at DIV 14 were treated with 
DMSO (0.1%, lanes 1 and 2); SKF-81297 (10 μM, lanes 3 and 4); Fyn (A) or Src (B) knockdown PFC neurons treated with DMSO (0.1%, lanes 5 and 6); or 
Fyn (A) or Src (B) knockdown neurons treated with SKF-81297 (10 μM, lanes 7 and 8). After surface receptor biotinylation, 20% of the lysis supernatant 
was used to detect the total (T) proteins. The remaining 80% of the supernatant was incubated with NeurAvidin Agarose beads and purified as surface 
(S) proteins. After SDS-PAGE the proteins were immunoblotted for NR2B and β-tubulin. (C and D) Quantification of surface NR2B expression. Surface 
NR2B was corrected by total NR2B to calculate the surface/total ratio and the control group was set to 100% for normalization. Fyn, but not Src, knock-
down appeared to be effective in blocking the surface insertion of NR2B mediated by D1 stimulation (* p < 0.05, ** p < 0.01).
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although we focused on the NR2B subunit in this study,
we found that D1 also increased NR1 subunits (Li et al.,
unpublished observations). This is important as there are
functional differences among NMDA receptors as recent
work has demonstrated [54].

Our RNAi efficiency is similar to that of others as
reported in neurons [55]. The reason why that the protein
level of Src or Fyn is reduced to ~50% of the control is a
matter of speculation. Due to the variance in protein sta-
bility and cell systems, the efficacy of siRNA also varies.
As for why the remaining Fyn is insufficient for enhanc-
ing NMDA receptor trafficking after D1 activation, we
speculate that Fyn might have some important functions
in cell survival and cell physiology [56], and for the econ-
omy of cells, it is not unreasonable to think that cell sur-
vival has a higher priority than the receptor trafficking.

Conclusions
Our findings demonstrate that dopamine receptors may
regulate synaptic plasticity by modulating NMDA recep-
tor synaptic expression through a Fyn-dependent signal-
ing pathway. Considering that NMDA receptor activity
alterations are involved in the clinical features of schizo-
phrenia and drug abuse, our study not only provides
insight into the roles of Src family kinases in NMDA
receptor trafficking but also offers the possibility of gen-
erating new pharmacologic reagents targeting Fyn kinase
signaling pathway. This intervention could be promising
for psychiatric disorders involving D1-NMDA interac-
tion, such as schizophrenia and drug addiction.

Methods
Chemicals and antibodies
The chemicals used for treatment of PFC neurons were
purchased from the following sources: selective D1 ago-
nist SKF-81297, D1 antagonist SCH-23390, and dimethyl
sulfoxide (DMSO) were purchased from Sigma-Aldrich
(St. Louis, MO). Antibodies used for immunofluores-
cence and Western blotting included mouse anti-NR2B
(1:2000, Millipore, Billerica, MA), rabbit phospho-Y1472
NR2B (1:500, PhosphoSolutions, Aurora, CO), rabbit
anti-PSD95 (1:1000, Frontier Science Co., Hokkaido,
Japan), rat anti-D1 (1:1000, Sigma), rabbit anti-Fyn
(1:1000, Millipore), mouse anti-Src (1:1000, Millipore),
and mouse antitubulin (1:10000, Millipore). The primary
antibody dilutions listed above were for Western blotting.
For immunofluorescence staining, dilutions were all
1:800. The following reagents were obtained from Jack-
son ImmunoResearch (West Grove, PA): Cy3-conjugated
donkey antimouse secondary antibody (1:800), FITC-
conjugated donkey anti-mouse secondary antibody (1:
800), Cy3-conjugated donkey anti-rabbit secondary anti-
body (1:800), FITC-conjugated donkey anti-rabbit sec-
ondary antibody (1:800), peroxidase-conjugated goat

anti-mouse secondary antibody (1:1000), and peroxidase-
conjugated goat anti-rabbit secondary antibody (1:1000).

PFC cultures
Timed pregnant rats and adult rats (3 months old) were
purchased from Marshall Farms (New York, NY) and the
animal procedures were in strict accordance with the
National Institute of Health (NIH) animal use guideline.
The experimental protocols were approved by the Insti-
tutional Animal Care and Use Committee at Drexel Uni-
versity College of Medicine. Primary neuron cultures
were prepared from embryonic day 20 rat PFC. Briefly,
PFC tissues were isolated and dissociated with trypsin
(Gibco, Carlsbad, CA) at 37°C, filtered by cell filter (BD
Falcon, San Jose, CA), rinsed with Neurobasal medium
(Gibco, Carlsbad, CA) supplemented with B27and L-glu-
tamine(Gibco, Carlsbad, CA) and 5% fetal bovine serum
(FBS). Cultures were plated at 2 × 105 cells per well on
poly-l-lysine coated glass coverslips in 6-well plates (BD
Falcon, San Jose, CA) and kept in Neurobasal medium
supplemented with B27, L-glutamine, and 5% FBS at
37°C/5% CO2 for 4 h. Cells were then maintained in Neu-
robasal medium supplemented with B27, and L-glu-
tamine without FBS at 37°C/5% CO2. Cells were fed 2
times per week, with one third of the media changed each
time. Cultured PFC neurons were used between 14 and
18 days in vitro (DIV) for the studies described.

siRNA transfection
Src and Fyn siRNAs were purchased from Millipore,
including pKD-Fyn-v6 (mammalian Fyn siRNA expres-
sion plasmid) and pKD-Src-v2 (mammalian Src siRNA
expression plasmid).

Src siRNA sequence:
Sense strand:
5'-TGGTGGCCTACTACTCCAAACTTCAAGA-

GAGTTTGGAGTAGTAGGCCACCATTTTTG-3'
Antisense strand:
5'-AATTCAAAAATGGTGGCCTACTACTCCAAA

CT CTCTTGAAGTTTGGAGTAGTAGGCCACCA-3'
Fyn siRNA sequence:
Sense strand:
5'-ACATCGTCACCGAGTATGTGATTCAAGAGAT-

CATATACTCGGTGACGATGTTTTTTG-3'
Antisense strand:
5'- AATTCAAAAAACATCGTCACCGAGTATATGA

TCTCTTGAATCACATACTCGGTGACGATGT-3'
The siRNAs were used to transfect PFC neurons (750

ng per well) with GeneSilencer siRNA transfection
reagent from Genlantis (San Diego, CA) when cultures
reached 70% confluence. Neurons in the control condi-
tions were transfected with the same volume of transfec-
tion reagent without siRNA. After 4 h, neurons were
washed with serum-free Neurobasal medium, and neu-
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rons were maintained in Neurobasal medium supple-
mented with B27 and L-glutamine at 37°C/5% CO2 for 48
to 72 h to allow for detectable knockdown prior to the
treatment with other pharmacologic reagents. The effi-
ciencies of siRNA transfection were assessed by both
immunostaining and Western blotting with antibodies
against Fyn or Src, whereas the antibody specificities
were demonstrated by re-probing the Src and Fyn,
respectively.

Pharmacologic treatments of PFC neurons
To assess the roles of Fyn and Src in D1 receptor-medi-
ated modulation of NMDA receptor, PFC neurons with
or without transfection were treated with the selective D1
receptor agonist SKF-81297 (10 μM) for 10 min or pre-
treated with selective D1 receptor antagonist SCH-23390
(15 μM) followed by SKF-81297 (10 μM) for 10 min. The
cultured neurons were then restored to normal medium
at 37°C/5% CO2 for another 15 min to allow the traffick-
ing of NMDA receptors. For control, the same volume of
DMSO (0.1%) was added as vehicle and the cultured neu-
rons were subjected to the same conditions. Precautions
were taken to protect samples from light exposure and
oxidation. The treated PFC neurons were used for both
immunofluorescent staining and Western blotting.

Immunofluorescent staining of PFC neurons
PFC neurons were fixed by methanol at -20 °C for 5 min
and rinsed with 0.2% Triton X-100 (Dow Chemical, Mid-
land, MI) in phosphate-buffered saline (PBS) to permea-
bilize the plasma membrane. Coverslips were blocked
with 10% bovine serum albumin in PBS for 1 h at room
temperature. Double immunofluorescent stainings were
conducted with antibodies against NMDA receptors
(NR2B), D1 receptor, Fyn, Src, or postsynaptic marker
PSD95, followed by appropriate secondary antibodies.
Images were acquired using a Zeiss Axiovert 200 M
inverted microscope with Axiovision software (Zeiss
Microscopy, Jena, Germany). All analysis and quantifica-
tions were performed using the NIH Image J software.
The dendritic segments in neurons (40 μm) were ran-
domly selected for puncta analysis. The average intensity
of fluorescence staining and the punctate number of
NR2B/Fyn/Src were quantified using the NIH Image J
software and were blindly confirmed by other researchers
in the laboratory. Results were presented as the mean
number of total puncta or mean intensity of fluorescence
± standard error of the mean (SEM). Statistical analysis
was performed using one-way analysis of variance
(ANOVA) followed by Tukey multiple-comparison tests
for several experimental groups. Images were prepared
for printing with Adobe Photoshop (San Jose, CA) and
Canvas (ACD Systems, Ltd., Victoria, BC, Canada).

Biotinylation assay
The biotinylation was performed as described with minor
modification [57]. After transfection with Fyn or Src
siRNA, neurons were treated with the pharmacologic
agents as described above. For cell surface receptor bioti-
nylation, neurons were rinsed twice with ice-cold 0.1 M
PBS for 1 min each and were then incubated with 1.5 mg/
mL sulfo-NHS-SS-Biotin (Pierce, Rockford, IL, USA) in
0.1 M PBS for 20 min at 4 °C. The sulfo-NHS biotin was
quenched with PBS containing 50 mM glycine. After
washing twice with ice-cold 0.1 M PBS (5 min each), neu-
rons were then lysed in radioimmunoprecipitation assay
(RIPA) buffer. The homogenates were centrifuged at
14,000 g for 10 min at 4 °C. The resulting supernatant vol-
ume was measured and 20% of it separated as the total
(T) protein. The remaining 80% of the supernatant was
incubated with NeutrAvidin agarose beads (Pierce) over-
night at 4 °C. NeutrAvidin agarose beads were washed
with RIPA buffer and then spun down for 2 min at 5000
rpm, which was repeated 3 times. Finally, the biotinylated
proteins were eluted from the NeutrAvidin by incubation
with 2 × sample SDS-PAGE buffer at 95°C for 5 min and
used as surface (S) proteins. Western blotting was per-
formed using antibody against NR2B. Data were quanti-
fied by comparing the ratio of surface biotinylated to total
input protein and normalized to control group as per-
centages.

Crude Synaptosome (P2) Preparation
Crude synaptosome (P2) was prepared from rat frontal
cortex as previously described [58,59] with minor modifi-
cation. Cerebral cortices were collected and homoge-
nized in 40 ml buffered sucrose (0.32 M Sucrose/1 mM
NaHCO3). The homogenate was centrifuged at 1,400 g
for 10 min, then the pellet (P1) was discarded, while the
supernatant (S1) was saved and centrifuged at 13,800 g
for 10 min. The resulting pellet (P2) was crude synapto-
some, which was resuspended by RIPA buffer and
resolved by electrophoresis. The crude synaptosome was
used in Figure 1B, whereas homogenates were used in all
other experiments for the data exhibited in Figures 2, 3, 4,
5, 6 and 7.

Western blotting
Proteins were isolated from adult rat PFC or high-density
prefrontal neuronal cultures with RIPA buffer. After cen-
trifugation at 14,000 rpm at 4 °C for 15 min, the superna-
tants were resolved by electrophoresis on 7.5%
polyacrylamide gels and transferred onto nitrocellulose
membranes. The membranes were blocked in 5% nonfat
milk in TBS for 1 h and were incubated with the following
antibodies overnight at 4 °C: mouse anti-NR2B, rabbi
anti-PSD95, rat anti-D1, rabbit anti-Fyn, mouse anti-Src,
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and mouse antitubulin. After incubation with appropriate
horseradish peroxidase-conjugated secondary antibodies,
antigens were identified by enhanced chemiluminescence
reagents [60]. Blots were scanned and quantified using
Image J software. Control protein levels were set at 100%
after being normalized to loading control tubulin. All
other values were normalized as percentages of control.
Each set of experiments was repeated at least 3 times to
reduce interblot variability. Images were prepared for
printing with Adobe Photoshop and Canvas.
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