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Lack of interleukin-1 type 1 receptor enhances
the accumulation of mutant huntingtin in the
striatum and exacerbates the neurological
phenotypes of Huntington’s disease mice
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Abstract

Huntington's disease results from expansion of a glutamine repeat (>36 glutamines) in the N-terminal region of

huntingtin (htt) and is characterized by preferential neurodegeneration in the striatum of the brain. N171-82Q mice
that express N-terminal 171 amino acids of htt with an 82-glutamine repeat show severe neurological phenotypes
and die early, suggesting that N-terminal mutant htt is pathogenic. In addition, various cellular factors and genetic
modifiers are found to modulate the cytotoxicity of mutant htt. Understanding the contribution of these factors to
HD pathogenesis will help identify therapeutics for this disease. To investigate the role of interleukin type 1 (IL-1),
a cytokine that has been implicated in various neurological diseases, in HD neurological symptoms, we crossed
N171-82Q mice to type | IL-1 receptor (IL-1RI) knockout mice. Mice lacking IL-1RI and expressing N171-82Q show
more severe neurological symptoms than N171-82Q or IL-1RI knockout mice, suggesting that lack of IL-1RI can
promote the neuronal toxicity of mutant htt. Lack of IL-1RI also increases the accumulation of transgenic mutant
htt in the striatum in N171-82Q mice. Since IL-1RI signaling mediates both toxic and protective effects on neurons,

its basal function and protective effects may be important for preventing the neuropathology seen in HD.

Background
Huntington’s disease is characterized by late-onset neuro-
degeneration that occurs preferentially in the striatum
[1,2]. This selective neurodegeneration is caused by expan-
sion of a polyglutamine (polyQ) tract in the N-terminal
region of huntingtin (htt), a large protein that consists of
3144 amino acids and is expressed ubiquitously in all
types of cells throughout the body and brain. N-terminal
fragments of mutant htt can affect intracellular trafficking
[3-6] and enter the nucleus to alter gene expression [7,8].
Although we know that an expanded polyQ causes the
misfolding of N-terminal htt and induces cytotoxicity, the
mechanism underlying the selective neurodegeneration
remains unclear.

Transgenic mouse models expressing mutant htt make
a highly valuable model for untangling the pathogenesis
of HD. Of a number of HD mouse models that have been
established, N171-82 HD mice have been investigated
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extensively because of their robust neurological pheno-
types. N171-82Q mice express N-terminal 171 amino
acids of human htt with an 82Q repeat under the control
of the prion promoter, which drives gene expression at a
high level in neuronal cells [9]. As a result, mutant htt is
abundantly expressed in neuronal cells in the cortex and
striatum of N171-82Q mice, causing motor function defi-
cits, body weight loss, and early death that often occurs at
5-6 months in these mice [9]. The robust and progressive
neurological phenotypes of N171-82Q mice offer an
advantage for identifying therapeutics that can alleviate
neurological symptoms and for uncovering pathogenic
mechanisms [10,11]. Nonetheless, although the involve-
ment of neuroinflammation and cytokines are known to
be involved in a number of neurological disorders, their
roles in HD remain elusive.

Interleukin-1 (IL-1), a 17-kDa polypeptide, is the proto-
typical cytokine with pleiotropic effects and is dramatically
upregulated during neuroinflammation [12]. Considerable
efforts have been made to alter IL-1 signaling for the
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purpose of reducing the inflammation in acute pathologi-
cal conditions. However, the effects of IL-1 appear to differ
depending on its expression levels and the target organ.
IL-1 functions as a mediator or inhibitor of diverse forms
of neurodegeneration [12,13]. For example, IL-1 activates
NF-kB signaling [12,14], which can be either protective of
or destructive to cells [14,16]. Mutant htt can reduce NF-
kB [17] and also increase NF-kB signaling [18] in cultured
cells. Given both the pathogenic and protective functions
of IL-1 and NF-kB, it is important that we understand the
contribution of IL-1 signaling to the pathogenesis of HD.

Two well-characterized isoforms of IL-1, IL-1alpha
and IL-1beta [19], can bind type I IL-1 receptor (IL-1RI)
to trigger IL-1 signaling pathways. An endogenous
antagonist (IL-1Ra) binds to IL-1RI and blocks IL-1
binding and signaling [20], conferring protection against
pathologic events caused by the elevated level of IL-1. In
this study, we crossed N171-82Q HD mice to IL-1RI
knockout mice, in which NF-£B activation is inactive at
all times [12,14]. We found that diminishing IL-1RI
could increase the accumulation of mutant htt in the
striatum and exacerbate the neurological symptoms of
N171-82Q mice. Our findings suggest that the basal
activity of IL-1RI is important for preventing the accu-
mulation of mutant htt in striatal neurons and hence
related neuropathogenic events, which could be helpful
for the development of new strategies to treat HD.

Methods

Animals

All animal procedures were approved by the Institutional
Animal Care and Use Committee of Emory University.
N171-82Q mice (B6C3F1/J-Tg(HD82GIn)81Dbo/], Jackson
Laboratory, Bar Harbour, ME, USA) and IL-1RI knockout
mice (B6.129S7-111r1""""*/], Jackson Laboratory. C57BL/
6) were obtained from the Jackson Laboratory and were
maintained in the animal facility at Emory University in
accordance with institutional guidelines. Male N171-82Q
mice were mated with female IL-1RI knockout mice to
generate HD-IL1R+/- mice. HD-IL1R-/- mice were then
generated by mating HD-IL1RI+/- mice with IL-1RI null
mice. PCR genotyping of transgenic mutant htt used the
following primers (forward: 5-CTA CGA GTC CCT CAA
GTC CTT CCA GC-3’ and reverse: 5-GAC GCA GCA
GCG GCT GTG CCT G-3)). IL-1RI gene deletion was ver-
ified by PCR with the following primers (forward: 5’-CCA
CAT ATT CTC CAT CAT CTC TGC TGG TA-3’ and
reverse: 5-TTT CGA ATC TCA GTT GTC AAG TGT
GTC CC-3) for the wild type IL-1RI allele and the primers
(forward: 5-CTG AAT GAA CTG CAG GAC GA-3’ and
reverse: 5-ATA CTT TCT CGG CAG GAG CA-3’) for
the mutated IL-1RI allele. The following PCR condition
was used for the wild type and mutant IL1R gene: 94°C for
3 min, followed by 33 cycles of 45 s at 94°C, 45 s at the
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annealing temperature 63°C, and 60 s at 72°C. For the
specific amplification of human htt, the annealing tem-
perature was 64°C. The last cycle was followed by a final
elongation step at 72°C for 10 min.

Antibodies

The anti-huntingtin antibody (rabbit EM48) was pre-
viously produced in our laboratory [21]. The mouse
anti-gamma-tubulin antibody was purchased from Sigma-
Aldrich (St. Louis, MO) and used at 1:50,000 dilution. The
mouse antibody to GFAP was obtained from Millipore
Inc. Secondary antibodies were peroxidase-conjugated
donkey anti-mouse or donkey anti-rabbit IgG (H+L) from
Jackson ImmunoResearch (West Grove, PA).

Rotarod test

Movement coordination performance was evaluated
using an AccuRotor rotarod apparatus (AccuScan
Instruments). Mice were trained on 2 consecutive days
for 3 5-min trials at 5 rpm. Testing was performed on
the third day. During testing, the rotating rod was set to
accelerate from 0 to 40 rpm in 5 min. Each mouse per-
formed 3 trials on testing day, with 5-min resting peri-
ods between each trial. Latency to fall from the rotating
rod was measured and averaged for the 3 trials.

Immunocytochemistry and western blot analysis

Mouse brain regions were carefully dissected from one
hemisphere for western blot analysis, and another hemi-
sphere was frozen in O.C.T. on dry ice for cryosectioning.
Sagittal sections were cut at 15 pm thickness using a
cryostat (Leica CM1850), fixed in 4% paraformaldehyde
for 20 min and stained with antibodies as described pre-
viously [22]. Mouse EM48 (1:100) and rabbit GFAP
(1:1,000) antibodies were used for double immunohisto-
chemical analysis. For DAB (3,3’-Diaminobenzidine)
staining, mice were anesthetized and perfused intracar-
dially with phosphate-buffered saline (PBS, pH 7.2) for
30 s followed by 4% paraformaldehyde in 0.1 M phos-
phate buffer (PB) at pH 7.2. Brains were removed, cryo-
protected in 30% sucrose at 4°C, and sectioned at 40 pm
using a cryostat. Free-floating sections were preblocked
in 3%BSA with 2% normal donkey serum and incubated
with rabbit EM48 (1:1,000) as previously described [21].
Western blotting analysis of mouse brain tissues was per-
formed as described previously [21]. Blots were probed
with mouse EM48 (1:100), mouse anti-GFAP (1:2,000),
and mouse anti-gamma-tubulin (1:50,000).

Statistical analysis

Results generated from 3 or more independent experi-
ments are expressed as the mean +SD and were ana-
lyzed for statistical significance using a 2-tailed
Student’s t-test.
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Results

There are two homologous receptors for IL-1 (type I
IL-1R and type II IL-1R) that can bind either IL-1alpha
or IL-1beta. However, type I IL-1R binds IL-1lalpha with
10-fold greater affinity than it does IL-1beta. Moreover,
type I IL-1, but not type II, receptor is important for
IL-1 signaling [12]. Type 1 IL-1R (referred to as IL-1RI)
null mice live normally and display no overt phenotypes
or behavioral abnormalities [14], allowing us to examine
whether a lack of IL-1RI could alter the neurological
symptoms of HD mice. To this end, we crossed N171-
82Q mice (B6C3F1/J-Tg(HD82GIn)81Dbo/], Jackson
Laboratory, Bar Harbour, ME, USA) to IL-1RI knockout
mice (B6.129S7-111r1""*"*[], Jackson Laboratory.
C57BL/6) and generated mice of different genotypes
(Figure 1A).

We did not find any significant differences in survival
and body weight between N171-82Q mice with and
without the IL-1RI gene (data not shown). Rotarod per-
formance has been widely used to assess the motor
function of N171-82Q mice [9,21]; we found that N171-
82Q mice fell much faster from the rotating rod than
IL-1RI knockout mice, indicating a significant motor
deficit in HD mice (Figure 1B). There was no significant
difference in rotarod performance between female and
male IL-1RI knockout mice. Because genetic background
might influence mouse behaviors, we focused on the
comparison between heterozygous IL-1RI and homozy-
gous IL-1RI knockout mice on the N171-82Q back-
ground. These mice carry the same mutations (the
mutant htt and targeted IL-1RI genes), so the difference
between these two mouse lines is more likely to reflect
any effects of IL-1RI expression on HD-related neurolo-
gical phenotypes. N171-82Q mice lacking IL-1RI
(HD-IL1R-/-) performed worse on the rotarod than
N171-82Q mice with one copy of the IL-1RI gene
(HD-IL1R+/-), regardless of sex (Figure 1B). Combining
male and female mice, this difference is statistically sig-
nificant (Figure 1C), indicating that lack of IL-1RI can
exacerbate the motor dysfunction of HD mice.

We then examined the expression level of mutant htt
in different regions of the mouse brain, including the
striatum, cortex, hippocampus, and lateral globus palli-
dus (LGP), a region that is innervated by striatal neurons.
Immunohistochemical studies with EM48, an antibody
that preferentially reacts with mutant htt [21], revealed
that more mutant htt aggregates were present in HD-
IL1R-/- mice than HD-IL1R+/- mice (Figure 2A). High-
magnification micrographs show that mutant htt formed
inclusions as well as small neuropil aggregates in the
nucleus (Figure 2B). Increased glial fibrillary acidic pro-
tein (GFAP) staining, which reflects early neurodegenera-
tion, has been found in a variety of HD mice [23,24].
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Figure 1 Lack of IL-1RI leads to rotarod deficits in N171-82Q
mice. (A) Genomic DNA PCR analysis of mice of different
genotypes. N171-82Q mice with (HD-IL-1R+/-) or without (HD-
ILTR-/-) one copy of the IL-1RI gene were used for further
comparison. Wild type (350 bp) and mutant (172 bp) IL1R products
are indicated. (B) Male and female rotarod performances of (HD-
IL1R+/-), (HD-IL1R-/-), 1R+/-, and 1R-/- mice at the age of 3 months
were examined and compared. n = 10 each group. (C) The rotarod
performance of both male and female mice of different genotypes
as indicated in (B). n = 10 each group. ** p < 0.01.
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Figure 2 Increased accumulation of mutant htt in the HD
mouse brain when IL-1Rl is absent. (A) EM48 immunostaining
(20x) showing the increased staining of mutant htt in the brain
regions [cortex, striatum, lateral globus pallidus (LGP), hippocampus]
of HD-IL1R-/- mice compared with HD-IL1R+/- mice. This increase is
more prominent in the striatum of HD-IL1R-/- mice. (B) Fluorescent
staining showing that mutant htt (green) is more abundant in the
nuclei (blue), with small aggregates that are outside the nucleus
and that were characterized previously as neuropil htt aggregates.

Cortex

Hippocampus

Striatum

LGP

Compared with HD-IL1R+/- mice, there were more
GFAP-positive cells in HD-IL1R-/- mice in the cortex
and striatum (Figure 3A). Increased GFAP staining (red)
is clearly shown in high-magnification micrographs that
reveal mutant htt (green) in the nuclei (blue) of neuronal
cells (Figure 3B). To verify this difference, we performed
western blotting analysis of the brain tissues from mice
of different genotypes. Htt immunoreactive products that
were only present in samples from HD mice represent
protein products of transgenic mutant htt (Figure 4). We
found that aggregated htt, which is evident in the stack-
ing gel, is more intense in the brain tissue sample from

Page 4 of 7

HD-IL1R-/- mice than HD-IL1R+/- mice. This difference
is especially pronounced in the striatal tissues. There was
also a consistent increase in soluble mutant htt (arrows
in Figure 4) in the striatal tissue from HD-IL1R-/- mice.
More importantly, the GFAP level was also elevated in
the striatal tissue of HD-IL1R-/- mice (Figure 4).

Discussion

Our findings show that depletion of IL-1RI can exacer-
bate motor deficits and increase the expression level of
mutant htt in the brain, the striatum in particular.
Thus, the basal level of IL-1 signaling is likely impor-
tant for clearing mutant htt in neuronal cells. In
N171-82Q mice, N-terminal mutant htt fragments are
expressed in neuronal cells, leading to progressive htt
aggregation and robust neurological symptoms [9].
The fact that N-terminal mutant htt is prone to pro-
tein misfolding and is toxic to neuronal cells is in
keeping with the idea that the proteolysis of disease
proteins is critical for the pathology of HD and other
neurological disorders [8,25-29]. Because these disease
proteins progressively accumulate in neurons in HD
and other diseases, clearance of these proteins is
obviously key for preventing their neurotoxicity. The
basal level of IL-1RI signaling may facilitate the clear-
ance of mutant htt.

Although the deleterious role of IL-1 in acute brain
injury has been firmly established in the vast majority of
experimental models under inflammatory conditions, IL-1
can also regulate neuronal function under normal condi-
tions [30-32]. This regulatory function is found to range
from neurotrophic factors-like activity [33] to modulatory
action on ion channels [31]. Our studies suggest that the
lack of such neuromodulatory functions from IL-1RI can
promote the neuronal toxicity of mutant htt. A second
possibility is that IL-1 provides neuroprotection under
specific experimental conditions (preconditioning), as IL-1
alone given prior to major lesions results in better out-
comes, and the administration of IL-1RIa after precondi-
tioning lesions reduces the resistance to injury [34]. The
increased accumulation of mutant htt in striatal tissues in
the absence of IL-1RI suggests that the basal activity of
IL-1RI could regulate the normal function of the ubiquitin
proteasome system and autophagy, both of which are
important for removing misfolded proteins. Furthermore,
the increased GFAP staining in N171-82Q mice [23] sug-
gests that neuronal expression of mutant htt can increase
the number of reactive astrocytes. Because IL-1RI in neu-
rons mediates neuronal excitability, whereas IL-1RI in
astrocytes may mediate the neuronal protective effects
under hostile conditions [35], another possibility is that a
lack of IL-1RI in glial cells may attenuate the protective
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Figure 3 Increased GFAP staining in the striatum of HD-IL1R-/- mice. (A) EM48 immunofluorescent staining of the brain cortex and striatum
of HD-IL1R+/- and HD-IL1R-/- mice showing the selective increase of GFAP staining in the striatum of HD-IL1R-/- mice. (B) High-magnification
micrographs (63x) showing reactive glial cells with intense GFAP (red) in neuronal cells that also display mutant htt staining (green) in the
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effects of IL-1 on the neuronal toxicity of mutant htt. In
most HD mouse models, overt neurodegeneration and
apoptosis are not observed. Thus, neuronal dysfunction
rather than neuronal loss is more important for neurologi-
cal symptoms seen in HD mice. Normal glial function
is critical for preventing neurodegeneration, and the

expression of mutant htt and other misfolded proteins in
glial cells can lead to neurological symptoms in transgenic
mice [36,37]. Thus, the findings of our study suggest that
altering IL-1 signaling as a means of therapy for HD must
take into account both its protective and destructive
effects.
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Figure 4 Western blot analysis of the expression of mutant htt
and GFAP in HD mice. Tissue extracts from the cortex (Ctx) and
striatum (Str) of HD-IL1R+/- and HD-IL1R-/- mice were subjected to
western blotting with EM48. Aggregated htt is presented in the
stacking gel (bracket). Soluble mutant htt is indicated by arrows.
Note that htt aggregates and soluble mutant htt are more
abundant in the HD-IL1R-/- mouse striatum. The same blot was also
probed with antibodies to GFAP and tubulin, revealing an increase
of GFAP in the HD-IL1R-/- mouse striatum as well.
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