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Chronic treatment with fluoxetine for more than
6 weeks decreases neurogenesis in the
subventricular zone of adult mice

Koji Ohira'?, Tsuyoshi Miyakawa'**"

Abstract

Background: Recent studies indicate that chronic treatment with serotonergic antidepressants upregulates adult
neurogenesis of the dentate gyrus (DG). In contrast, some studies claimed that there was very little alteration of
neurogenesis in the subventricular zone (SVZ) by the antidepressants. Since almost all of those studies treated
animals with drugs for 2 to 4 weeks as chronic treatment models of antidepressants, it is possible that
antidepressant treatments for longer periods would affect adult neurogenesis in the SVZ.

Results: In the present study, we examined the effects of long-term (up to 9 weeks) administration of fluoxetine
(FLX), a selective serotonin reuptake inhibitor, on cell proliferation and survival in the DG and the SVZ of adult
mice. As reported previously, in the DG of mice treated with FLX for 3, 6, or 9 weeks that were also injected with
5-bromodeoxyuridine (BrdU) in the last 3 days before perfusion, the numbers of Ki67- and BrdU-positive cells,
which are cell proliferation markers, were significantly upregulated even at 3 weeks after the onset of the FLX
treatments, and these increases were sustained in mice treated with FLX for 9 weeks. On the other hand, in the
SVZ, we found a small, insignificant decrease in the numbers of Ki67- and BrdU-positive cells at 3 weeks, followed
by highly significant decreases in the numbers of Ki67- and BrdU-positive cells at both 6 and 9 weeks. Furthermore,
among olfactory newly generated cells that survived for 3 weeks after BrdU injection, the number of new cells was
decreased at 9 weeks of FLX treatment.

Conclusions: These results demonstrate that long-term (more than 6 weeks) treatment with FLX has the opposite

decreased adult neurogenesis in the SVZ.

effect on neurogenesis in the SVZ than it does in the DG. The results also suggest that the decrease in
neurogenesis in the SVZ might be involved in some aspects of the drugs’ therapeutic effects on depression. In
addition, our findings raise the possibility that some of the side effects of antidepressants might be mediated by

Background

It has been accepted that adult neurogenesis occurs in
two regions, the hippocampal dentate gyrus (DG) and
the anterior subventricular zone (SVZ), of the healthy
adult mammalian brain throughout life [1]. Currently, a
variety of factors that can modulate neurogenesis in
these regions have been identified: drugs [2], exercise
[3], environmental enrichment [4], pregnancy [5], and
stroke upregulate neurogenesis [6], whereas stress [7]
and aging [8] downregulate it.
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Among the drugs that modulate adult neurogenesis,
selective serotonin reuptake inhibitors (SSRIs) are the
most-studied chemicals. Chronic treatment with SSRIs
upregulates neurogenesis in the DG of the adult hippo-
campus [2,9], and this increase in neurogenesis seems to
exert the antidepressant effects of SSRIs [9]. Increased
extracellular serotonin (5-hydroxytryptamine, 5-HT) by
SSRIs upregulates neurogenesis by increasing the prolif-
eration of precursor cells [10] and cell survival [11]. 5-
HT also gives rise to the upregulation of expression of
neurotrophins, such as BDNF, which may stimulate dif-
ferentiation and the survival of neurons [12]. Addition-
ally, we have shown that fluoxetine (FLX), an SSRI, has
the ability to alter the state of dentate granule cells.
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Chronic treatment with FLX can drastically reverse the
established state of neuronal maturation in adult hippo-
campal granule cells [13], in a process called “dematura-
tion”, in which the cells display similar features to
immature dentate gyrus of the mice heterozygous for
the alpha-isoform of calcium/calmodulin-dependent
protein kinase II in gene expression and electrophysiol-
ogy [14]. It remains unclear whether or not dematura-
tion of mature granule cells provides a therapeutic
benefit for major depression and/or for side effects of
FLX.

As described above, a considerable number of reports
concerning the effects of FLX on hippocampal neuro-
genesis are available. In contrast, there are only a few
reports on the effects of FLX on neurogenesis in the
SVZ [2,9,10,15-18]. Almost all of the studies in the lit-
erature have revealed no influence of FLX on neurogen-
esis in the SVZ. In the experiments, the authors
administered FLX for 2 to 4 weeks as a chronic treat-
ment model, and the time courses that the authors used
in the experiments on neurogenesis in the SVZ were the
same as those in the DG [2,9,10,15-18]. Considering
that 5-HT-containing fibers and 5-HT receptor subtypes
can be detected in the SVZ [19] and that a pharmacolo-
gical experiment with agonists and antagonists of 5-HT
receptor subtypes suggested that 5-HT regulates neuro-
genesis in the SVZ [19], we hypothesized that FLX has a
late-onset effect on neurogenesis in the SVZ. In the pre-
sent study, to test this hypothesis, we administered FLX
into adult mice for up to 9 weeks to examine whether
or not FLX treatment affected neurogenesis in the SVZ.

Results

Chronic treatment with FLX has opposite effects on the
regulation of cell proliferation in the DG than in the SVZ
Cell proliferation in both the DG and SVZ was determined
by immunohistochemical detection of Ki67, a nuclear pro-
tein expressed during all phases of the cell cycle, and 5-
bromodeoxyuridine (BrdU), a thymidine analogue that is
incorporated into DNA during the S-phase of the cell
cycle. In the analysis of cell proliferation with BrdU treat-
ment, mice were killed 24 h after a single BrdU injection
on each of the last 3 days (Figure 1A) [20].

In the DG, neural progenitor cells exist near the bor-
der between the hilus and the DG granule cell layer.
Neuroblasts generated in the subgranular zone migrate
radially a short distance into the granule cell layer and
are integrated into the deepest portion of that layer,
where they differentiate into granule cells. In this experi-
ment, each mouse was given BrdU during the last 3
days before sacrifice. Since types 1 and 2a progenitor
cells were labeled by BrdU [1], both Ki67-positive and
BrdU-positive cells were observed around the subgranu-
lar zone. As shown in Figure 2A and 3A, almost all
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Figure 1 Experimental designs. (A) For cell proliferation studies,
mice were killed 24 h after a single BrdU injection on each of the
last 3 days in each administration period of FLX. (B) For
neurogenesis studies, mice were killed 3 weeks after days of BrdU
injections.

Ki67-positive and BrdU-positive cells were scattered in
the subgranular zone and at the bottom of the granule
cell layer. Significant increases in the numbers of Ki67-
positive (Figure 2C; sham vs. FLX P = 0.00929, control
vs. FLX P = 0.00491) and BrdU-positive cells (Figure
3C; sham vs. FLX P = 0.00386, control vs. FLX P =
0.00891) were already detected at 3 weeks. Increased
numbers of Ki67-positive and BrdU-positive cells in the
DG of mice treated with FLX rose slightly at 6 weeks
(Ki67: sham vs. FLX, P = 0.00131, control vs. FLX P =
0.00233; BrdU: sham vs. FLX P = 0.00146, control vs.
FLX P = 0.00051) and were sustained up to 9 weeks
(Ki67: sham vs. FLX, P = 0.00083, control vs. FLX P =
0.00072; BrdU: sham vs. FLX P = 0.00073, control vs.
FLX P = 0.00041). These results were well compatible
with the obvious reports demonstrating that FLX’s effect
on the proliferation of neural progenitor cells appears
by 3 weeks [2,10,11,15,17]. Such alterations of the num-
bers of Ki67-positive and BrdU-positive cells were not
seen in the sham-operated or control pellet-adminis-
tered mice during the experimental period.

In the SVZ, type-A cells (neuroblasts) are born
throughout the SVZ, migrate in chains toward the olfac-
tory bulb, and differentiate into granular or periglomer-
ular interneurons [21]. The chains of type-A cells are
ensheathed by type-B cells (SVZ GFAP-positive cells)
[22,23]. Some type-B cells have been reported to work
as neural stem cells. Type-C cells are clusters of rapidly
dividing immature cells on the migration pathway
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Figure 2 Effects of FLX on the numbers of Ki67-positive cells in the DG and the SVZ. (A) Cell proliferation in the DG. Ki67-positive
structures, which are the nuclei of proliferating cells, stand in a line between the granule cell layer and the hilus. FLX treatments upregulated
Ki67-positive cells in all periods, compared with sham-operated and control pellet-administered mice. (B) Cell proliferation in the SVZ. The
numbers of Ki67-positive cells in FLX-treated mice were decreased at 6 and 9 weeks, but not at 3 weeks. The numbers of Ki67-positive cells in
the DG (C) and the SVZ (D) are quantified. The values are means + SEM of 4-5 animals in each group. ** p < 0.01 significantly different from the
sham-operated group. Gr, granule cell layer; Hi, hilus; Lv, lateral ventricle; Mo, molecular layer; Se, septum; St, striatum.
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Figure 3 Effects of FLX on the numbers of BrdU-positive cells in the DG and the SVZ. (A) BrdU-positive structures, which are the nuclei of
proliferating cells and early postmitotic immature granule cells, stand in a line between the granule cell layer and the hilus. FLX treatments
upregulated BrdU-positive cells in all periods, compared with sham-operated and control pellet-administered mice. (B) BrdU-positive cells in the
SVZ of FLX-treated mice. The numbers of BrdU-positive cells in the DG (C) and the SVZ (D) are quantified. The values are means + SEM of 4-5
animals in each group. ** p < 0.01 significantly different from sham-operated group. Gr, granule cell layer; Hi, hilus; Lv, lateral ventricle; Mo,
molecular layer; Se, septum; St, striatum.
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physically located between type-B and type-A cells [23].
Thus, the SVZ neurogenic lineage is type-B cell (stem
cell) > type-C cell (progenitor cell) > type-A cell (neuro-
blast). In this study, labeling of SVZ neurogenesis on the
last 3 days before sacrifice can detect type-B and type-C
cells located in the SVZ [1]. In addition, type-C cells
migrate out from the SVZ. Thus, it is proven that BrdU-
positive cells in the SVZ are almost certainly proliferating
type-B and type-C cells. Actually, we found that both
Ki67-positive (Figure 2B) and BrdU-positive cells (Figure
3B) were uniformly distributed in the SVZ of mice trea-
ted with FLX for 3 weeks. However, subtle though insig-
nificant decreases in the numbers of Ki67-positive
(Figure 2D; sham vs. FLX P = 0.494, control vs. FLX P =
0.207) and BrdU-positive cells (Figure 3D; sham vs. FLX
P = 0.159, control vs. FLX P = 0.255) were observed.
Interestingly, unlike the upregulation effect of FLX on
cell proliferation in the DG, the treatments of FLX for
more than 6 weeks significantly reduced the numbers of
Ki67-positive (6 w: sham vs. FLX P = 0.00049, control vs.
FLX P = 0.00255; 9 w: sham vs. FLX P = 0.00046, control
vs. FLX P = 0.00189) and BrdU-positive cells (6 w: sham
vs. FLX P = 0.00301, control vs. FLX P = 0.00179; 9 w:
sham vs. FLX P = 0.00012, control vs. FLX P = 0.00111)
in the SVZ, suggesting that the abilities of stem cells/pro-
genitor cells to renew themselves and to produce daugh-
ter cells were downregulated by the FLX treatments. The
downregulation of cell proliferation seemed to take place
through the SVZ. Cell proliferation in the dorsal region
between the corpus callosum and the striatum was
reduced to a similar extent in the ventral region of the
SVZ (Figure 2B, 3B).

Chronic treatment with FLX has opposite effects on
neurogenesis between the DG and the SVZ

The above data indicate that the FLX treatment has
opposite effects on cell proliferation between the DG
and the SVZ. Next, to determine whether or not the
FLX treatment influenced neurogenesis in the DG and
the SVZ, new cells were examined if they had survived a
3-week post-BrdU injection period during the FLX
treatments for 6 and 9 weeks (Figure 1B). In this analy-
sis, to detect new dentate granule cells, we used a dou-
ble staining with BrdU and a neuronal marker, NeuN.
We selected NeuN because the expression of NeuN is
not affected by the FLX treatment [13]. In contrast, a
mature granule cell marker, calbindin, has been shown
to be greatly reduced by FLX administration [13].

As expected from the above results, in the DG the num-
ber of BrdU/NeuN-double-positive cells was significantly
increased by 6 and 9 weeks of chronic treatment com-
pared with corresponding sham-operated and control
groups (Figure 4; 3-6 w: sham vs. control P = 0.00468,
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control vs. FLX P = 0.00813; 6-9 w: sham vs. FLX P =
0.00050, control vs. FLX P = 0.00083). We found no differ-
ence in the numbers of BrdU/NeuN-double-positive cells
between the 3-week period of 3-6 weeks and that of 6-9
weeks of FLX treatment (Figure 4D; 3-6 w vs. 6-9 w P =
0.837). This suggests that FLX’s effect on neurogenesis in
the DG reaches a plateau at 3 weeks into FLX treatment.

In the SVZ-olfactory-bulb system, new neurons gener-
ated in the SVZ migrate to the olfactory bulb through
the rostral migration stream and differentiate into gran-
ule cells or periglomerular cells [1]. To determine
whether or not FLX treatment affected neurogenesis in
the SVZ-olfactory-bulb system, we analyzed the altera-
tion of the number of BrdU/NeuN-double-positive cells
in the olfactory bulb. In the 3-week period of 3-6 weeks
after FLX administration, we detected few significant
changes in the numbers of BrdU/NeuN-double-positive
cells in the olfactory bulb (Figure 5A, D; sham vs. FLX
P = 0.328, control vs. FLX P = 0.108). In the analysis of
mice that had been treated with FLX for 9 weeks and
that had received 3-day injections of BrdU at 3 weeks
before sacrifice, we found a significant reduction in the
number of BrdU/NeuN-double-positive cells (Figure 5B-
D; sham vs. FLX P = 0.00654, control vs. FLX P =
0.00264). This result demonstrates that FLX treatment
decreases the number of new neurons in the olfactory
bulb.

FLX’s effect on calbindin expression in dentate granule
cells

As shown above, FLX’s effect on neurogenesis in the
SVZ was different from that in the DG depending on
the duration of FLX treatment. Our group previously
showed that chronic treatment with FLX reduces the
expression of calbindin in the granule cells of the DG
[13,14]. Thus, to examine whether or not FLX adminis-
tration affects the dematuration of the DG depending
on the duration of FLX treatment, we performed an
immunohistochemical analysis of calbindin expression
in the DG. Similarly depressed expressions of calbindin
were clearly observed in the mice treated with FLX for
3, 6, and 9 weeks (Figure 6A). These decreases in calbin-
din expression were found in all mice treated with FLX
for each duration (Figure 6B). These results suggest that
FLX’s effect on dematuration on the DG was unrelated
to the duration of the treatment periods up to 9 weeks.

Discussion

The present findings show that chronic treatment with
FLX for more than 6 weeks can reduce cell proliferation
in the SVZ, resulting in the downregulation of the num-
ber of new neurons in the olfactory bulb. In the DG, on
the other hand, FLX treatment consistently increased
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Figure 4 Effects of FLX on the numbers of BrdU- and NeuN-positive cells in the DG. (A) 3-week survival of new neurons in the DG of mice
treated with FLX for 6 weeks. (B) 3-week survival of new neurons in the DG of mice treated with FLX for 9 weeks. Tissue sections in both A and
B were double-stained with anti-BrdU (green) and anti-NeuN (magenta). The higher magnifications of the boxed-in areas in (B) are displayed in
(Q). (C) High-power images of BrdU and NeuN double-positive cells (arrowheads) in the DG in the control (top) and FLX-treated mice (bottom).
(D) Quantification of BrdU and NeuN double-positive cells in the DG. The values are mean + SEM of 4-5 animals in each group. ** p < 0.01
significantly different from sham-operated group. Gr, granule cell layer; Hi, hilus; Mo, molecular layer.
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Figure 5 Effects of FLX on the numbers of BrdU- and NeuN-positive cells in the olfactory bulb. (A) 3-week survival of new neurons in the
olfactory bulbs of mice treated with FLX for 6 weeks. (B) 3-week survival of new neurons in the olfactory bulbs of mice treated with FLX for 9
weeks. Tissue sections in both A and B were double-stained with anti-BrdU (green) and anti-NeuN (magenta). The higher magnifications of the
boxed-in areas in (B) are displayed in (C). (C) High power images of BrdU and NeuN double-positive cells (arrowheads) in the olfactory bulbs in
the control (top) and FLX-treated mice (bottom). (D) Quantification of BrdU and NeuN double-positive cells in the olfactory bulb. The values are
means + SEM of 4-5 animals in each group. ** p < 0.01 significantly different from sham-operated group. Ex, external plexiform layer; Gr, granule
cell layer; Gm, glomerular layer; Su, subependymal zone.

cell proliferation and new neurons for up to 9 weeks. Effects of chronic administration of FLX on cell

These findings suggest that long-term treatment with  proliferation and neurogenesis

FLX, such as that lasting more than 6 weeks, has an  Our data provided novel evidence that chronic FLX
opposite effect on cell proliferation in the SVZ than it  treatment for more than 6 weeks reduced cell prolifera-
does in the DG. tion and neurogenesis in the SVZ (Figure 2, 3, 5). The
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Mo, molecular layer.

Figure 6 Expression of calbindin in the DG of FLX-treated mice. (A) Decreased expression of calbindin in FLX-treated mouse DG. Clear
reductions in calbindin were found even at 3 weeks after FLX administration and sustained during FLX treatment. Control pellets did not affect
calbindin expression, which was at a comparable level to the sham-operated mice. (B) Calbindin expression in the DG of mice treated with FLX
for 6 weeks. Note that remarkable decreases in FLX expression were observed in all mice that had received FLX. Gr, granule cell layer; Hi, hilus;

300 pm

previous studies treated mice with FLX for time periods
ranging from 1 day to 4 weeks, while we medicated
mice with FLX for longer periods of up to 9 weeks. This
prolonged period is critical for the reduction of cell pro-
liferation and neurogenesis in the SVZ. Currently, the

mechanism underlying late-onset reduction of cell pro-
liferation and neurogenesis in the SVZ remains unclear.
There are a few possibilities, as follows.

It could be postulated that the expressional changes of
5-HT receptors are a possible mechanism for the
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reduction of cell proliferation and neurogenesis in the
SVZ during the treatment periods. To date, a number of
5-HT receptors have been identified, and some subtypes
may be involved in adult neurogenesis in the SVZ, con-
sidering the evidence from pharmacological studies and
the expression data of the receptors [24-28]. For exam-
ple, treatment with ketansenin, a 5-HT2C receptor ago-
nist, increases cell proliferation in the SVZ [19]. In
contrast, treatment with sumatriptan, a 5-HT1B recep-
tor agonist, decreases cell proliferation in the SVZ [19].
Thus, FLX-dependent altered and balanced expressions
of the 5-HT receptors might become oriented toward
the decrease in cell proliferation and neurogenesis in
the SVZ. In light of cell proliferation and neurogenesis
in the DG, the strong expression of the 5-HT1A recep-
tor can be detected, and 8-hydroxy-2-(di-#-propylamino)
tetralin, a 5-HT1A receptor agonist, elevates cell prolif-
eration in the DG [11,19]. Since the expression level of
the 5-HT1A receptor in the hippocampus cannot be
altered by 3 weeks of FLX treatment [29], the stable
enhancement of cell proliferation and neurogenesis may
be detected in the DG. Thus, there is a difference in
response to 5-HT between neural stem cells and pro-
genitor cells in the DG and the SVZ, and the difference
may be based on the expressions of 5-HT receptors.

Another possibility is the direct actions of FLX to
nicotinic acetylcholine receptors (nAChRs). FLX has
been shown to be an antagonist of nAChRs [30].
nAChRs play important roles in the enhancement of cell
proliferation of neural stem cells and precursor cells
[31]. Interestingly, the administration of nicotine
increases cell proliferation in the SVZ of adult rats but
not in the DG, and this effect is mediated by the induc-
tion of FGF-2 [32]. In contrast to the role of FGF-2 on
cell proliferation in the SVZ, the apparent absence of an
FGE-2 effect in the DG has been reported [33]. Thus,
FLX treatments decrease FGF-2 expression via the inhi-
bition of nAChRs, which may result in the reduction of
cell proliferation and neurogenesis in the SVZ.

The possibility of mechanisms other than those
described above cannot be excluded, and further study
will be necessary to determine the mechanisms underly-
ing the delayed reduction of cell proliferation neurogen-
esis in the SVZ.

Implications of FLX treatment for depression

Citalopram, an SSRI, and clomipramine, a tricyclic anti-
depressant, induces a decrease in olfactory sensitivity
after 3 weeks of treatment in mice [34]. The antidepres-
sant rolipram, a monoamine oxidase inhibitor, is shown
to impair the accuracy of mice in detecting odorants
[35]. Considering that there is a positive correlation
between the loss of olfactory function and reduced
olfactory bulb volume [36,37], the loss of olfactory
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functions by treatment with antidepressants might be
attributable to the reduction in new neurons in the
olfactory bulb, which in turn is due to the decreases in
both cell proliferation and neurogenesis in the SVZ.
Also, some of the side effects of antidepressants might
be mediated by decreased adult neurogenesis in the
SVZ. A recent human case study showing that patients
with major depression detect an unfavorable and intol-
erable smell about 7 weeks after the administration of
citalopram may be related to the decrease in new neu-
rons of the olfactory bulb [38]. In the animal models
whose neurogenesis in the SVZ is ablated, it is found
that the animals display a diminished behavioral fear
response to conditioned odor cues [39], but their olfac-
tory discrimination and long-term olfactory memory are
not affected [39-41].

These data suggest that the decrease in neurogenesis
in the SVZ might affect the emotional behaviors of ani-
mals via functional alterations of the circuits of the cen-
tral nervous system as well as the olfactory bulb. The
olfactory system forms a part of the limbic region that
contributes to the emotional and memory components
of animal behaviors. These areas, the frontal cortex-hip-
pocampus-amygdala circuit, also seem to be dysfunc-
tional in patients with major depression [42,43]. The
olfactory bulb sends inhibitory projections to the amyg-
dala, which is involved in the processing of emotion,
such as fear, sadness, and aggression [44]. Dysfunction
of the olfactory bulb might not only reduce olfactory
sensitivity but also increase fear, sadness, and aggression
by disinhibiting the amygdala [45,46]. Moreover, treat-
ments with SSRIs seem to be a cause of aggression and
violence as side effects [47]. The reduction of neurogen-
esis in the SVZ, which is shown in the present study,
might be associated with certain side effects of SSRIs.
Alternatively, the decrease in adult neurogenesis in the
SVZ also might be involved in the therapeutic effects of
SSRIs on major depression. The olfactory bulb-ablated
animals have been reported to show markedly increased
exploratory behaviors, such as ambulation and rearing
[48], and spend significantly more time exploring a
novel object into the center of the open field [49], sug-
gesting that the reduced function of olfactory bulb may
decrease the anxiety of the animals. Further researches
are needed to clarify the functional and behavioural sig-
nificances of the reduced SVZ adult neurogenesis caused
by the chronic treatment of FLX.

There is a straightforward relationship between FLX
treatment and the reduction of cell proliferation and
neurogenesis in the SVZ of animals in healthy condition.
However, there is a discrepancy in treatments with anti-
depressants to animal models of major depression. Bul-
bectomized rats, an animal model of major depression,
have shown significant decreases in cell proliferation
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and neurogenesis in both the DG and the SVZ [50].
Contrary to the expectation that cell proliferation and
neurogenesis would decrease by FLX treatment in
depression model animals, treatment with imipramine, a
tricyclic antidepressant, for 15 days normalized the
reduction of neurogenesis in the SVZ in bulbectomized
rats [50]. Furthermore, although chronic stress, which
can be induce the onset of major depression, decreased
the number of neural stem cells in the SVZ of adult
mice, FLX treatment for 3 weeks reverses the decrease
in the number of neural stem cells in the SVZ [51].
These reports suggest that quite opposite phenomena
occur in depression model animals medicated with FLX
compared with healthy control animals administered
FLX. Although the mechanism that explains these dis-
crepancies is unclear at present, we can speculate on
two possibilities: 1) the alterations in the sensitivities of
neural stem cells in the SVZ to 5-HT, containing func-
tional and expressional changes of 5-HT receptors,
transporters, and 5-HT signal transduction pathways;
and 2) the direct influence of FLX on neural stem cells
and progenitor cells, such as expressional changes of
nAChRs in neural stem cells and progenitor cells. Such
alterations might explain the different effects of antide-
pressants between control and model animals and also
between major depression patients and healthy subjects.

Conclusions

We have provided the first evidence for the the FLX-
dependent decrease in adult neurogenesis in the SVZ.
The reduction in neurogenesis in the SVZ by FLX treat-
ment might be involved in some of the therapeutic
effects on depression and side-effects of FLX, such as
aggression and violence.

Methods

Antidepressant treatment

Adult male C57BL/6] mice (4-5 mice for each group
and each time point; Charles River Laboratories, Japan,
Inc., Shiga, Japan), which were 8 weeks old at the start
of the experiments, were used for all of the experiments.
All animal experiments were approved by the Institu-
tional Animal Care and Use Committee of Fujita Health
University, based on the Law for the Humane Treat-
ment and Management of Animals (2005) and the Stan-
dards Relating to the Care and Management of
Laboratory Animals and Relief of Pain (2006). Every
effort was made to minimize the number of animals
used. Animals were group-housed (12 h light/dark
cycle) with free access to food and water. After 1 week
of habituation to mouse cages, the mice were subcuta-
neously administered either an antidepressant or vehicle
pellets (Innovative Research of America, Sarasota, FL) in
the dorsal interscapular region of mice [52,53]. The
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drug pellets contained 7.245 mg and 20.7 mg of fluoxe-
tine; these dosages were calculated so that a mouse with
a body weight of 23 g received fluoxetine at 15 mg/kg/
day for 21 days and 60 days, respectively (Figure 1). We
have chosen the concentration of FLX, since serum FLX
levels in mice receiving 15 mg/kg/day chronic FLX have
been shown to be comparable to those in human
patients receiving 20-80 mg FLX (Prozac) per day [54].
The pellets without fluoxetine were administered to
mice designated as control mice. In addition, sham-
operated mice, which were operated on but did not
receive any pellets, were used.

Since the mice that we used were 8 weeks old at the
start of the experiments, their body weight increased
during the experiments. We then determined the actual
dose of FLX corrected for body weight after 9 weeks of
FLX treatment. The body weight in each group was as
follows: sham-operated mice, 27.8 + 0.317 g (n = 5);
control pellet-administered mice, 27.3 + 0.521 g (n = 5);
FLX pellet-administrated mice, 26.7 = 0.850 g (n = 5).
Using these data, we calculated the actual dose of FLX
as described below, 1000 g/[body weight (g) after 9
weeks of FLX treatment] x 0.345 mg (amount of FLX
released from the 60-day pellet/day) = 13.0 + 0.407 mg/
kg/day. This value was within the plasma FLX levels for
patients taking 20-80 mg Prozac per day [54].

BrdU labeling

BrdU (Sigma, St. Louis, MO) stock solution was pre-
pared in phosphate-buffered saline (PBS), (pH 7.2, 0.1
M) with 0.007 N NaOH at 20 mg/ml. After a certain
period, the animals were injected intraperitoneally with
BrdU (100 mg/kg body weight) every 24 h for 3 days to
label newborn neurons (Figure 1).

Immunohistological analysis
Mice were deeply anesthetized and transcardially per-
fused with 4% paraformaldehyde in 0.1 M phosphate
buffer, pH 7.4. The brains were dissected, immersed
overnight in the same fixative, and transferred to 30%
sucrose in PBS for at least 3 days for cryoprotection.
Brain samples were mounted in Tissue-Tek (Miles,
Elkhart, IN), frozen, and cut into 50-pm-thick coronal
sections using a microtome (CM1850, Leica Microsys-
tems, Wetzlar, Germany). Sections were stored in PBS
containing sodium azide (0.05%, w/v) at 4°C until use.
For BrdU staining, sections were incubated at 4°C for 10
min in 0.1 N HCl and then at 37°C for 30 min in 2 N HCL.
Sections were washed twice for 5 min in PBS and then
blocked in 0.2 M glycine in PBS at room temperature for
at least 2 h. After washing in PBS for 1 h, all sections were
preincubated with PBS-DB (4% normal donkey serum
[Vector Laboratories, Burlingame, CA] and 1% BSA in
PBS) for 2 h at room temperature. The sections were
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incubated at 4°C for 48 h or at room temperature over-
night with the indicated primary antibodies. We used the
following primary antibodies: mouse monoclonal anti-Ki-
67 (1:20; BD Pharmingen, Franklin Lakes, NJ), mouse
monoclonal anti-NeuN (1:200; Millipore, Billerica, MA),
and rat monoclonal anti-BrdU (1:100; Abcam, Cambridge,
UK). After washing in PBS for 1 h, the sections were incu-
bated at room temperature for 1 h with the following sec-
ondary antibodies: anti-mouse IgG Alexa 488 (1:200;
Molecular Probes, Eugene, OR), anti-rat IgG Alexa 594
(1:200; Molecular Probes). After washing in PBS contain-
ing Hoechst 33258 for nuclear counterstaining for 1 h, the
sections were mounted on glass slides coated with 3-ami-
nopropyltriethoxysilane and embedded with Permafluor
(Thermo Shandon, Pittsburgh, PA). We used a confocal
laser-scanning microscope (LSM 700; Carl Zeiss, Gottin-
gen, Germany) to obtain images of the stained sections.

Quantification of labeled cells

A quantification analysis was performed as reported pre-
viously [55]. Briefly, analysis was performed using a con-
focal microscope equipped with a 40x objective lens
(Plan-NEOFLUAR, NA = 0.75, Carl Zeiss) and a pinhole
setting that corresponded to a focal plane thickness of
less than 1 pm. To exclude false-positives due to the
overlay of signals from different cells, randomly selected
positive cells were analyzed by moving through the
entire z-axis of each cell. Cells were counted under the
live mode of confocal scanning. Data were analyzed by
one-way ANOVA and then by Scheffe’s post hoc test.
Error bars represent SEM.
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