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Regulation of opioid receptor signalling:
Implications for the development
of analgesic tolerance
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Abstract

Opiate drugs are the most effective analgesics available but their clinical use is restricted by severe side effects.
Some of these undesired actions appear after repeated administration and are related to adaptive changes
directed at counteracting the consequences of sustained opioid receptor activation. Here we will discuss
adaptations that contribute to the development of tolerance. The focus of the first part of the review is set on
molecular mechanisms involved in the regulation of opioid receptor signalling in heterologous expression systems
and neurons. In the second part we assess how adaptations that take place in vivo may contribute to analgesic
tolerance developed during repeated opioid administration.

I. Introduction
Opiates are among the most effective analgesics known
but their clinical use is limited by severe side effects.
Some of these undesired actions including tolerance,
dependence and abuse usually appear after repeated
opioid administration, and have been linked to adapta-
tions that take place in order to counteract prolonged
opioid receptor activation [1,2]. Adaptive changes have
been described at different organizational levels within
the central nervous system, ranging from receptor and
cellular alterations to functional modifications of differ-
ent neuronal networks [3,4]. Regulation that occurs at
the receptor level results in the progressive waning of
signalling efficacy and is known as desensitization.
Mechanisms of opioid receptor desensitization were
initially characterized in immortalized cell lines [5] but
more recent studies have extended observations to cul-
tured neurons [6-8] and animal models [9-12]. Here we
will review these findings with special focus on recent
efforts to understand how regulation of receptor signal-
ling may contribute to analgesic tolerance developed
during repeated opioid administration.

II. Opioid receptor regulation in heterologous
expression systems
Opioid receptor desensitization and endocytosis
Studies in immortalized cell lines have shown that like
for many other G protein-coupled receptors (GPCRs),
opioid receptor activation involves a series of confor-
mational changes [13,14] that trigger signalling and
regulation. Regulatory steps usually start with phos-
phorylation of the receptor [15,16] followed by barres-
tin recruitment [17,18] and disruption of receptor
signaling via G-protein coupled effectors [19,20]. In
addition, since arrestins bind to the coat structure of
clathrin-coated pits [21,22] a great majority of ligands
that promote functional desensitization also enhance
sequestration. The frequent association of these two
processes was initially taken as an indication that
opioid receptor internalization and desensitization
were causally linked [23,24], an interpretation that was
reinforced by studies showing that morphine failed to
induce both, internalization [25,26] and desensitization
[27,28]. Moreover, given that morphine induces more
analgesic tolerance than agonists capable of triggering
a full regulatory response [29-31], its high potential
for tolerance was initially considered as the conse-
quence of cellular adaptations to counteract sustained
signaling by receptors that were unable to desensitize
or internalize [23,25,27]. However, morphine’s failure
to trigger regulation of receptor signaling cannot be
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extended to all systems since several reports have
shown that this drug causes barrestine recruitment,
desensitization and endocytosis of mu (MORs) [32-35]
and delta (DORs) [35,36] opioid receptors. Moreover,
animal studies have confirmed that receptor regulation
is essential for morphine tolerance to develop since
transgenic mice lacking barrestin2 display enhanced,
longer lasting analgesic responses to the drug [37,38].
Based on these observations, the mechanism of mor-
phine tolerance was reconsidered and the contribution
of endocytosis re-evaluated. This alternative hypothesis
proposes barrestin-driven receptor-G protein uncou-
pling (desensitization) as the mechanism responsible
for the loss of morphine’s analgesic action, which is
in turn exacerbated by receptor failure to internalize
and undergo resensitization [38,39]. However, this
mechanism cannot be generalized to agonists that
induce internalization or even to other opioid ligands
that like morphine fail to do so. In particular, homo-
logous desensitization does not account for tolerance
induced by AR-M1000390, a low internalizing DOR
agonist [40] whose repeated administration induces
tolerance without modifying receptor ability to
activate the G protein [12]. Moreover, internalization
per se warrants neither resensitization nor absence of
tolerance. For example although SNC-80 produces
rapid internalization of DORs [41], its systemic adminis-
tration induces long lasting analgesic tolerance after a sin-
gle administration [11]. MOR activation by efficiently
internalizing ligands is also associated with progressive
loss of analgesic efficacy, although unlike SNC-80, MOR
agonists require repeated administration for tolerance to
develop [42].

Post-endocytic sorting of opioid receptors
Functional consequences of receptor internalization
cannot be fully understood without considering what
happens after sequestration. Hence, if internalization is
associated to receptor recycling, the process allows to
restore functional receptors to the membrane [43,44].
Both MORs [39] and DORs [41,45,46] have been shown
to undergo recycling that contributes to their functional
resensitization. In contrast, if the receptor is preferen-
tially directed towards the lysosomal compartment,
internalization leads to prolonged desensitization due to
its proteolytic degradation [47,48].
Factors responsible for sorting opioid receptors to

these alternative pathways are multiple, and some are
specific to each receptor subtype. An important deter-
minant of lysosomal sorting is ubiquitination [49] and
both DORs and MORs have been shown to become
ubiquitinated and degraded after stimulation. However,
while DORs are ubiquitinated within minutes of activa-
tion [48,50] MORs require various hours of stimulation

[51]. On the other hand, despite their rapid ubiquitina-
tion, DORs are not immediately degraded but may
remain withheld in the endosomal compartment [52]
for periods that may last as long as four hours of ago-
nist exposure [11,53]. The discrepancy in the time
required to undergo ubiquitination and degradation is
consistent with the fact that DOR sorting towards the
degradation path is not dependent upon ubiquitin
addition [48,54]. Instead, their trafficking to the late
endosomal compartment relies, at least in part, upon
interaction with sorting proteins of the GASP (G pro-
tein coupled receptor associated sorting protein) family
[47,54,55]. MORs also bind GASPs, but the low affinity
of this interaction seems to account for their lower
tendency to undergo lysosomal targeting and degrada-
tion as compared to DORs [47,55]. In addition, a pri-
mary sequence within the C-terminal domain of some
MOR isoforms facilitates their active targeting towards
the recycling pathway [56]. Yet this is not the only
determinant of MOR recycling since isoforms lacking
the sorting sequence may also be sent back to the
membrane after internalization [57,58]. Indeed, MORs
are also known to constitutively interact with neuronal
membrane glycoprotein M6a, which accelerates their
recycling after internalization [59]. In addition, MOR
and DOR recycling may be dynamically regulated
through receptor phosphorylation [46,60] and interac-
tions with barrestin1 and barrestin2 [61]. See Figure 1
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Figure 1 Steps involved in the homologous desensitization of
GPCRs. According to the classical model of homologous
desensitization, receptor activation by an agonist induces a series of
conformational changes that trigger receptor signalling and
regulation. The first of these regulatory steps is receptor
phosphorylation by GRK (1). Once phosphorylated receptor affinity
for barrestin increases, enhancing interaction between the two
proteins (2) and promoting internalization (3). Internalized receptors
are then directed to early/sorting endodomes where interaction
with different regulatory proteins will allow them to recycle back to
the membrane (4) or will directed towards degradation (5).
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for a schematic representation of the process of homo-
logous desensitization.

III. Regulation of opioid-mediated
responses in neurons
Studies in slices and neuronal cultures have confirmed
that neuronal MORs may undergo barrestin-dependent
internalization by full agonists like DAMGO and par-
tial agonists like morphine [6]. Importantly, internali-
zation following short term exposure to morphine
varies across different neuronal populations. In parti-
cular, while this drug induced MOR endocytosis in
striatal neurons [6] it was without effect in those of
the locus coeruleus (LC) [7,62], dorsal root ganglion
(DRG) [8] or enteric plexus [63,64]. Such differences
are not surprising since as a partial agonist internaliza-
tion by morphine is expected to be influenced by the
level and type of endocytic proteins expressed in each
neuronal subtype. In keeping with this interpretation
prolonged morphine exposure was found to enhance
dynamin expression in enteric neurons, turning the
agonist into an internalizing ligand [64].
Functional assays have revealed that receptor stimu-

lation by morphine and by more efficacious ligands are
all capable of inducing functional desensitization of
MOR-mediated neural responses. However, the rela-
tionship between internalization and loss of signaling
capacity seemed influenced by the cell type and
effector considered. In particular, although short-term
(20-30 min) exposure of DRG and LC neurons to
internalizing ligands was associated with desensitiza-
tion of channel-mediated responses, sequestration was
not necessary for desensitization to take place [7,62].
On the other hand, interfering with sequestration of
striatal MORs resulted in partial reduction of the
desensitization of cyclase responses evoked by
DAMGO and morphine [65]. Apart from distinct need
for internalization, the mechanistic basis of desensitiza-
tion seems also effector specific. In particular, N-type
Ca+2 channels in DRG neurons were shown to undergo
rapid desensitization that was not affected by
barrestin2 knockout [66] but was instead mediated by
a heterologous mechanism acting downstream of the
receptor [8,67,68]. In contrast, desensitization of G
protein activated inward rectifier K+ (GIRK) channels
in LC neurons was homologous [62], and dependent
on the combined activity of ERK1/2, G protein
receptor kinase 2 (GRK2) and arrestin2 [68]. barrestin2
was also involved in the desensitization of cyclase
responses following sustained exposure of striatal
MORs to morphine and DAMGO [65]. However, in
spite of its ability to trigger MOR regulation, exposure
to morphine induced superactivation of the
striatal cAMP cascade [69], suggesting that MOR

desensitization when associated to this effector might
not be enough to completely avoid cellular compensa-
tory mechanisms.
Information concerning post-endocytic sorting of

neuronal opioid receptors is quite limited. Studies in
DRG neurons indicate that MORs undergo constitu-
tive recycling which requires barrestin2-dependent
internalization and trafficking through a monensin
sensitive compartment [8,66]. Agonist stimulation of
these receptors induces their colocalization with Rab4
and Rab11, indicating redistribution of DRG MORs to
recycling endosomes [8]. Functional consequences of
receptor recycling have been assessed in LC neurons.
In these cells MOR desensitization by the endogenous
agonist Met-enkephalin could be reversed upon
agonist removal, resulting in complete recovery of
receptor ability to evoke GIRK channel activation
[7,70]. Interestingly, the mechanism involved in resen-
sitization was different depending on whether desensi-
tization was accompanied or not by internalization.
Indeed, when recovery took place after internalization,
resensitization was sensitive to recycling disruption by
monensin [70]. In contrast, when internalization was
blocked, desensitization and recovery could both take
place at the membrane [7], pointing to the existence
of multiple, complementary mechanisms for achieving
similar regulatory control of opioid receptor signaling.
The existence of multiple, complementary and cell-
specific regulatory responses were not necessarily
anticipated from studies in heterologous systems.
They should nonetheless be carefully considered since
they may point to the impossibility of developing a
single, universal strategy for avoiding analgesic
tolerance.

IV. In vivo regulation of opioid receptor signaling
A critical question in understanding long term effects of
opioids is whether regulatory responses described in cel-
lular models are also triggered in vivo, and if so, what
are their behavioral correlates. Insight into these issues
has been obtained by assessing regulatory responses
triggered by the release of endogenous opioids or fol-
lowing exogenous administration of different opioid
receptor agonists.

Opioid receptor regulation by release
of endogenous opioids
The release of endogenous opioid peptides during nox-
ious stimulation may produce phosphorylation [10,71]
and internalization [72,73] of central and peripheral
MORs. These regulatory responses were triggered by
stimuli that lead to development of persistent pain
syndromes [10,72,73] but not by acute noxious stimu-
lation [74], a difference that has been attributed to
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higher receptor occupancy in the former than the lat-
ter. Consistent with this interpretation, acute painful
stimuli may provoke MOR internalization if the stimu-
lation is accompanied by administration of peptidase
inhibitors that prevent rapid degradation of the
released opioids [75].
From a functional point of view MOR phosphoryla-

tion following sciatic nerve ligature was correlated
with desensitization of receptor ability to stimulate the
G protein, development of cyclase superactivation,
appearance of thermal hyperalgesia and reduced
analgesic response to exogenous opioids [10,76]. The
use of b-endorphin knock-out mice confirmed a causal
link between MOR phosphorylation by this peptide
and reduced responsiveness to exogenous ligands since
sciatic nerve ligature in knock-out animals failed to
produce both [10]. On the other hand, regulatory
mechanisms triggered by endogenous opioids during
the course of chronic inflammatory pain seem to have
a protective effect against morphine tolerance. Indeed,
depletion of opioids from white blood cells of rats that
had received an intra-plantar injection of complete
Freund’s adjuvant (CFA) prevented MOR sequestration
in primary afferents. Together with inhibition of
sequestration, opioid depletion was associated with the
exacerbation of cyclase superactivation and analgesic
tolerance produced by intraplantar administration of
morphine [72].

Opioid receptor regulation by administration
of opioid agonists
As mentioned in previous sections, studies character-
izing homologous desensitization of opioid receptors
have prompted two alternative hypotheses in order to
explain morphine tolerance. Although not necessarily
compatible at other levels, both conceptualizations
agree upon the fact that receptor internalization may
have a protective effect against the loss of morphine’s
analgesic efficacy. This possibility has been directly
assessed by Kim et al, 2008 [77] who used a knock-in
mouse model in which wild-type MORs were replaced
with a mutant receptor capable of undergoing rapid
morphine-dependent sequestration [27]. What the
authors report is that a 5 day treatment which almost
abolished morphine analgesia in wild type mice pro-
duced no tolerance in knock-in animals [77]. The
idea that MOR internalization negatively influences
the development of tolerance is also supported by
experiments carried out in wild type animals where
the rate at which analgesic efficacy diminishes is fas-
ter for low internalizing opiates like morphine or her-
oin [38,77-79] than for efficiently internalizing
agonists like DAMGO [80], etorphine [38,81] or
methadone [38,77]. However, the protective effect of

internalization is limited, since treatments of 7 days
or longer will all eventually induce analgesic
tolerance [37,78,81,82] independent of the degree of
internalization triggered by the agonist. Although
part of this effect may be accounted for by adapta-
tions that take place at synaptic and network levels
[4], receptor adaptations are also involved since
tolerance is paralleled by receptor desensitization
[37,78,81-84] and down regulation [81,85]. Thus, if
the intent is to eventually harness opioid receptor
regulation as a means of prolonging opioid analgesia,
it will be necessary to look beyond internalization.
Characterization of the post-endocytic mechanisms
whereby in vivo sequestration provides transient pro-
tection from tolerance as well as a better understand-
ing of the causes leading to down-regulation and
delayed loss of analgesic efficacy, seem essential steps
for the rational development of novel, longer acting
opioid analgesics.
The relationship between endocytic trafficking and

analgesia is also being actively pursued for DORs. A
report by Pradhan et al, 2009 [11] has recently estab-
lished that a single injection of SNC-80 produced in
vivo internalization of DORs which was paralleled by
the development of acute analgesic tolerance. In
contrast, the administration of an equianalgesic dose
of AR-M1000390 produced neither internalization nor
modification of subsequent analgesic responses. Based
on these observations it would be tempting to specu-
late that acute tolerance to DOR agonists is deter-
mined by internalization. However, this interpretation
is ruled out by results obtained with deltorphin II,
whose administration is free of acute tolerance [86]
despite its high internalization capacity [87]. The rea-
son for the distinct tolerance potential displayed by
SNC-80 and deltorphin II remains to be elucidated,
but analysis of post-endocytic trafficking could shed
some light onto the issue. Studies in immortalized
cell lines indicate that internalization by SNC-80 is
not followed by for receptor recycling [41] and in
vivo experiments show that four hours after its sys-
temic administration SNC-80-stimulated DORs
remain trapped in the cytosol while analgesic toler-
ance is maximal [11]. On the other hand, internaliza-
tion by deltorphin analogues is associated with partial
recycling and resensitization of DOR signalling [88],
both of which may contribute to a faster recovery of
analgesic efficacy upon repeated administration of
this type of ligands [86]. Based on these observations
it would be interesting to determine whether prefer-
ential sorting towards the recycling path is what
makes deltorphin II less prone to tolerance than
SNC-80. The molecular underpinnings of agonist-spe-
cific sorting could include stabilization of agonist-
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specific conformations that distinctively interact
with sorting proteins such as GASPs or barrestins.
This reasoning is supported by reports indicating
that DORs may adopt multiple active conformations [14]
that are distinctively modulated by Src [89,90], which is
in turn involved in the modulation of DOR recycling
efficacy [46].
Comparison of long-term analgesic actions evoked by

internalizing and non-internalizing DOR agonists has
confirmed that similar to what was observed for
MORs, both types of ligands induce tolerance after
repeated administration [12,86]. Remarkably, for some
agonists desensitization of DOR-mediated signals takes
place at the receptor while for others desensitization
occurs at the level of the effector. For example, while
tolerance by SNC-80 involves receptor desensitization
AR-M1000390 leaves DORs unaffected but reduces Ca
+2 channel ability to respond to stimuli [12]. An addi-
tional level of diversity that has been described in the
regulation of DOR-mediated in vivo responses is that
different behaviours display distinct sensitivity to toler-
ance. For example, while repeated AR-M1000390
administration did not modify drug ability to induce
anxiolytic and psychomotor responses, it induced com-
plete analgesic tolerance [12]. It seems unlikely that
“response-specific” tolerance generated by AR-
M1000390’s is related to its failure to internalize DORs
since similar specificity has been described for interna-
lizing ligands. In effect, sustained treatment with SNC-
80 led to the progressive reduction of its pro-convul-
sive but not antidepressant actions [91]. Similarly, sus-
tained administration of deltorphin II resulted in the
progressive reduction of antinociceptive but not anti-
hyperalgesic actions induced by this drug [86]. The
fact that sustained stimulation of the same receptor
may result in different degrees of tolerance for distinct
behavioural responses is highly reminiscent of observa-
tions obtained in neuronal cultures where signalling
regulation was found to be cell- and effector-specific.
As previously mentioned, this multiplicity of regulatory
mechanisms argues against the possibility of develop-
ing a single universal means of controlling analgesic
tolerance. But, on the other hand, it could provide a
novel strategy for the development of more specific,
longer acting analgesics. Indeed, diversity could be an
advantage if it were to allow directing the pharmacolo-
gical stimuli towards those receptors that are specifi-
cally involved in analgesic responses and whose
cellular location and/or effector association would
make them more resistant to progressive waning of
signalling efficacy. In this sense it might be helpful to
think of receptors not as isolated membrane proteins
but as part of signalling complexes containing a

combination of G proteins [14,92], effectors [93], scaf-
folding [94] and/or regulatory proteins whose identity
is determined by the cell type and compartment in
which receptors are expressed [95]. Within complexes
formed in different cells, structural restrictions
imposed by distinct interaction partners may force
receptors and/or effectors into conformations which
need not be equally recognized by regulatory proteins
[5,96]. It would therefore be conceivable that develop-
ment of ligands capable of specifically activating signal-
ling complexes with the least capacity to trigger the
regulatory mechanisms underlying tolerance could
result in more prolonged analgesic actions than those
of currently available opioids. A schematic representa-
tion of this idea is shown in Figure 2.

V. Concluding remarks
Initial mechanistic hypotheses concerning the molecular
bases of opioid tolerance focused on homologous desen-
sitization, viewing internalization as a key protective
step for maintaining analgesic efficacy. Neuronal and in
vivo studies tend to partially confirm this view, but also
point to a greater level of complexity where post-endo-
cytic sorting and multiplicity of regulatory mechanisms
argue against a simple, universal strategy for reducing
tolerance. Embracing this diversity through the produc-
tion of biased ligands capable of favouring recycling or
of directing pharmacological stimuli towards signalling
complexes that are more resistant to functional desensi-
tization could constitute novel strategies for rational
design of longer acting opioid analgesics.
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(SNC-80): ((+)-4-[(alpha R)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-
methoxybenzyl]-N, N-diethyl-benzamide); (CFA): complete Freund’s adjuvant;
(DAMGO): [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin; (DORs): delta opioid
receptors; (DRG): dorsal root ganglion; (ERK1/2): extracellular signalregulated
kinases; (GASP): G protein coupled receptor associated sorting protein;
(GIRK): G protein activated inward rectifier K+; (GPCRs): G protein-coupled
receptors; (LC): locus coeruleus; (MORs): mu opioid receptors; (AR-M1000390):
N, NDiethyl- 4-(phenylpiperidin-4-ylidenemethyl) benzamide.
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Figure 2 Biased agonists targeting cell-specific receptor/effector complexes may prove a valid approach for developing longer acting
opioid analgesics. Conformational restrictions within receptor-effector complexes present in cell A make them more sensitive to the effect of
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