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NMDA receptor subunits have different roles in
NMDA-induced neurotoxicity in the retina
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Abstract

excitotoxicity remains unclear.

deficient mice.

diseases.

Background: Loss of retinal ganglion cells (RGCs) is a hallmark of various retinal diseases including glaucoma, retinal
ischemia, and diabetic retinopathy. N-methyl-D-aspartate (NMDA)-type glutamate receptor (NMDAR)-mediated
excitotoxicity is thought to be an important contributor to RGC death in these diseases. Native NMDARs are
heterotetramers that consist of GIuN1 and GIuN2 subunits, and GIuN2 subunits (GIUN2A-D) are major
determinants of the pharmacological and biophysical properties of NMDARs. All NMDAR subunits are expressed
in RGCs in the retina. However, the relative contribution of the different GIUN2 subunits to RGC death by

Results: GIuN2B- and GluN2D-deficiency protected RGCs from NMDA-induced excitotoxic retinal cell death.
Pharmacological inhibition of the GIUN2B subunit attenuated RGC loss in glutamate aspartate transporter

Conclusions: Our data suggest that GIuN2B- and GIuN2D-containing NMDARSs play a critical role in NMDA-
induced excitotoxic retinal cell death and RGC degeneration in glutamate aspartate transporter deficient mice.
Inhibition of GIUN2B and GIuN2D activity is a potential therapeutic strategy for the treatment of several retinal
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Background

Glutamate is the major excitatory neurotransmitter in the
mammalian central nervous system. However, its accu-
mulation in extracellular spaces kills neurons through
excitotoxic mechanisms via activation of glutamate recep-
tors [1]. Excitotoxic neuronal cell death is thought to be a
final common pathway in various neurological diseases,
ranging from acute ischemic stroke to chronic neurode-
generative diseases such as Alzheimer’s disease and amyo-
trophic lateral sclerosis [2-5]. Glutamate excitotoxicity has
also been proposed to be an important contributor to the
death of retinal ganglion cells (RGCs) in glaucoma and
ischemia-related conditions such as vessel occlusion and
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diabetic retinopathy [6-8], although some investigations
have failed to confirm elevated glutamate concentration
both in human patients with glaucoma [9] and in animal
models of glaucoma [10,11]. The toxic effects of glutamate
on RGCs are predominantly mediated by the overstimula-
tion of N-methyl-D-aspartate (NMDA)-type glutamate re-
ceptors (NMDARs) due to their extreme permeability to
calcium ions [12].

NMDARs are composed of various combinations of
GluN1 and GIuN2 (GluN2A-GIuN2D) subunits and, in
some cases, GIuN3 (GIuN3A and GIuN3B) subunits.
GluN2 subunits are major determinants of the functional
properties of NMDARs, including characteristics such as
agonist affinity, deactivation kinetics, single-channel con-
ductance, Ca>* permeability, and sensitivity to Mg>* [13].
However, the relative contribution of different GIuN2 sub-
units to RGC death by excitotoxicity remains unclear.

We previously reported that NMDAR-mediated exci-
totoxicity contributed to the degeneration of RGCs in glu-
tamate aspartate transporter (GLAST) deficient (KO)
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mice, the first animal model of normal tension glaucoma
[14]. Furthermore, we recently reported that GIuN2D defi-
ciency partially protected against the loss of RGCs in
GLAST KO mice [15]. These results suggest that other
GIuN2 subunits, in addition to GluN2D, may contribute
to excitotoxic retinal cell death. To address this hypoth-
esis, we examined the roles of the four different GluN2
subtypes in NMDA-induced retinal cell death using mice
lacking specific GIuN2 subunits. We also evaluated the
neuroprotective effect of 7-hydroxy-6-methoxy-2-methyl-
1-(2-(4-(trifluoromethyl)phenyl)ethyl)-1,2,3,4-tetrahydroiso-
quinoline hydrochloride (HONO0001) [16], an specific
GIuN2B antagonist, on RGC degeneration due to glutam-
ate excitotoxicity in GLAST KO mice.

In the present study, we report that GluN2B and GluN2D
deficiency protect against NMDA-induced excitotoxic
retinal cell death, but GIuN2A and GIluN2C deficiency
have no protective effects. We also show that pharma-
cological blockade of GIuN2B subunit attenuates RGC
loss in GLAST KO mice.

Results

NMDA receptor subunits present in mouse RGCs

To investigate the expression of NMDAR subunits in
RGCs, we used a single-cell reverse transcriptase poly-
merase chain reaction (RT-PCR) method. After dissoci-
ation of the retina into single cells, RGCs can no longer
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be identified by their morphology. We therefore used
dissociated retina from B6.Cg-TgN(Thyl-CFP)23]rs/]
transgenic mice (thyl-CFP mice), which express cyan
fluorescent protein (CFP) in most RGCs [17]. We first
confirmed that the CFP-containing cells in the thyl-CFP
mouse retina were RGCs by immunostaining with Brn3,
a neurochemical marker for RGCs [18]. CFP expression
colocalized with Brn3 immunoreactivity in most somata
in the ganglion cell layer (GCL) (Figure 1A-C). A single
CFP-expressing cell was picked with a glass capillary
from the dissociation mix and transferred to the reaction
tube (Figure 1D, E), and was further identified as RGC by
expression of Brn3 (Figure 1F). Typical results of single-
cell RT-PCR on isolated RGCs are shown in Figure 1F.
GlIuN1 and GluN2A-D could be amplified together with
an internal control (B-actin) from a single RGC, as well as
from whole retina. In our samples of 4 isolated RGCs, two
cells express GIuN1/GIuN2A/GIluN2B/GluN2C/GIuN2D,
whereas the other two cells express GIuN1/GIuN2A/
GIluN2B/GIuN2D. These results indicate the presence of
GIuN1 and all GIuN2 subunits (GIluN2A-D) in the mouse
RGCs.

Retinal structure in mice lacking GIluN2 subunits

We used mice lacking any one of the four GluN2 subunits
to determine the distinct roles of these GluN2 subunits in
NMDA-induced RGC death. Mice lacking GIuN2A,
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Figure 1 Expression of NMDA receptor subunits in mouse retinal ganglion cell. (A-C) Immunohistochemical analysis of Brn3 (B
Thy1-CFP mice. CFP fluorescence (A green) was overlaid with Brn3 (C). Arrows in (C) indicate double-labeled cells. Scale bar, 20 um. (D-E) After
dissociation the fluorescent RGC was picked up from the cell suspension. CFP (green) and DIC pictures for the same isolated cell are
superimposed (E). Arrowhead indicates CFP-expressing RGC. Scale bar, 20 um. (F) Single-cell RT-PCR analysis for GIuN1, four GIuN2 subunits, Brn3
and [-actin. Distilled water was used for PCR negative control. GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer; RGC,
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GluN2C, and GIuN2D are viable [19-21], whereas GluN2B-
deficient mice die shortly after birth [22]. We therefore
generated conditional GIluN2B KO mice, in which
GIuN2B was ablated in retinal neurons containing RGCs.
For this purpose, we crossed GluN2B” [23] mice with c-
kit-Cre mice [24] (GluN2B"¥/c-kit-Cre). In c-kit-Cre mice
crossed with ROSA-tdTomato reporter mice [25] (ROSA-
tdTomato/c-kit-Cre), tdTomato-expressing cells were lo-
calized in the GCL and inner nuclear layer (INL) and most
calretinin immunoreactive cells (RGCs and amacrine cells)
contained tdTomato, suggesting that Cre recombinase is
expressed in RGCs and cells in the INL, including ama-
crine cells, in c-kit-Cre mice (Figure 2A). Immunohisto-
chemical analysis revealed that GluN2B protein expression
was eliminated in RGCs and cells in the INL in GluN2B"%/
c-kit-Cre mice (Figure 2B). Western blot analysis showed
that GIuN2A, GluN2C, and GluN2D proteins were com-
pletely eliminated from mutant mice lacking GIuN2A,
GIuN2C, and GIuN2D, respectively (Figure 2C, E, F). In
GluN2B"/c-kit-Cre mice, GIluN2B expression level in the
retina was significantly lower than in control mice
(Figure 2D).

We next investigated whether the absence of GluN2
subunits affects the anatomical organization of the retina
by histological analyses. Hematoxylin and eosin staining
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revealed the retinae of GIuN2A, GluN2B”"/c-kit-Cre,
GluN2C, and GluN2D mutant mice to be normally orga-
nized, consisting of several different cell layers (Figure 3A).
The thickness of the inner retinal layer (IRL) in all mutant
strains was normal compared with wild-type (WT) mice
(Figure 3B). As previous studies showed that ablation of
GluN1 increased cell death in the developing somatosen-
sory thalamus [26], we counted cell numbers in the GCL.
The cell number in the GCL of GluN2B""/c-kit-Cre mice
was significantly lower than that of WT mice at 5 weeks,
whereas cell number in the GCL of the other mutant
strains was comparable to that of control mice at 5 weeks
(Figure 3C). These results suggest that GluN2B subunit
plays a survival role for RGCs during retinal development,
but the other GIuN2 subunits (GIuN2A, GIluN2C and
GIluN2D) are not involved in retinal development and sur-
vival in RGCs.

GIluN2B and GIuN2D deficiency prevents NMDA-induced-
excitotoxic retinal cell death

To determine which GluN2 subtypes are involved in
NMDA-induced RGC death in the retina, we examined
the effect of intraocular injection of NMDA on retinal cell
death in GluN2 KO and WT mice. First, to examine the
acute injury of NMDA, TUNEL analysis was performed

A ROSA-tdTomato/c-kit-Cre B
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Figure 2 Ablation of GIuN2 subunits in the retinas of mutant mice. (A) Immunostaining of calretinin (green) in ROSA-tdTomato/c-kit-Cre
mice. Overlapping of tdTomato fluorescence (red) and calretinin indicated that Cre-mediated recombination occurs in RGCs (arrows) and
amacrine cells (arrowheads). Enlarged image of the GCL in the upper panel was shown. Scale bar, 20 um (upper) and 10 um (lower). (B)
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Immunohistochemical analysis of GIUN2B in GluN2B”" and GIUN2B conditional knockout mice (GluN28"/c-kit-Cre). Scale bar, 20 um. (C-F) Western
blot analysis of retinas from WT and GIUN2 mutant mice with respective antibodies (GIUN2A, GIuN2B, GIuN2C, GIuN2D and B-actin). For GIuN28,
control (con) represents GIUN2B”" mice. Asterisks indicate the GIUN2B protein bands. Each lane was loaded with 30 ug of proteins. GCL, ganglion
cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; ONL, outer nuclear layer.
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Figure 3 Effects of GIuN2 subunits ablation on the morphology of the retina. (A) Hematoxylin and eosin staining (H&E) of retinal sections

at P35 in WT and GIuN2 mutant mice. Scale bar, 50 um. (B-C) Quantification of thickness of the inner retinal layer (B) and the cell number in the
GCL (€) in WT and GIuN2 mutant mice. The data are presented as mean + S.EM. of 5 samples for each experiment. **P <0.01. GCL, ganglion cell
layer; INL, inner nuclear layer; ONL, outer nuclear layer; IRL, inner retinal layer.
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on the retinas of WT and GIuN2 mutants at 1 day after
NMDA treatment. A number of TUNEL-positive cells
were observed in the GCL and INL in both WT and
GIuN2 mutant strains after NMDA injection (Figure 4A),
but the percentage of TUNEL-positive cells in the GCL of
GluN2B"*/c-kit-Cre and GluN2D ™'~ mice was significantly
lower than that in WT mice (Figure 4B). Following
NMDA injection, the number of RGCs and the thickness
of IRL decreased from days 1 to 7, with no further de-
crease being observed from days 7 to 14 [27,28]. To exam-
ine the chronic injury of NMDA, morphological changes
were measured 7 days after NMDA or phosphate-buffered
saline (PBS) injection. Intraocular administration of
NMDA induced cell death in the GCL in both WT and
GluN2 mutant mice (Figure 4C), but the percentage of
surviving cells in the GCL was significantly larger in
GluN2B”"/c-kit-Cre and GluN2D™~ mice than in WT
mice (Figure 4D). Additionally, the thickness of IRL was
significantly larger in GluN2B”/c-kit-Cre mice than in
WT mice (Figure 4E). Taken together, these results
suggest that GluN2B and GluN2D were involved in
NMDA-induced RGC death.

A specific GIluN2B antagonist, HON00O1, prevents RGC
death in GLAST-deficient mice

We have reported that the neuroprotective role of apoli-
poprotein E-containing lipoproteins in glaucomatous
retinal degeneration in GLAST KO mice is mediated
through promoting interaction between low density lipo-
protein receptor-related protein 1 (LRP-1) and the GluN2B

subunit [29]. Recently, we have also demonstrated that
Dock3 overexpression prevented retinal cell death in
GLAST KO mice by promoting GIuN2B degradation [28].
To determine whether GIuN2B is involved in RGC degen-
eration in GLAST-deficient mice, we evaluated the effect
of a specific GIuN2B antagonist, HON0001, on RGC
degeneration in GLAST KO mice. As shown in Figure 5,
the number of cells in GLAST KO mice subjected to
HONO0001 (10 mg/kg) treatment (281 +26) was signifi-
cantly greater than that in GLAST KO mice not subjected
to HONOOO1 treatment (203 + 10). These results suggest
that GIuN2B is involved in RGC loss in GLAST KO mice.

Discussion

We previously reported that GluN2D deficiency pre-
vented loss of RGCs in GLAST KO mice [15]. These re-
sults suggest that both GIluN2B and GIuN2D subunits
play a critical role in RGC degeneration by glutamate
excitotoxicity. Therefore, an GluN2B-selective antagonist
in combination with an GluN2D-selective antagonist
represents an effective strategy for the management of
glaucoma and various forms of retinopathy. We recently
showed that Dock3 overexpression prevented excitotoxic
RGC death by suppressing the surface expression of
GIluN2D and enhancing NMDA-mediated GluN2B deg-
radation [15,28]. Thus, the design of compounds capable
of increasing the expression of Dock3 represents a novel
strategy for the treatment of various forms of retinop-
athy. Previous studies also showed that calcium influx
through NMDARSs is modulated by LRP-1 [30,31]. These
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Figure 4 TUNEL staining and morphometric analysis following NMDA treatment. (A) Representative photos of TUNEL staining at 1 day
after NMDA treatment from WT and GIuN2 mutant mice. Scale bar, 20 um. (B) Quantification of TUNEL-positive cells in the GCL. The data are
presented as mean + S.EM. of 5 samples for each experiment. **P <0.01 (C) Representative photos of HE staining at 7 days after NMDA and PBS
treatment from WT and GIuN2 mutant mice. Scale bar, 20 um. (D-E) Quantification of cell number in the GCL (D) and thickness of IRL (E). The

data are presented as mean + S.EM. of 5 samples for each experiment. **P <0.01. GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer
nuclear layer; IRL, inner retinal layer.

findings may provide a novel therapeutic strategy for  divergent cytoplasmic C-terminal domains of GluN2 sub-
various forms of retinopathy that are mediated by E-  units [34]. A previous report showed that C-terminal do-
containing lipoproteins through LRP-1. mains of GIuN2B subunits were more lethal than GIuN2A

The failure of GIuN2C deficiency to protect RGCs from  subunits, and different coupling to PSD-95/nNOS sig-
NMDA-induced excitotoxicity can be explained by the naling cassette may contribute to differential suscepti-
data showing that only a small number of RGCs expressed ~ bility of GluN2 subunits to excitotoxic injury [33].
GIluN2C [32]. However, almost RGCs express GIuN2A  Another possible explanation is that the location of
[32]. The failure of GluN2A deficiency to protect RGCs NMDARs at synaptic or extrasynaptic sites determines
from NMDA-induced excitotoxicity may be explained by  the neuroprotective or neurotoxic effects of glutamate.
the distinct functional properties conferred by GluN2 sub- A high level of synaptic NMDAR activity promotes
units on the receptors, and the different signaling pathway = neuronal survival, whereas extrasynaptic NMDAR activ-
couplings [13,33]. This variety is due to the large and ity promotes cell death [35]. In the retina, GluN2B is
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Figure 5 GIuN2B antagonist HONO0O1 rescues RGCs death in GLAST-deficient mice. (A) Representative photos of wild-type (WT), saline-
(GLAST™7) or HONOOO1- (GLAST™~ + HON00O1) treated retinas. HONOOO1 (10 mg/kg) or saline were injected orally (p.0.) into GLAST™~ mice from
P21 to P35. The animals were killed at P35 after HON00O1/saline treatment. Scale bar, 100 um. (B) Quantification of the cell number in the GCL.
The data are presented as mean + SEM. of 4 (WT and GLAST ™) and 6 (GLAST ™~ + HONO0O1) samples for each experiment. *P <0.05, **P <0.01.
GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer.
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enriched at the perisynaptic site, whereas synaptic NMDARs
primarily contain GluN2A [36].

The number of cells in the GCL of GluN2B"/c-kit-
Cre mice was significantly decreased at 5 weeks. This
finding is consistent with a previous study showing that
NMDAR hypofunction increased neuronal death in the
developing brain [26,37]. GluN2B is a major GluN2 sub-
unit in the immature retina [38]; therefore, ablation of
GluN2B in the developing retina can cause excessive
neuronal apoptosis, resulting in a reduction in the cell
number in the GCL of GluN2B"/c-kit-Cre mice. Thus,
loss of GIuN2B can increase RGC death in the immature
retina, but protect RGCs from glutamate excitotoxicity
in the adult.

Conclusions

We showed that GIuN2B- and GluN2D-containing
NMDARs played a critical role in NMDA-induced ex-
citotoxic retinal cell death and RGC degeneration in
GLAST KO mice. Inhibition of GluN2B and GluN2D
activity is a potential therapeutic strategy for the treat-
ment of several retinal diseases, including retinal ische-
mia, diabetic retinopathy, and glaucoma.

Methods

Animals

B6.Cg-TgN(Thyl-CFP)23]rs/] transgenic mice (thyl-CFP
mice) and c-kit-Cre transgenic mice have been described
previously [17,24]. c-kit-Cre transgenic mice were bred
with ROSA-tdTomato mice [25] to examine Cre activity.

c-kit-Cre mice were bred with GluN2B¥1* (GuN2B")
mice [23] to generate GIuN2B conditional knockout
mice (GIuN2B"/c-kit-Cre). The homozygous GluN2A
KO (GIluN2A™") [19], GluN2C KO mice (GluN2C ")
[20] and GluN2D KO mice (GIuN2D™") [21] were
obtained by crossing heterozygous GIuN2A™'~, GluN2C "/~
and GIuN2D"'~ mice, respectively. GLAST KO mice have
been described previously [39,40]. In all experiments, age
matched WT and GluN2B" littermate controls were used.
All mice were of the C57BL/6 ] genetic background, and all
animal procedures were approved by the Animal Commit-
tee of Tokyo Medical and Dental University (0130166C).

Isolation of single ganglion cells from mouse retina and
RT-PCR

5 week old Thyl-CFP mice were deeply anesthetized by
diethyl ether and retinas were dissociated by using the
Papain Dissociation System (Worthington Biochemical
Corporation) at 37°C for 30 min. Single-CFP-expressing
cell was aspirated by glass microcapillaries and placed
into the PCR-tube containing 10 pl of resuspention
buffer. Single-cell RT-PCR was performed using the
SuperScript III CellsDirect ¢cDNA Synthesis System
(Invitrogen). Total RNA (5 pg) from whole retina were
used to synthesize first-strand ¢cDNA by using Super-
Script III First-Strand Synthesis System (Invitrogen). The
retina ¢cDNA served as positive controls. The following
primers were used for cDNA detection: GluN2A FWD:
5" GTG TGC GAC CTC ATG TCC G 3'; REV: 5" GCC
TCT TGG TCC GTA TCA TCT C 3’; GluN2B FWD: 5’



Bai et al. Molecular Brain 2013, 6:34
http://www.molecularbrain.com/content/6/1/34

CAG CAA AGC TCG TTC CCA AAA 3’; REV: 5’
GTC AGT CTC GTT CAT GGC TAC 3’; GluN2C
FWD: ATC CCC GAC GGC TGA GA 3’; REV: 5" TTC
CTA GTC CAA GCA CAA AAC G 3’; GluN2D FWD:
5" TGT GTG GGT GAT GAT GTT CGT 3'; REV: 5’
CCA CAG GAC TGA GGT ACT CAA AGA 3’; GluN1
FWD: 5" GCC GAT TTA AGG TGA ACA GC 3'; REV:
5" AAT TGT GCT TCT CCA TGT GC 3’; Brn3 FWD:
5" GCA GTC TCC ACT TGG TGC TTA CTC 3’; REV:
5" TTC CCC CTA CAA ACA AAC CTC C 3’; B-actin
FWD: 5" ATA TCG CTG CGC TGG TCG TC 3'; REV:
5" TCA CTT ACC TGG TGC CTA GGG 3'. The ther-
mal cycler conditions were 5 min at 94°C and then 40 cy-
cles of 30 s at 94°C, 30 s at 60°C, and 30 s at 72°C,
followed by 7 min at 72°C.

Western blot analysis

Retinas were quickly removed and homogenized in 100 pl
of cold lysis buffer (50 mM Tris—HCI, 1% Nonidet P-40,
5 mM EDTA, 150 mM NaCl, 0.5% Na-deoxycholate,
1 mM MgCl,, 1 mM DTT, 1 mM NazVO, 1 mM NaF,
1 mM phenylmethylsulfonyl fluoride (PMSF), and Com-
plete Protease Inhibitor Cocktail [Roche]). Protein con-
centration was determined by BCA Protein Assay kit
(Sigma-Aldrich). Thirty microgram of the protein was
loaded per lane. Primary antibodies used were GIuN2A
(1:500, Covance), GluN2B (1:500) [41], GluN2C (1:100,
Invitrogen), GluN2D (1:500) [42], B-actin (1:1000, Santa
Cruz). They were then incubated with anti-rabbit, guinea
pig or mouse IgG-HRP-conjugated secondary antibody
(1:5000, Jackson ImmunoResearch). SuperSignal West
Femto Maximum Sensitivity Substrate (Thermo Scien-
tific) was used to visualize the immunoreactive proteins.

Immunohistochemistry

Sections were prepared as previously described [15]. Fro-
zen retinal sections of 12 pm thickness were incubated
using anti-Brn3 (1:50, Santa Cruz), anti-calretinin (1:500,
Swant) and anti-GluN2B (1:100) antibodies. For Brn3
and calretinin detection, Cy-3-conjugated donkey anti-
goat IgG (1:500, Jackson ImmunoResearch) and goat
anti-rabbit IgG Alexa 488 (1:1000, Molecular Probes)
were used as secondary antibodies. For GluN2B detec-
tion, peroxidase labelled polymer conjugated to goat
anti-rabbit IgG (DAKO) was used as secondary antibody.
Images were recorded with an LSM-510 META confocal
laser microscope (Carl Zeiss).

Histology and morphometric analysis

Eyes from mice at postnatal day 35 (P35) were enucle-
ated and fixed in Davidson’s solution fixative [43], then
embedded in paraffin wax. In some experiments, HON0001
(10 mg/kg, a gift from T. Honda at Hoshi University) [16]
or saline was injected orally (p.o.) into GLAST KO mice
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daily from P21 to P35. These mice were sacrificed on P35
and processed for RGC count. Paraffin sections (7 pum
thick) were cut though the optic nerve and stained with
hematoxylin and eosin (H&E). The number of neurons in
the GCL was counted as previously described [15]. The
thickness of the IRL (from GCL to INL) was measured at
a distance of 0.5 to 1.0 mm from optic disc.

Animal models of NMDA-induecd retinal neuronal death
and morphometric analysis

Intravitreal injection of NMDA (Sigma) was conducted
as previously described [15]. Briefly, a single 2-ul in-
jection of 20 mM NMDA in 0.1 M PBS (pH 7.4) was
administered intravitreally into the right eye of each
mouse, the same volume of PBS was administered to the
contralateral (left) eye as control. The animals were
sacrificed at 1 day or 7 days after injection, and eyes
were enucleated for morphometric and TUNEL analysis.
Paraffin sections (5 pum thick) were cut though the optic
nerve and stained with H&E. The extent of NMDA-
induced retinal cell death after 7 days was quantified by
counts of neurons in the GCL and the thickness of the
IRL. The changes of the number of ganglion cells and
thickness of IRL after NMDA injection were expressed
as percentages of the control eyes.

TUNEL staining

At 1 day after the NMDA or PBS injection, TUNEL stain-
ing was performed with paraffin sections (5 um thick)
according to the manufacturer’s instructions (Promega).
Fluorescence detection was carried out using Alexa-fluor
-568-conjugated streptavidin (Molecular Probes). TUNEL-
positive cells in the GCL were counted and expressed as
percentages of total DAPI stained cells in the GCL.

Statistics

Statistical analyses were conducted using Student’s t-test
for comparison between two samples, or one-way ANOVA
followed by Bonferroni’s test for multiple comparisons,
using the SPSS 17.0 software package. Data are expressed
as mean = S.E.M. P values < 0.05 were considered statisti-
cally significant.
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