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Abstract

Background: Adult neurogenesis, fundamental for cellular homeostasis in the mammalian olfactory epithelium,
requires major shifts in gene expression to produce mature olfactory sensory neurons (OSNs) from multipotent
progenitor cells. To understand these dynamic events requires identifying not only the genes involved but also the
cell types that express each gene. Only then can the interrelationships of the encoded proteins reveal the
sequences of molecular events that control the plasticity of the adult olfactory epithelium.

Results: Of 4,057 differentially abundant mRNAs at 5 days after lesion-induced OSN replacement in adult mice,
2,334 were decreased mRNAs expressed by mature OSNs. Of the 1,723 increased mRNAs, many were expressed by
cell types other than OSNs and encoded proteins involved in cell proliferation and transcriptional regulation,
consistent with increased basal cell proliferation. Others encoded fatty acid metabolism and lysosomal proteins
expressed by infiltrating macrophages that help scavenge debris from the apoptosis of mature OSNs. The mRNAs
of immature OSNs behaved dichotomously, increasing if they supported early events in OSN differentiation (axon
initiation, vesicular trafficking, cytoskeletal organization and focal adhesions) but decreasing if they supported
homeostatic processes that carry over into mature OSNs (energy production, axon maintenance and protein catab-
olism). The complexity of shifts in gene expression responsible for converting basal cells into neurons was evident
in the increased abundance of 203 transcriptional regulators expressed by basal cells and immature OSNs.

Conclusions: Many of the molecular changes evoked during adult neurogenesis can now be ascribed to specific
cellular events in the OSN cell lineage, thereby defining new stages in the development of these neurons. Most
notably, the patterns of gene expression in immature OSNs changed in a characteristic fashion as these neurons
differentiated. Initial patterns were consistent with the transition into a neuronal morphology (neuritogenesis) and
later patterns with neuronal homeostasis. Overall, gene expression patterns during adult olfactory neurogenesis
showed substantial similarity to those of embryonic brain.

Keywords: Smell, Development, Differentiation, Neuritogenesis, Immature neuron, Transcription factor, Stem cell,
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Introduction
The evolutionary advantages of maintaining neurogen-
esis into adulthood seem substantial given the potential
for repairing damage and forming memories, yet the
mammalian nervous system has significant capacity for
adult neurogenesis in only three locations. It contributes
to learning and memory in the olfactory bulb and hippo-
campus [1-5] and is used to replace olfactory sensory
neurons (OSNs) in the olfactory epithelium where the
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neurons are more exposed to external stressors than
anywhere else in the nervous system.
Consistent with the conclusion that damage drives

OSN replacement, the proliferation of new OSNs is ac-
celerated by damage and slowed by protective manipula-
tions [6,7], events that are controlled by local signals
impinging on the progenitor cells [8-16]. Analogous to
the transition of embryonic neuroepithelial cells into
astroglial-like adult neural stem cells located in the sub-
ventricular zone of the brain [17], these local progenitors
derive from embryonic neuroepithelial cells that seed a
layer, several cells thick, of basal cells located just above
the basal lamina of the olfactory epithelium. Multipotent
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progenitor cells are present among both of the morpho-
logically distinct classes of basal cells, horizontal basal
cells and globose basal cells [11,15,18-23]. They give rise
to neurally fated progenitor cells, marked first by expres-
sion of Ascl1 (Mash1) and then Neurog1 (Ngn1), which
differentiate into immature OSNs. Differentiation of ma-
ture OSNs climaxes with the maturation of synapses at
glomeruli in the olfactory bulb and the elaboration of
cilia from the dendritic knob at the opposite pole of the
neuron [24-27].
The several distinct cell types of the OSN cell lineage

imply that a series of changes in gene expression pro-
grams must occur in order to produce differentiated
OSNs. The molecular changes that have been de-
scribed thus far [27-29] fall short of the complete
characterization necessary to understand the networks
of proteins that determine cellular functions [30]. In
addition, the cellular origins of most changes are un-
known, a common shortcoming of expression profiling
analyses of dynamic processes in complex tissues.
However, this can now be overcome because the vast
majority of genes expressed by mature OSNs, imma-
ture OSNs, and the summed population of the other
cell types in the olfactory epithelium are known
[31,32]. We forced synchronous replacement of mature
OSNs and characterized the molecular response,
ascribing most of the molecular events to specific cell
types, and in the case of immature OSNs, even to early
or late stages of their differentiation.

Results and discussion
24% of olfactory epithelium mRNAs respond to
bulbectomy
We caused selective loss of mature OSNs by unilateral
bulbectomy, which severs all OSN axons on that side of
the nasal cavity and evokes a well-characterized progres-
sion of cellular events [15,27,33-36]. Mature OSNs suffer
apoptosis within three days. Macrophages infiltrate in
response to OSN death, peaking around 3 days and per-
sisting for several days thereafter. Proliferation of pro-
genitor cells with a neural fate peaks at five days, and
new mature OSNs begin to increase in number only
after 10 days or more. We showed previously that the
most informative point in the progression of changes
after bulbectomy is at 5 days when progenitor cell
proliferation is at its zenith, mature OSNs are at their
nadir and the population of immature OSNs should be
dominated by newly formed immature OSNs [27].
Therefore, we profiled changes in mRNA abundance at
this time point. Comparing olfactory epithelia ipsilateral
and contralateral to bulbectomy, we detected transcripts
from a total of 16,632 genes. Of these, 4,057 were signifi-
cantly affected, with 1,723 increasing and 2,334 decreas-
ing (Additional file 1: Table S1).
Recent data on the expression of most genes in OSNs
make it possible to identify the cellular origins of many
of these significantly affected mRNAs [31]. These mea-
sures come in two forms, the probabilities of expression
specific to cell type categories (P(sp)) and the probabil-
ities of expression in each cell type category (P(in)),
irrespective of expression in other categories. The cell
type categories are four: (1) mature OSNs, (2) immature
OSNs, (3) both mature and immature OSNs (Shared)
and (4) the summed population of all non-OSN cell
types (Other). P(sp) and P(in) values are available for
2,533 of the significantly different mRNAs. They
revealed that decreased and increased mRNAs had
distinctly different cellular origins (Figure 1). Consist-
ent with this evidence that the decreased mRNAs
belonged to mature OSNs, functional bioinformatics
(Table 1) revealed overrepresentation of mRNAs
encoding proteins involved in several processes known
to be restricted to mature OSNs, such as olfactory
transduction, the elaboration of cilia and the final
maturation of synapses. In contrast, overrepresented
functional categories related to processes that occur in
non-OSN cell types and immature OSNs such as
development, cell proliferation, and transcriptional
regulation were found among the mRNAs that in-
creased (Table 2).

Mature OSN transcripts decrease
The loss of mature OSNs after bulbectomy predicts that
these cells express most mRNAs that decreased. Indeed,
94% of decreased mRNAs had a probability of expres-
sion in mature OSNs (P(in) mature OSN) of > 0.5. The
average P(in) mature OSNs was 0.87 for decreased
mRNAs. When we used P(sp) mature OSN values > 0.5
to identify mature OSN-specific mRNAs, we found that
nearly all were decreased mRNAs (Figure 2A). Existing
in situ hybridization data [31] included 58 mature
OSN mRNAs among the significantly decreased
mRNAs (Figure 2A). As expected, 44 of these mRNAs
(76%) were expressed primarily in mature OSNs. The
remaining 14 showed some expression in immature
OSNs along with their expression in mature OSNs.
Nine mRNAs had P(sp) values predicting expression in

mature OSNs yet they increased rather than decreased
after bulbectomy (Figure 2A). These mRNAs repre-
sented only 2.3% of the significantly affected mRNAs
with P(sp) mature OSN values > 0.5, well within the error
rate for P(sp) cell type assignments and therefore likely to
be errors of this type. As expected, in situ hybridization
for several of these mRNAs consistently revealed expres-
sion that was not restricted to mature OSNs but was in-
stead primarily in other cell types (Additional file 2). In
contrast, new in situ hybridization for 12 mRNAs with
P(sp) values predicting expression in mature OSNs that



Figure 1 Correspondence of molecular and cellular changes in the olfactory epithelium at 5 days after bulbectomy (OBX). These plots
separate gene expression patterns into four quadrants, each representing distinct cell type categories as labeled. A. Transcripts that decreased
after OBX tended to be expressed in mature OSNs (upper quadrants). B. Transcripts that increased after OBX tended to be expressed by
immature OSNs (right quadrants) or by cell types other than OSNs (lower left quadrant).

Table 2 Overrepresented biological processes among
mRNAs that increased after bulbectomy

Gene ontology term # of Genes

Cell cycle, DNA replication, mitosis (27) 652

Regulation of transcription (14) 223

Protein phosphorylation (38) 635

Apoptosis (12) 128

Fatty acid metabolism (1) 41
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decreased after bulbectomy all showed expression in
mature OSNs: Arl3, Atrn, Bnip3, Cox5a, Fam179b,
Fnbp1, Grip1, Ppme1, Ift80, Rab6b, Pafah1b1, and Tshz2
(Additional file 3).

Increased mRNAs identify active processes in non-OSN
cell types
As expected, significantly affected mRNAs expressed
primarily by the non-OSN cell types in the olfactory
epithelium (P(sp) Other > 0.5) were nearly all increased,
rather than decreased, after bulbectomy (Figure 2D).
Existing in situ hybridization data for 28 mRNAs in this
category revealed that all but one were expressed pri-
marily by cell types that survive bulbectomy (anything
other than mature OSNs): 16 in basal cells, 6 in susten-
tacular cells, 1 in scattered cells that may be infiltrating
macrophages, 2 in immature OSNs and another 2 in
a combination of basal cells, sustentacular cells, and
Table 1 Overrepresented biological processes among
mRNAs that decreased after bulbectomy

Gene ontology term # of Genes

Olfactory transduction (3) 610

Odorant receptor (3) 591

Trace amine-associated receptor (1) 10

Olfaction (3) 586

Neural functions (2) 579

Synaptic transmission (2) 50

Cilia (1) 13

Ion channels (2) 33

Ordered by strength of over-representation. Parentheses, number of significant
categories combined under one heading.
immature OSNs. These data confirmed that mRNAs
with P(sp) Other > 0.5 that increased after bulbectomy
were indeed expressed primarily in cell types other than
mature OSNs.
Increased mRNA abundance after the loss of mature

OSNs, which constitute about half the cells in the adult
olfactory epithelium, might result merely from increased
prevalence of the remaining cell types. This is especially
true for mRNAs expressed by infiltrating macrophages,
Protein interaction domains (11) 118

Development (28) 229

Cell motion and migration (8) 98

Cytoskeletal organization (13) 167

Focal adhesion (3) 16

DNA binding (3) 385

Lipid metabolism (2) 16

Immune response (1) 33

Extracellular matrix (3) 45

Regulation of cell size (2) 29

FERM domain proteins (6) 14

Ordered by strength of over-representation. Parentheses, number of significant
categories combined under one heading.



Figure 2 Gene expression differences across cell types predict mRNA abundance changes after bulbectomy. A. Significantly affected
mRNAs (magenta) expressed primarily by mature OSNs nearly all decreased. B. Significantly affected mRNAs expressed primarily by immature
OSNs tended to increase, but some decreased instead. C. Significantly affected mRNAs expressed primarily by both mature and immature OSNs
had only a slight bias toward decreased abundance. D. Significantly affected mRNAs expressed primarily by non-OSN cell types nearly
all increased.

Table 3 Overrepresented biological processes among
non-OSN cell type transcripts that increased after
bulbectomy

Gene ontology term # of Genes

Cell cycle, cell division, mitosis, DNA replication (40) 68

Positive regulation of transcription (7) 36

Kinases; signaling, cell cycle control & transcription (18) 78

Lysosomes (4) 18

Sensory organ development (7) 21

Fatty acid metabolic processes (2) 21

Ordered by strength of over-representation. Parentheses, number of significant
categories combined under one heading.
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whose abundance can increase many-fold after bulbect-
omy [36]. However, for mRNAs expressed by the per-
manently resident cell types in the epithelium, the
evidence suggests that increased cellular prevalence
explains only a small fraction of the increased mRNAs.
For example, of 10 documented markers of sustentacular
cells and Bowman’s glands [31,32,37-43], only 2 were
increased (Epas1 and Aqp5) while the other 8 were un-
affected (Cbr2, Tyro3, Slc2a1, Slc2a3, Slc16a7, Aldh1a1,
Cyp2a4/5 and Cyp2g1). These differences were not
correlated with expression in neighboring respiratory
epithelium (e.g., Epas1 and Cbr2 are expressed in re-
spiratory epithelium, but Aqp5 is not), so contamination
from respiratory epithelium did not obscure the effects
of changes in cell type prevalence on mRNA abundance
changes. Consistent with this interpretation, the canon-
ical marker used to distinguish respiratory epithelium
from olfactory epithelium, Reg3g [43], was not signifi-
cantly increased after bulbectomy. Overall, only 39% of
the mRNAs with P(sp) Other > 0.5 (552 of 1,398) were
significantly affected by bulbectomy. These findings
argue that increased prevalence of several cell types due
to the loss of mature OSNs may not be the sole factor
driving increased mRNA abundance. We hypothesize
that increased transcriptional activation of the genes en-
coding proteins most critical for olfactory neurogenesis
also contributes so that many of the largest and most
consistent increases derive from genes actively respond-
ing to bulbectomy with increased transcription in the
surviving cell types.
Biological process categories fundamental to olfactory

neurogenesis should dominate the results of functional
bioinformatics analysis of increased mRNAs expressed
primarily in non-OSN cell types. Indeed, when done
using the mRNAs with P(sp) Other values > 0.5 this
analysis revealed that most overrepresented processes
were associated with sensory organ development, cell
proliferation, regulation of transcription and associated
signaling events (Table 3). These tended to be related
categories that derive from partially overlapping sets of
mRNAs. For example, the sensory organ development
category derived largely from 16 transcription factors
important for development and differentiation, including
several previously shown to be involved in olfactory
neurogenesis, such as Neurog1, Six1, Pax6, Foxg1, and
Gli3 [44-48]. Even the lysosome category represented
events important for adult olfactory neurogenesis be-
cause it consisted primarily of genes expressed strongly
by macrophages (e.g., Cd68, cathepsins, hexosamini-
dases) that infiltrate the epithelium [49-52]. These mac-
rophages help clear debris from dead OSNs for several
days after bulbectomy and contribute to a local environ-
ment that supports proliferation of new OSNs [36,53].
In addition, because much of the material taken up by
phagocytosis is lipid membrane, we reasoned that the
fatty acid metabolic processes category, which contained
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enzymes involved in the β-oxidation of fatty acids and
synthesis or recycling of lipid intermediates (Elovl5,
Elovl6, Gpam, Acsl1, Acsl5, Acot11, Pecr, Acadl, Cpt1a,
Crot, Hadh and Lypla1), would also represent genes
expressed primarily by macrophages. We did in situ
hybridization for 12 of the mRNAs found in these two
categories, predicting that they would show patterns of
expression modeled by the macrophage marker, Cd68
(Figure 3A,B). Labeled cells were scattered around the
olfactory epithelium; and even more prominent was the
increased labeling of cells in the olfactory nerve bundles
ipsilateral to unilateral bulbectomy (Figure 3C-X). This
pattern is characteristic of the locations of Cd68-positive
macrophages.
The overrepresented biological processes among in-

creased non-OSN mRNAs (Table 3) were a subset of the
overrepresented biological processes among the set of all
increased mRNAs (Table 2). Not surprisingly, the non-
overlapping categories between these two lists were due
either to mRNAs expressed primarily by immature
OSNs (Table 4) or to biological processes that arose
from combinations of immature OSN mRNAs and non-
OSN mRNAs.
As with the prediction of mature OSN mRNAs, there

is an error rate in the prediction of genes expressed in
non-OSN cell types (4%) that could account for the 15
mRNAs with P(sp) Other > 0.5 that decreased, rather
than increased (Figure 2D). As predicted by their re-
sponse to bulbectomy, in situ hybridization for several of
these mRNAs consistently revealed disagreement with
P(sp) values and expression primarily in the OSN layers
of the olfactory epithelium (Additional file 4).
There are some mRNAs expressed by non-OSN cell

types whose repressive actions on the OSN cell lineage
argue that they might decrease, rather than increase, during
induced neurogenesis. For example, Trp63 promotes self-
renewal of horizontal basal cells at the expense of prolifera-
tion of daughter cells that can differentiate into other cell
types [54]. In situations where horizontal basal cells are
activated to provide daughter cells for OSN replacement,
Trp63 should decrease. However, we detected an increase
in Trp63 mRNA abundance after bulbectomy (p = 0.0012;
fold difference = 1.283). In situ hybridization for Trp63 was
consistent with these data, showing a chain of labeled hori-
zontal basal cells throughout the olfactory epithelium both
ipsilateral and contralateral to bulbectomy (Figure 4). The
presence of as much or more Trp63 mRNA in horizontal
basal cells ipsilateral to unilateral bulbectomy as was
present contralateral to the lesion eliminates the alternative
explanation that Trp63 expression in some other cell type
masked a decrease of Trp63 in horizontal basal cells. This
is consistent with previous evidence that horizontal basal
cells do not contribute much to OSN replacement after
bulbectomy when only OSNs are damaged, but instead are
activated when both OSNs and sustentacular cells are
lesioned [21,23].
Early and late events during immature OSN
differentiation
Immature OSNs are increasing in prevalence (and per-
haps undergoing accelerated differentiation) at 5 days
after bulbectomy, so the majority of mRNAs expressed
primarily by immature OSNs increased (Figure 2B).
However, some mRNAs expressed primarily in immature
OSNs decreased instead. Existing in situ hybridization
data indicate that these differences are not simply errors
in cell type assignment. Are these increases and de-
creases instead merely stochastic variation? If they were,
then these two groups of mRNAs would have indistin-
guishable patterns of P(sp) and P(in) values and functional
bioinformatics would neither differ nor even reveal sta-
tistically overrepresented biological processes. Neither of
these predictions was correct, however. Not only were
over-represented categories detected, they differed in
ways that correlate with the trajectory of OSN differenti-
ation (Tables 4 and 5). For example, nascent OSNs
rapidly extend an apical dendrite and a basal axon that
enters the olfactory nerve bundles in the lamina propria
even before these cells detectably express the canonical
immature OSN marker, Gap43 [55]. Neurite growth not
only requires increased trafficking of membranes and a
new cytoskeletal organization to support the neurites,
but neurite extension in other types of neurons also
typically involves focal adhesion proteins [56,57]. The
biological processes associated with the immature OSN
mRNAs that increased after bulbectomy are therefore
linked to neurite growth. Examples of the underlying
mRNAs already known to encode proteins important for
neurite growth are Ablim1, Nrcam, Sptbn, Tln1, Vcl,
Fyn, Rab13 and Itgb1 [58-67].
In contrast, the functional relationships among the

immature OSN mRNAs that decreased were more
closely associated with the other end of the lifespan of
immature OSNs, especially processes that carry over into
mature OSNs (Table 5). For example, increased energy
production is a function shared by mature and immature
OSNs [31], consistent with the overrepresentation of the
mitochondrion category. Similarly, the axon category in-
cluded several mRNAs encoding proteins important for
axonal growth that are abundantly expressed in imma-
ture OSNs but also continue to be expressed in mature
OSNs, such as Ncam1, Ncam2, Crmp1, Dpysl2, Map-
k8ip1 [31,55]. The protein catabolism category includes
27 mRNAs that encode ubiquitin ligases, ubiquitin pro-
teases, or proteins that support ubiquitination in other
ways; all functions that are likely to be required in both
mature and immature OSNs.



Figure 3 (See legend on next page.)
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(See figure on previous page.)
Figure 3 In situ hybridization for the macrophage marker Cd68 (A,B) and a set of 11 genes predicted to be expressed in macrophages
(C – X) in tissue sections of olfactory epithelium ipsilateral to olfactory bulbectomy (OBX) and contralateral to OBX (control). Arrows in
B mark examples of macrophages labeled by Cd68. Bv, blood vessel; lp, lamina propria; nb, nerve bundle; nc, nasal cavity; oe, olfactory epithelium.
Scale bars, 20 μm.
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These biases in expression toward either end of the
differentiation of immature OSNs were further sup-
ported by the distributions of P(sp) and P(in) values,
which differed between immature OSN mRNAs that
increased versus decreased (Figure 5 and Table 6). In-
creased immature OSN mRNAs had P(sp) and P(in) value
distributions biased toward the Other cell type category,
the category that contains the basal cells that are the
direct progenitors of the immature OSNs. Decreased im-
mature OSN mRNAs showed the opposite trend, a bias
toward mature OSNs and lower probabilities of being
specific to immature OSNs. Taken together, these data
indicate that the dichotomous behavior of immature
OSN mRNAs following bulbectomy was driven by
whether the expression of these mRNAs initiates early
or late in OSN differentiation, and by whether expres-
sion carries over into mature OSNs. In situ hybridization
data exists for 5 of the immature OSNs transcripts that
decreased (Mapk8ip1, Crmp1, Dpysl2, Emx2, Palm) and
they are consistent with this interpretation. They all
show detectable expression in mature OSNs along with
their strong expression in immature OSNs [31]. Such
mRNAs can still show an overall decrease in abundance
because mature OSNs are several-fold more abundant
than immature OSNs in the adult olfactory epithelium.
This fact is a likely explanation for immature OSN
mRNAs that decreased after bulbectomy, especially for
genes whose expression begins late during the differenti-
ation of immature OSNs. However, we cannot rule out
alternatives such as the possibility that the absence of
mature OSNs after bulbectomy causes immature OSNs
to actively reduce expression of some of their genes to
facilitate differentiation or the related idea that the onset
of expression of these genes is delayed after bulbectomy.
Table 4 Overrepresented biological processes among
immature OSN RNAs that increased after bulbectomy

Gene ontology term # of Genes

Focal adhesion (5) 11

ER, Golgi & vesicular trafficking (25) 131

Kinases & nucleotide binding (17) 88

Regulation of cytoskeletal organization (6) 24

Ordered by strength of over-representation. Parentheses, number of significant
categories combined under one heading.
Many of the immature OSN mRNAs defined by P(in)
immature OSN > 0.5 were included in the set of mRNAs
shared by mature and immature OSNs, defined here as
P(sp) Shared > 0.5. Not surprisingly, these shared mRNAs
also fell into two groups differentially affected by bul-
bectomy (Figure 2C). This is possible because even
though they are expressed by both mature and immature
OSNs, many of these mRNAs have visible differences in
the amount of in situ hybridization signal, arguing that
they are differentially abundant in mature or immature
OSNs [31]. Just as with immature OSN mRNAs, these
differences were captured quantitatively in the P(sp) and
P(in) values. Indeed, shared OSN mRNAs differentially
Figure 4 Trp63 did not decrease in horizontal basal cells after
bulbectomy. A. Trp63 in situ hybridization signal in horizontal basal
cells (arrow) on control (contralateral) side. B. Trp63 in situ
hybridization signal in horizontal basal cells (arrow) ipsilateral to
bulbectomy. Images from the dorsal recesses of the same tissue
section. Scale bars, 25 μm.



Table 5 Overrepresented biological processes among
immature OSN RNAs that decreased after bulbectomy

Gene ontology term # of Genes

Protein catabolism (8) 37

Membrane coat, lysosomal sorting vesicles (4) 9

Axon (3) 19

Mitochondrion (1) 60

Ordered by strength of over-representation. Parentheses, number of significant
categories combined under one heading.
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sensitive to bulbectomy had distinct distributions of P(sp)
and P(in) values (Table 7). Shared OSN mRNAs that
increased had a similar bias toward expression in the
Other cell type category while shared OSN mRNAs that
decreased had a bias toward mature OSNs.

Transcription factors and OSN differentiation
Transcription factors expressed in basal cells or imma-
ture OSNs should play critical roles in the shifts in gene
expression programs that drive progression through the
OSN cell lineage. Combining these new data with
our previous study of the genomics of adult olfactory
neurogenesis [27], we have detected a total of 203
Figure 5 Immature OSN mRNAs that increased after bulbectomy (red
that decreased after bulbectomy (blue). A. Decreased mRNAs had highe
categories) while increased mRNAs had higher values in Other cell type an
B – D. Examples of the density distributions of the increased and decrease
patterns in the olfactory epithelium. All distribution pairs differed (p = 0.000
transcription factor mRNAs that increased 5 – 7 days
after bulbectomy when basal cell proliferation is peaking
(Additional file 5). P(sp) and P(in) values predict that
nearly all of these are expressed in cell types other than
OSNs. Indeed, only four of them have their highest P(in)
values in the immature OSN category. Given the expect-
ation that adult neurogenesis recapitulates the primary
neurogenesis that occurs when the embryonic olfactory
epithelium first forms, we were not surprised to find
increased abundance of several transcription factor
mRNAs from genes whose germ line deletions cause
defects in the development of OSNs: Neurog1, Emx2,
Six1 and Runx1 [44,47,55,68,69].
Thousands of genes are expressed in the olfactory

epithelium and hundreds of them are involved in
transcriptional regulation. By identifying the transcrip-
tional regulators that increased five days after bulbect-
omy and knowing whether these transcripts are
present in immature OSNs or non-OSN cell types, we
have predicted transcription factors involved in the
shifts in gene expression programs that drive neural
fate decisions and subsequent steps in OSN differenti-
ation. The key role that basal cells play in driving the
formation of OSNs is reflected in the evidence that
98% of the annotated transcriptional regulators that
) have an expression pattern distinct from immature OSN mRNAs
r P(sp) and P(in) values in mature OSN categories (mOSN and Shared
d immature OSN-specific categories. Error bars, standard deviations.
d immature OSN transcripts for three measures of cell type expression
0 in each case).



Table 6 Immature OSNs mRNAs that were differentially responsive to bulbectomy had distinct patterns of P(sp) and
P(in) value averages

iOSN mRNA response # genes P(sp) mOSN P(sp) iOSN P(sp) OSN P(in) mOSN P(in) iOSN P(in) Other

Up 522 .00 ± .01 .41 ± .28 .48 ± .28 .48 ± .28 .89 ± .13 .11 ± .13

Down 578 .01 ± .02 .24 ± .19 .73 ± .19 .74 ± .20 .97 ± .05 .02 ± .05

All 8756 .03 .3 .63 .66 .93 .04

iOSN, immature OSN; mOSN, mature OSN; OSN, shared by both mature and immature OSNs.
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increased after bulbectomy are expressed primarily in
non-OSN cell types. Many are already known to be
expressed in basal cells, sometimes continuing into im-
mature OSNs, so we hypothesize that others are likely
to follow this same pattern of expression. The products
of these genes probably help drive basal cells and im-
mature OSNs along the process of OSN differentiation.
The coexpression of these transcription factors across
cell type and time help identify potential networks of
transcriptional regulators.

Conclusions
A comprehensive catalog of the genes expressed by a cell
type is a valuable tool, providing not only a long list of
molecular functions performed by the products of each
of the genes, but also revealing emergent properties
formed by the functional relationships between the
encoded proteins. By triggering apoptosis of mature
OSNs and causing predictable changes in mRNA abun-
dance, we confirmed the reliability of our previous iden-
tification of genes expressed in OSNs [31,32] and were
able to further parse genes expressed by immature OSNs
into early and late categories – differences that correlate
with functions associated with neurite outgrowth ver-
sus neuronal homeostasis, respectively. Cell lineages
may look like distinct steps when viewed from the per-
spective of cell morphology or the expression of a few
marker genes, but when viewed from the perspective of
the entire transcriptome the progression of a cell
through the OSN cell lineage appears more gradual.
The genes expressed in any given cell type in the
lineage initiate (and terminate) expression at widely
different points in the lineage.
The molecular underpinnings of adult neurogenesis in

the brain often appear to recapitulate events that drive
embryonic neurogenesis [70-75]. In the case of the
Table 7 Transcripts expressed by both mature and immature
bulbectomy had distinct patterns of P(sp) and P(in) value avera

Shared OSN mRNA response # genes P(sp) mOSN P(sp) iO

Up 340 .02 ± .05 .18 ±

Down 955 .10 ± .12 .11 ±

All 6442 .04

iOSN, immature OSN; mOSN, mature OSN.
olfactory epithelium a comprehensive assessment of em-
bryonic gene expression is lacking, so a direct compari-
son is not possible. However, we found extensive
similarity with embryonic brain. Of the 1,723 mRNAs
increased after bulbectomy, 54% of them were also sig-
nificantly more abundant during the neurogenic phase
of embryonic hippocampal development at age E10.5 –
E11.5 compared to a 27% match during the gliogenic
phase at age E16.5 [76]. 100 of these shared genes are
annotated as regulating transcription. They include
Alx1, Ets1, Etv6, Eya2, Eya4, Foxc1, Foxn3, Hey1, Klf3,
Meis1, Meis2, Msx1, Mybl1, Myc, Mycn, Neurod1, Neu-
rog1, Otx1, Otx2, Pax3, Pax6, Rest, Runx1, Six1, Six2,
Smad3, Smad5, Smad7, Stat1, Stat6, Tbl1x, Tead2,
Tead3, and Trp63. The process of producing different
types of neurons appears fundamentally similar across
two widely different neural structures and ages. How-
ever, it would be premature to conclude that these
shared genes have identical functions in embryonic
brain development and adult olfactory neurogenesis
because the integrative nature of transcriptional
regulation would allow transcriptional regulators to
contribute to distinctly different events in the develop-
ment of different neural phenotypes.
Significant progress in identifying molecular events

that drive adult neurogenesis have long been made by
pursuing studies of individual genes, and more recently
by applying global expression profiling methods to the
problem [27-29,77-80]. We have now achieved a com-
prehensive characterization of changes in mRNA abun-
dance during adult neurogenesis in one tissue and have
been able to specify biological processes active at specific
stages in this lineage. A functional overview of the OSN
cell lineage that emphasizes the changes resulting from
shifts in gene expression patterns can be built by incorp-
orating data from analyses of specific stages in the OSN
OSNs (OSN) that were differentially responsive to
ges

SN P(sp) OSN P(in) mOSN P(in) iOSN P(in) Other

.13 .70 ± .14 .72 ± ,15 .88 ± . 12 .10 ± .12

.12 .78 ± .11 .88 ± .13 .89 ± .12 .01 ± .04

.17 .75 .8 .93 .03
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lineage (Figure 6). Proliferation of neurally fated globose
basal cells and changes in transcriptional regulation
within these cells produce Neurog1+ globose basal cells
whose progeny become nascent OSNs characterized by
the initial extension of axons and dendrites. Increasing
expression of genes involved in vesicular trafficking,
cytoskeletal organization, focal adhesion and cholesterol
biosynthesis help speed the growth of the neurites and
the initial differentiation of immature OSNs [31]. Fur-
ther immature OSN differentiation is characterized by
expression of the components of networks that increase
the capacity of these cells to translate proteins, respond
to stress, transport proteins and make ATP. These net-
works carry over into mature OSNs, where the final
stages of differentiation are completed by shifting to ma-
ture patterns of expression of ion channels, transporters
and the final components of synapses and olfactory cilia.
Many of the gene products contributing to these func-
tions can now be identified. However, we should not
forget that more than half of the genes whose mRNAs
change in abundance after bulbectomy either encode
proteins with no known function or are annotated only
by similarity to other proteins. Many of these unstudied
genes are likely to encode proteins involved in the
Figure 6 Overview of selected overrepresented biological
processes associated with distinct stages in the OSN cell
lineage using data from this study and others [31,32,55].
biological processes already identified as supporting
adult neurogenesis in the olfactory epithelium, but some
may also contribute to functional networks that we have
not yet been able to associate with the OSN cell lineage.

Methods
Mice
C57Bl/6 mice were purchased from Harlan Laborator-
ies, Inc. (Indianapolis, IN). Mice were housed in the
Department of Laboratory Animal Resources at the
University of Kentucky. All treatments and procedures
used with mice were approved by the university’s insti-
tutional animal care and use committee and were
consistent with National Institute of Health guidelines
on animal use in research.

Olfactory bulbectomy
Male C57Bl/6 mice, age 6 weeks, were anesthetized
with Ketamine/Xylazine (100 mg/kg; 10 mg/kg) i.p.,
the forehead was shaved, disinfectant applied to this
site, and a lubricant (Artificial Tears, Butler Schein,
Dublin, OH) was applied to the eyes. A midline inci-
sion was made between the eyes and a 1.5 mm hole
above one olfactory bulb was drilled in the skull with a
diamond-tipped burr. This bulb was removed by
aspiration, the cavity filled with GelfoamW (Pfizer, New
York), and the skin was closed with 5-O Ethilon su-
tures (Ethicon, San Angelo, TX). To enhance recovery,
0.5 ml of warm saline was given subcutaneously. The
mice were placed on a heating pad and allowed to
recover, then given food and water ad libitum for
5 days.

RNA isolation and mRNA abundance measurement
Three mice previously subjected to unilateral bulbect-
omy were euthanized by inhalation of CO2, decapi-
tated, and dissected to isolate olfactory epithelia
ipsilateral and contralateral to the lesion. These were
placed separately into ice-cold TriReagent (Molecular
Research Center, Inc., Cincinnati, OH) for homogenization
using a polytron. Total RNA was isolated according
to the protocol supplied with the TriReagent and
stored at −80°C. RNA quantity and quality was de-
termined with a UV spectrophotometer and a model
2100 Bioanalyzer (Agilent Technologies, Palo Alto,
CA).
Labeling of RNA samples, hybridization to Affyme-

trix GeneChipW Mouse Exon 1.0 Sense Target Arrays,
and scanning of signals were done by the University
of Kentucky Microarray Core Facility. Affymetrix
Expression Console Software was used for generation
of gene level robust multichip analysis values for
transcript clusters. These were analyzed at the core
annotation level to limit the data to probe sets that
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map to genes with annotated full-length open reading
frames. These data were manipulated in Excel (Microsoft
Corp., Redmond, WA). Data from the 10% of genes
with the lowest average signal intensities were discarded.
Statistical analyses via paired t-tests were done in SAS 9.2
(SAS Institute, Cary, NC). Setting α = 0.05 gave false discov-
ery rates of 19.3% or less. Microarray data are available via
the Gene Expression Omnibus (http://www.ncbi.nlm.nih.
gov/geo/) under accession number GSE45931.

Bioinformatics
Functional bioinformatics to identify over-represented
categories of biological processes, molecular functions
and cytoplasmic compartments was done using DAVID
(http://david.abcc.ncifcrf.gov/), with Benjamini cor-
rected p-value criteria set at 0.05 [81]. Statistically
overrepresented categories supported by less than 10
genes (unless directly linked to other overrepresented
functional categories) and extremely broad categories
near the top of the Gene Ontology hierarchy were
ignored.

Genes
Mouse genes and mRNAs are displayed according to the
gene symbol conventions of Genbank, a repository of
the National Center for Biotechnology Information (U.S.
A). Gene accession numbers for the genes corresponding
to all significantly affected mRNAs are provided
(Additional file 1: Table S1).

In situ hybridization
As we have described previously, the in situ hybridization
methods of Ishii and colleagues [82,83] were followed
meticulously, using 10–16 μm coronal cryosections of the
nasal region of the head [27,32,43]. For each mRNA
species, cDNA fragments of several hundred bp were
Table 8 Examples of P(sp) and P(in) probabilities for olfactory e

Cell type Marker mOSN P(sp) iOSN P(sp) Shared OSN

Sus Epas1 0.00 0.12 0.00

Sus Slc2a3 0.00 0.00 0.00

mOSN Omp 1.00 0.00 0.00

mOSN Adcy3 1.00 0.00 0.00

iOSN Gap43 0.00 0.93 0.06

iOSN Stmn2 0.00 0.72 0.28

GBC Neurog1 0.00 0.31 0.02

GBC Ascl1 0.00 0.02 0.00

HBC Trp63 0.00 0.05 0.00

HBC Krt5 0.00 0.13 0.00

Sus, sustentacular cell; mOSN, mature OSN; iOSN, immature OSN; GBC, globose bas
non-OSN cell types.
amplified by PCR from olfactory epithelium cDNA and
cloned into pBluescript (Additional file 6). The fragments
chosen were selected to have less than 80% identity to
any other mouse mRNA. Recombinant RNA probes la-
beled with digoxygenin were prepared for each mRNA
species. Sense controls were invariably negative.
Wide-field images were obtained on a Nikon Diaphot

300 inverted microscope using a Spot 2e camera
and Spot software version 4.0.6 through a 40x/0.75
numerical aperture Plan Fluor objective or a 4x/0.13
numerical aperture Plan objective. Images were proc-
essed in Adobe Photoshop by adjusting size and bright-
ness. Images were combined and labeled in Deneba
Canvas (version 8.0).

Cell type assignments
Previous work profiling mRNA abundance in purified
mature and immature OSNs resulted in the estimation
of probabilities of expression specific to mature OSNs,
to immature OSNs, to both developmental stages of
OSNs (shared) and to the residual population of all
other cell types in the olfactory epithelium (Other) for
every gene whose mRNAs were detected - termed P(sp)
values [31]. In addition to specificity, also calculated
were the probabilities of mere expression in mature
OSNs, immature OSNs and the Other cell type
category for all genes whose mRNAs were detected -
termed P(in) values. As examples, the values of several
cell type specific markers are shown in Table 8. The
accuracy of these data, judged by in situ hybridization
for 352 mRNAs, was 96% for P(in) value predictions of
expression in OSNs and 86% for P(sp) value predictions
of specificity. To use these data as quantitative
measures of expression pattern similarity among
mRNAs affected by bulbectomy, the density distribu-
tions of P(in) and P(sp) values of groups of mRNAs that
pithelium cell type markers

P(sp) Other P(sp) mOSN P(in) iOSN P(in) Other P(in)

0.88 0.00 0.12 0.88

1.00 0.00 0.00 1.00

0.00 1.00 0.00 0.00

0.00 1.00 0.00 0.00

0.00 0.06 1.00 0.00

0.01 0.28 0.99 0.01

0.66 0.02 0.34 0.66

0.98 0.00 0.02 0.98

0.95 0.00 0.05 0.95

0.87 0.00 0.13 0.87

al cell; HBC, horizontal basal cell; OSN, mature and immature OSNs; Other,

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://david.abcc.ncifcrf.gov/
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responded similarly to bulbectomy were calculated and
then compared by Wilcoxon signed rank test.

Additional files

Additional file 1: Table S1. Significant mRNAs; Up list followed by
Down list.

Additional file 2: Transcripts that increased after bulbectomy even
though their P(sp) mature OSN values predict expression in mature
OSNs proved to be expressed in non-OSN cell types.

Additional file 3: Examples of mature OSN expression patterns of
transcripts that went down after bulbectomy.

Additional file 4: Transcripts that decreased after bulbectomy even
though their P(sp) Other values predict expression in non-OSN cell
types proved to be expressed in OSNs.

Additional file 5: Differentially abundant transcription factor
mRNAs.

Additional file 6: DNA fragments used for in situ hybridization
probes.
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