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Abstract

The α7 nicotinic acetylcholine receptor (nAchR) and NMDA glutamate receptor (NMDAR) are both ligand-gated
ion channels permeable to Ca2+ and Na+. Previous studies have demonstrated functional modulation of NMDARs
by nAchRs, although the molecular mechanism remains largely unknown. We have previously reported that
α7nAchR forms a protein complex with the NMDAR through a protein-protein interaction. We also developed an
interfering peptide that is able to disrupt the α7nAchR-NMDAR complex and blocks cue-induced reinstatement of
nicotine-seeking in rat models of relapse. In the present study, we investigated whether the α7nAchR-NMDAR
interaction is responsible for the functional modulation of NMDAR by α7nAchR using both electrophysiological
and behavioral tests. We have found that activation of α7nAchR upregulates NMDAR-mediated whole cell currents
and LTP of mEPSC in cultured hippocampal neurons, which can be abolished by the interfering peptide that disrupts
the α7nAchR-NMDAR interaction. Moreover, administration of the interfering peptide in mice impairs novel object
recognition but not Morris water maze performance. Our results suggest that α7nAchR/NMDAR coupling may
selectively affect some aspects of learning and memory.
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Background
Glutamate is the principal excitatory neurotransmitter in
brain and N-methyl-D-aspartate (NMDA) receptors, one
of the major glutamate receptors, are important in the
activity-dependent synaptic plasticity and excitotoxicity
that underlies learning, memory, neural development
and some neurological disorders [1-3]. Both NMDAR
and the α7 nicotinic acetylcholine receptor (nAchR) are
ligand-gated ion channel receptors with high Ca2+ per-
meability. NMDARs contain intrinsic ion channels com-
prised of NR1 subunits, an essential subunit of NMDAR
that exists as a number of splice variants, and NR2 sub-
units, which are encoded by four different gene prod-
ucts, termed NR2A-D [4,5].
Nicotine interacts with nicotinic receptors (nAchRs) in

the brain to initiate neuroadaptive changes at both cellu-
lar and circuit levels. The nAchRs are composed of five
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distinct membrane-spanning subunits (α and β subunits)
that combine to form a functional receptor. There are
nine isoforms of the neuronal α subunit (α2–β10), and
three isoforms of the neuronal β subunit (β2–β4) [6].
Various sub-types of nAchRs differ in their subunit com-
position and sensitivity to nicotine and are expressed
in addiction-relevant brain regions including prefrontal cor-
tex, nucleus accumbens, dorsal striatum, and hippocampus
[7]. Unlike NMDARs, nAchRs can exist as both hetero-
metric and homo-metric- assemblies of these subunits. α7
nAchRs are highly expressed in hippocampus [7].
The activation of nAchRs can modulate glutamatergic

neurotransmission in several ways. Previous studies have
reported that nicotine facilitates the induction of LTP in
the hippocampal CA1 region [8] by the activation of α7
nAchRs on pyramidal cells [9,10]. This induction of LTP
can be blocked by AP5, an NMDAR antagonist [11].
Furthermore, in vivo nicotine exposure was reported to
induce the enhancement of NMDAR currents in the
hippocampus [12]. This nicotine effect is maintained dur-
ing continued nicotine exposure and is accompanied by
increased tyrosine phosphorylation of NR2B [13]. In con-
trast to the presynaptic nAchRs, somatic or postsynaptic
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nAchRs can initiate a Ca2+ signal that can act via calmodu-
lin to reduce the responsiveness of NMDARs, as mani-
fested by evoked excitatory postsynaptic currents (eEPSCs)
[14]. Furthermore, NMDAR antagonists have been found
to interfere with tolerance, sensitization, physical depend-
ence and conditioning to self-administrated nicotine, as
well as other drugs of abuse [15].
We have previously shown that the α7nAchR interacts

with NMDARs and their coupling mediates cue-induced
reinstatement of nicotine in rat [16]. In the present study,
we plan to investigate the role of α7nAchR-NMDAR
coupling in modulating NMDAR functions. Since both
α7nAchR and NMDAR have been implicated in learning
and memory, we will also investigate the behavioral effects
of α7nAchR-NMDAR coupling in some cognitive tests.

Results and discussion
Activation of α7nAchR increases NMDAR mediated
whole-cell currents
Previously, we showed that activation of α7nAchR by
choline facilitates α7nAchR-NR2A complex formation
[16]. To assess the functional impact of the α7nAchR-
NMDAR interaction following α7nAchR activation, we
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examined the effects of α7nAchR activation on NMDAR-
mediated whole-cell currents in rat hippocampal primary
cultures. As shown in Figure 1A, co-application of 1 mM
choline with 50 μM NMDA/10 μM glycine produced a
significantly larger current than the current induced by
NMDA/Glycine alone (choline/NMDA/glycine: 2036.3 ±
317.2 pA; NMDA/glycine: 812.9 ± 215.5 pA, n = 43,
p < 0.05). The synergistic effect of choline/NMDA co-
application is specific to NMDAR since co-application
of choline with 100 μM KA did not enhance whole-cell
currents compared to KA treatment alone (Figure 1B).
It is difficult to differentiate whether the observed en-

hancement of whole-cell current induced by co-application
of choline with NMDA is mediated by nicotinic receptors
or NMDARs since both receptors are cation ion channel
that are permeable to calcium and sodium. However, the
observed enhancement of whole cell current induced by
co-application of choline with NMDA can be blocked by
simultaneous application of the NMDAR channel blocker
MK-801 (10 μM), but not with the nicotinic receptor open
channel blocker chlorisondamine (20 μM) (Figure 1C, D).
This suggests that the observed enhancement of whole cell
currents is due to ion influx through NMDAR, but not
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nicotinic receptors. Furthermore, α7-nAchR specific antag-
onists α-bungarotoxin abolish the synergistic effect of
choline/NMDA co-application (Figure 1D), indicating
that the activation of α7-nAchR is required for this
process.

Activation of α7nAchR facilitates NMDAR dependent LTP
of mEPSCs
To determine whether the α7nAchR is able to regulate
synaptic strength, we examined the miniature excitatory
postsynaptic currents (mEPSCs) during LTP upon acti-
vation of α7nAchR. Previous studies have demonstrated
that activation of nicotinic acetylcholine receptors facili-
tates induction of long-term potentiation, although the
molecular mechanism underlying this process remains
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unknown. Thus, we initiated our investigation by confirm-
ing the effect of nicotine on mEPSC during LTP, using the
glycine-induced LTP model in rat hippocampal primary
neuron cultures. The glycine-induced LTP model is similar
to the electrically evoked EPSCs in CA1 neurons in hippo-
campal slices [17-19]. Consistent with previous studies
in brain slices, choline application (1 mM, 8 minutes)
significantly enhanced the frequency of mEPSC during
LTP produced by glycine application (200 μM; 3 min)
(Figure 2A, C). There is only a small but significant in-
crease in current amplitude mEPSC of LTP (Figure 2B-E),
which may reflect the nature of LTP in primary cultures
and the recording paradigm [20,21]. We also concluded
that the choline-induced upregulation of mEPSC of LTP is
NMDAR dependent since D-APV (100 μM) co-applied
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with choline blocked the effect of choline on both the fre-
quency (data not shown) and the amplitude (Figure 2E)
mEPSC of LTP.

α7nAchR-NMDA coupling is responsible for modulation of
NMDAR function by the activation of α7nAchR
Next, we determined whether the direct coupling of
α7nAchR-NMDA plays a role in the functional inter-
action between α7nAchR and NMDAR. Our previous
reports showed α7nAchR/NMDAR coupling was medi-
ated by a 10 amino acid fragment (L336-M345) within
the second intracellular loop of α7nAchR. Administra-
tion of this peptide could disrupt α7nAchR/NMDAR
coupling as shown in the co-immunoprecipitation experi-
ment. Furthermore, this peptide blocked cue-induced
nicotine reinstatement in an animal model of relapse [16].
As shown in Figure 3A, B, intracellular application of
α7pep2[L336-M345] peptide (10 μM), which has been
shown to be able to disrupt α7nAchR-NMDA coupling,
blocked the choline-induced enhancement of NMDA-
mediated whole cell currents, while the control peptide,
α7pep1[R316-G325], has no such effect. These data suggest
that the α7nAchR-NR2A interaction is required for the
functional modulation of NMDAR by the activation of
α7nAchR.
Furthermore, we tested the effect of the interfering pep-

tide α7pep2[L336-M345] in choline-mediated NMDAR-
dependent mEPSC changes during LTP. As shown in
Figure 4A-D, intracellular application of α7pep2[L336-
M345] peptide blocked choline-induced upregulation
of mEPSC frequency and amplitude during LTP, indicating
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failed to upregulate mEPSC amplitude with the presence of α7pep2 (basal: 24
that the α7nAchR-NR2A interaction is essential for
choline-induced modulation of NMDAR-dependent mEPSCs
during LTP.

Disruption of the α7nAchR-NR2A interaction selectively
impaired Novel Object Recognition
Both α7nAchR and NMDARs have been implicated in
learning and memory processes. Thus, we sought to in-
vestigate whether the α7nAchR-NR2A interaction might
affect learning and memory. We first tested the α7pep2
[L336-M345] peptide for possible effects on the Morris
water maze. Mice were injected intraperitoneally with
TAT-α7pep2[L336-M345] (3 ng/g) or TAT-α7pep1[R316-
G325] 30 min prior to training and probe trials. As shown
in Figure 5, there is no difference between α7pep2[L336-
M345] peptide treated mice and TAT-α7pep1[R316-G325]
treated mice in latency to find the platform. There is also
no difference between the two groups in the acquisition
phase, nor in the probe trial, indicating that the disruption
of the α7nAchR-NMDAR interaction has no effect on the
spatial learning and memory required for this task.
To further evaluate the effect of our interfering pep-

tide on cognition, we used two other behavioral tests:
the displaced object recognition task and the novel object
recognition task. As shown in Figure 6 A, TAT-α7pep2
[L336-M345] peptide treatment, but not TAT-α7pep1[R316-
G325] treatment, induces impairment in novel object
recognition in mice. In contrast, there is no difference
between the two groups in the displaced object recog-
nition task (Figure 6B). To investigate whether the
TAT-α7pep2[L336-M345] peptide might affect anxiety-
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related behaviour, we tested the effect of TAT-α7pep2
[L336-M345] in the elevated plus maze. As shown in
Figure 6C, there is no difference between the two groups
in the number of entries into the open arms, the time
spent on the open arms and the head dips. There is also
no difference between the two groups in the total distance
travelled, margin and central distance travelled, and time
spent in the marginal and central zones (Additional file 1:
Figure S1A-E). Taken together, our findings suggest
that the α7nAchR-NMDAR interaction may selectively
impair novel object recognition.
In the present study, we provide evidence that the

α7nAch-NMDAR complex modulates NMDAR-mediated
whole cell currents and LTP. Furthermore, disruption of
this complex via an interfering protein peptide TAT-
α7pep2 [L336-M345] had no effect on Morris water maze
and displaced object recognition in mice, but specific-
ally impaired novel object recognition. Our study
provide the first demonstration that α7nAchR regu-
lates NMDA-mediated whole cell currents and LTP
through a protein-protein interaction. More interest-
ingly, our data suggest that the α7nAchR-NR2A inter-
action may specifically play a role in non-spatial learning
and memory.
Regulation of ligand-gated ion channel function was

traditionally thought to be mainly regulated by recep-
tor phosphorylation and trafficking [22,23]. Receptor
phosphorylation involves intracellular second-messengers,
including various phosphatase/kinases, while receptor
trafficking can be induced by either receptor phos-
phorylation or direct coupling with intracellular pro-
teins that lead to changes in receptor conformation or
receptor plasma membrane expression. Thus, receptor phos-
phorylation, conformational changes and plasma membrane
expression constitute the major means to modulate ligand-
gated ion channel function [24].



Figure 5 TAT-α7pep2 peptide treatment has no effects on spatial learning and memory. Latency to find the platform of mice was not
affected by peptide treatment in the Morris water maze task. (A) In the acquisition phase, escape latency to find a hidden platform located in the
southeast (SE) quadrant was unaffected by treatment. (B) Histogram of percent time spent in each quadrant at probe test.
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We did not directly investigate the mechanism by which
the α7nAchR-NR2A interaction can lead to enhanced
NMDA currents. However, we speculate that there are
several possible mechanisms: enhanced phosphorylation,
conformational changes or altered cell surface expression
of NMDAR. Currently, there is no evidence supporting
that either α7nAchR or NMDAR are able to directly acti-
vate second messenger systems, however, both receptors
are calcium permeable [25]. It is possible that the calcium
influx induced by the activation of α7nAchR may lead to
the activation of intracellular signaling pathways that lead
to changes in NMDAR phosphorylation, with potential
downstream functional changes. The α7nAchR-NMDAR
complex may also induce conformational changes in the
NMDAR or enhance NMDAR cell surface expression that
could alter current flow.
We have found that the administration of the inter-

fering peptide in mice impairs novel object recognition,
but not Morris water maze performance and displaced ob-
ject recognition, suggesting that the α7nAch-NR2A inter-
action may specifically play a role in non-spatial learning
and memory. However, the fact that our interfering
peptide blocks choline-induced upregulation of mEPSC
during LTP, which contributes to spatial learning perform-
ance, seems contradictory. LTP has been recognized as a
cellular model for learning and memory. Although LTP is
generally thought to be associated with spatial learning
and memory, there are examples of inconsistencies be-
tween LTP and Morris water maze performance, a com-
mon way of testing spatial learning and memory. For
example, Dr. Morris’ lab reported in 1995 [26] that AP5
(an NMDA receptor antagonist) impaired both LTP and
water maze performance. However, the AP5-induced
learning deficit in the water maze can be prevented if rats
are pre-trained in a different water maze before adminis-
tration of AP5, implying that NMDA receptor-mediated
LTP may not be required for all components of spatial
learning. In addition, the same issue of Nature includes
another paper by Saucier and Cain that shows NMDA
receptor-mediated dentate LTP is not required for normal
spatial learning in the water maze [27]. Thus, our result
showing that disruption of α7nAch-NR2A interaction im-
pairs LTP, but not Morris water maze performance, seems
contradictory, but it is not unique.
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Figure 6 TAT-α7pep2 Peptide treatment affected nonspatial learning and memory. TAT-α7pep2 Peptide treatment impaies novel object
recognition (A) but not displaced object recognition (B). Times of exploration of the DO and NDO were recorded and expressed as a percentage
of the total time of objects investigated. In the novel object recognition session, one of the familiar NDOs was replaced with a new object (NO)
at the same location and the two familiar DOs were removed. Data were analyzed with ANOVA with treatment as a between-subjects factor, and
object rearrangement or object replacement as a repeated measures factor. The Tukey test was used for post hoc comparisons when ANOVA
yielded statistically significant main effects or interactions. (C) In the elevated plus maze, no significant changes in the percent of time spent in
open arms, entries into the open arms and head dips were observed in different treatment groups.
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We have previously found that disruption of α7nAchR-
NMDAR complex using TAT-α7pep2[L336-M345] blocks
cue induced reinstatement of nicotine self-administration
in rats [16]. In the current study, we have further explored
behavioral changes in mice given TAT-α7pep2[L336-M345].
We found that TAT-α7pep2[L336-M345] had no effect on
spatial learning and memory in the Morris water maze
and displaced object recognition task in mice, but did
affect novel object recognition. This is consistent with pre-
vious findings that systemic administration of selective
α7nAchR agonists reverse working memory impairments
caused by NMDAR blockade in several behavioral tasks
including the 16-arm radial maze, Y-maze, Morris water
maze and linear maze, and novel object recognition test
[28-31]. There are also other examples of functional inter-
action between the α7nAchR and NMDAR. Cholinergic in-
nervation of the hippocampus modulates activity-dependent
synaptic plasticity, such as long-term potentiation (LTP)
and other processes that contribute to learning and mem-
ory [32]. Nicotine was found to enhance LTP of EPSPs in
the dentate gyrus and to convert weak stimuli-evoked
short-term potentiation into LTP in the CA1. The selective
α7 nAchR agonists choline and 2,4-dimethoxybenzlidine
anabaseine have also been found to mimic the facilitative
action of nicotine in potentiating LTP [33-35], although
the mechanisms underlying the effects of α7nAchR on
NMDAR-mediated function remain unclear.

Conclusions
Our results confirm a physical interaction between
α7nAchR and the NR2A of NMDAR that affects both
NMDAR-mediated function and novel object recogni-
tion. These findings increase our understanding of these
two receptor systems and suggest future experiments to
further investigate the mechanisms underlying the func-
tional effects of the interaction.

Methods
Primary cultures of dissociated cells
Hippocampi were collected from fetal (E18) Wistar rats.
Fetuses are removed from pregnant rats anesthetized by
inhalation of isoflurane and killed by cervical dislocation.
The dissection and dissociation were performed in ice-
cold Hank’s balanced salt solution (HBSS, without Ca++

and Mg++ Gibco) supplemented with 10 mM HEPES
(pH 7.4) and 1 mM sodium pyruvate. Neurons were mech-
anically dispersed by trituration using glass Pasteur pi-
pettes with reduced tips and then added to plating solution
composed of 89.5% Neural Basal (NB), 10% horse serum,
and 0.5% Penicillin/streptomycin (P/S) [36]. The cells
were plated on German origin glass coverslips coated with
0.1 mg/ml poly-d-lysine in Borate Buffer. The cell density
was about 50,000-80,000/ml. After 5/6 hours of plating,
half of the plating solution was replaced by feeding
solution containing 98% NB, 2% B-27 supplement,
0.5 mM L-glutamine and 0.5% P/S (all from Gibco). The
cultures were maintained by feeding twice weekly by re-
placing half of the solution with fresh feeding solution.
After 6 days of plating, 5 μM Ara-C was added to stop the
growth of glial cells.

Electrophysiology
Miniature excitatory postsynaptic currents (mEPSCs)
were recorded from cultured hippocampal neurons 2 to
4 weeks days after plating under a whole-cell patch clamp
configuration [36]. Electrodes (3–5 MΩ) were pulled from
high lead pipettes (Corning 8161, Warner Instruments).
Cells were voltage clamped at −70 mV. Access resistance
is below 10 MΩ; recordings with access resistance varying
more than 10% were rejected from analysis. The extracel-
lular solution contained (in mM) NaCl 140, CaCl2 1.3,
KCl 5.0, HEPES 25, glucose 33, TTX 0.0005, strychnine
0.001, and bicuculline methiodide 0.01, at pH 7.4 and
osmolarity 325–335 mosmol−1. Each of the tested cells
was continuously perfused with the extracellular solution
from a single barrel of a computer-controlled multi-
barreled fast-step perfusion system (Warner Instruments
Inc.). The receptor agonists were applied from different
barrel(s).
The response to nicotinic agonists by different hippo-

campal cultures was variable. Overall, about 30% (53 of
170 cells) of the cells displayed positive nicotinic responses
(more than ten times the basal RMS noise level). Only re-
sponsive cells were used for further whole-cell or synaptic
activity analysis. The intracellular solution consisted of
(in mM): CsCl2 140, EGTA 2.5, MgCl2 2, HEPES 10,
TEA 2, and K2ATP 4, at pH 7.3; and osmolarity 300
to 310 mosmol−1 [19]. In some experiments 10 μM of
peptides α7pep1 and α7pep2 were included in the
intracellular solution and dialyzed for 30 minutes be-
fore recording. Recordings were made at room temperature
(21-23°C). Series resistance was not compensated. Synaptic
activity was recorded using an Axopatch 200B (Axon
Instruments, Inc.); signals were filtered at 2 kHz, digitized
at 10 kHz, and stored in a lab computer. Data were ana-
lyzed using Mini Analysis Software (Synaptosoft, Inc.).
mEPSC frequency and amplitude for each time point were
obtained from a two minute recording. The trigger level for
event detection was three times higher than that of baseline
noise. Visual inspection was performed to eliminate false
events. Data were expressed as mean ±SEM, t-test were
used to test the statistical significance of differences be-
tween groups.

Behavioural testing
All animal procedures were conducted in accordance with
the requirements of the Province of Ontario Animals for
Research Act, 1971 and the Canadian Council on Animal
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Care (CCAC 1984, 1995). To examine the effects of
α7pep2[L336-M345] in learning and memory, C57BL/6 J
mice were used for the water maze and object recognition
tasks. In the water maze task, a single daily intraperitoneal
injection of α7pep2[L336-M345] (3 ng/g) or vehicle was
administered 30 min prior to training and on the probe
trial day. For the object recognition task, a single intraper-
itoneal injection of α7pep2 or vehicle was administered
30 min prior to object recognition testing.
Locomotor activity was monitored in a directly illumi-

nated (600 lux) clear Perspex chamber (42 × 42 × 30 cm;
Accuscan Instruments Inc., Columbus, OH, USA) by
interruptions of 16 horizontal and 16 vertical sensors
(infrared beams) spaced 2.5 cm apart. Data was recorded
every 5 min of the testing period. Data were analyzed
with two way analyses of variance (anovas) with treatment
as main factor and repeated measures (time intervals).
For the Morris water maze task, 12–16-wk-old C57BL/

6 J mice were used. The water maze consisted of a 185 cm
diameter cylindrical tank containing a 15 cm circular plat-
form and water (26 ± 1°C) rendered opaque by the
addition of white non-toxic paint. The training regime
consisted of acquisition training to a hidden platform in
the southeast (SE) quadrant for 3 d (day 1–3; six trials per
day; maximum duration, 90 s; ITI, 40 min). Probe trials
(90 s duration) were administered 18 h after the last ac-
quisition. All behavioural events were video recorded and
analyzed using Observer 5.0 software (Noldus Information
Technology). Behavioural data for escape latency were
analyzed using a two-way ANOVA with training days as
repeated measurement. For the probe trials, statistical
comparisons between groups for the time over quadrants
were done using one-way ANOVA with the critical α level
set to 0.05 for all statistical analyses.
Object recognition tests were performed as described

[37] using a modified open field set-up. The open field
apparatus consisted of a square box (41 × 41 × 33 cm)
made of clear Perspex (Ugo Basile) that was connected
to horizontal and vertical infrared sensors. During the
habituation session, four different plastic objects were
presented in the open field: a cube (5 × 5 × 5 cm), hollow
cylinder (6 cm height and 4 cm diameter), solid cylinder
(3 cm height × 6 cm diameter), and prism (3.5 × 4.5 ×
6 cm). Exploration of the four different plastic objects in
the open field were measured every 5 min for 15 min
under dim lighting (habituation).
In the displace object recognition session, the four ob-

jects, initially placed in a square arrangement, were recon-
figured into a polygon-shaped pattern by moving two
objects (the displaced objects or DO). The remaining two
objects were left at the same location (nondisplaced ob-
jects [NDOs]). Times of exploration of the DO and NDO
were recorded for 5 min and expressed as a percentage of
the total time spent investigating objects. In the novel
object recognition session, one of the familiar NDOs was
replaced with a new object (NO) at the same location and
the two familiar DOs were removed. The time examining
a NO or a familiar object (FO) was recorded for 5 min
and was expressed as a percentage of the total time spent
investigating objects. Data were analyzed using ANOVA
with drug treatment as a between-subjects factor, and ob-
ject rearrangement or object replacement as a repeated
measures factor. The Tukey test was used for post hoc
comparisons when the ANOVA yielded statistically sig-
nificant main effects or interactions.

Elevated plus maze (EPM)
Experiments were conducted in a dimly lit room with a
light intensity on the central platform of 210 lux [38].
During a 5-min observation period, the number of en-
tries (defined as four paws into a maze arm) and the
amount of time spent in the open arms, closed arms and
the central platform were scored by the observer. The
total number of entries for each subject was collected.
These data are presented as percentage time spent in
closed or open arm/total duration of experiment × 100.
Data were analyzed using ANOVA with drug treatment
as a between-subjects factor.

Additional file

Additional file 1: Supplemental Figures TAT-α7pep2 peptide
treatment has no effects on locomotor activity. TAT-α7pep2
peptide treatment did not affect total distance travelled (Supplemental
Figure1A), Margin Distance Travelled (Supplemental Figure1B), Margin Time
Spent (Supplemental Figure 1C), Centre Distance Travelled (Supplemental
Figure 1D), Centre Time Spent (Supplemental Figure 1E) in the open
field test.
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