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Abnormalities in the zinc-metalloprotease-BDNF
axis may contribute to megalencephaly and
cortical hyperconnectivity in young autism
spectrum disorder patients
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Abstract

Whereas aberrant brain connectivity is likely the core pathology of autism-spectrum disorder (ASD), studies do not
agree as to whether hypo- or hyper-connectivity is the main underlying problem. Recent functional imaging
studies have shown that, in most young ASD patients, cerebral cortical regions appear hyperconnected, and cortical
thickness/brain size is increased. Collectively, these findings indicate that developing ASD brains may exist in an
altered neurotrophic milieu. Consistently, some ASD patients, as well as some animal models of ASD, show increased
levels of brain-derived neurotrophic factor (BDNF). However, how BDNF is upregulated in ASD is unknown. To
address this question, we propose the novel hypothesis that a putative zinc-metalloprotease-BDNF (ZMB) axis in
the forebrain plays a pivotal role in the development of hyperconnectivity and megalencephaly in ASD.

We have previously demonstrated that extracellular zinc at micromolar concentrations can rapidly increase BONF
levels and phosphorylate the receptor tyrosine kinase TrkB via the activation of metalloproteases. The role of
metalloproteases in ASD is still uncertain, but in fragile X syndrome, a monogenic disease with an autistic
phenotype, the levels of MMP are increased. Early exposure to lipopolysaccharides (LPS) and other MMP activators
such as organic mercurials also have been implicated in ASD pathogenesis. The resultant increases in BDNF levels
at synapses, especially those involved in the zinc-containing, associative glutamatergic system may produce
abnormal brain circuit development. Various genetic mutations that lead to ASD are also known to affect

BDNF signaling: some down-regulate, and others up-regulate it. We hypothesize that, although both up- and
down-regulation of BDNF may induce autism symptoms, only BDNF up-regulation is associated with the
hyperconnectivity and large brain size observed in most young idiopathic ASD patients.

To test this hypothesis, we propose to examine the ZMB axis in animal models of ASD. Synaptic zinc can be
examined by fluorescence zinc staining. MMP activation can be measured by in situ zymography and Western blot
analysis. Finally, regional levels of BDNF can be measured. Validating this hypothesis may shed light on the central
pathogenic mechanism of ASD and aid in the identification of useful biomarkers and the development of
preventive/therapeutic strategies.
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Introduction

Autism spectrum disorder (ASD) is a heterogeneous de-
velopmental disorder of the brain characterized by im-
paired communication, abnormal sociability, restricted
interests, and stereotyped behaviors [1]. In most ASD
cases, autistic symptoms manifest by 3 years of age [2],
indicating that the disease process starts during early
childhood. ASD is strongly associated with male sex, with
boys being affected about 4 to 5-times more frequently
than girls [3]. One notable clinical feature is the apparent
recent increase in the prevalence of ASD; whereas the fre-
quency of ASD was considered to be as low as 5 in 10,000
in 1980s [4], the most recent data from the Center for Dis-
ease Control and Prevention report it to be as high as 1 in
68 (CDC 2014). Whether this increase is real or instead
reflects heightened awareness of ASD is uncertain. Unfor-
tunately, current treatments for ASD are limited and gen-
erally provide only symptomatic relief.

Although the majority of ASD cases remain idiopathic,
recent years have witnessed dazzling progress towards
an understanding of the underlying neurobiological mech-
anisms. In about 10% of cases, the etiology of ASD has a
monogenic basis, such as fragile X syndrome (FMR1 gene),
Rett syndrome (MECP2 gene) or tuberous sclerosis (TSC1
and 2 genes), each of which causes autistic symptoms in af-
fected individuals [5-7]. However, even in idiopathic cases,
ASD appears to be under a strong genetic influence. For
instance, monozygotic twins have a concordance rate of
58-60%, whereas for dizygotic twins the corresponding
rate is 21-27% [8]. Genetic studies conducted to date have
identified more than 500 genes that may be associated with
ASD [9]. Among the better known examples are PTEN
(phosphatase and tensin homolog); SHANK (SH3 and
multiple ankyrin repeat domains) 1, 2 and 3; NLGN (neu-
roligin) 1 and 3; and MEF (myocyte enhancer factor) 2A
and 2D [10-12]. These ASD candidate genes, together with
FMR1, TSC1 (tuberous sclerosis 1) and MECP2 (methyl
CpG binding protein 2) are likely involved in neurogenesis,
synaptic signaling, and synaptic plasticity.

ASD is considered primarily a disorder of brain circuitry.
Hence, many investigators have sought to explain ASD
symptoms by searching for abnormal synaptic functions.
For instance, Geschwind and colleagues suggested that
ASD brains have an imbalance in excitatory/inhibitory
neurotransmission [13]. In addition, postmortem studies
have reported abnormal cellular organization in the cortex
of ASD patients [14,15]. Also, since neuroligins, neurexins
and Shank family proteins are involved in synapse forma-
tion and synaptic transmission, defects in the genes encod-
ing these proteins are likely to result in reduced synaptic
activity in certain brain regions. Consistent with this sup-
position, earlier studies using functional magnetic reson-
ance imaging (fMRI) demonstrated that ASD brains may
have decreased connectivity compared with typical brains
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[16]. A corollary of this hypoconnectivity theory is that en-
hancement of synaptic activity may be therapeutic for ASD
patients [17]. However, arguing against this idea, a number
of subsequent studies have reported quite the opposite:
young ASD brains may instead be hyperconnected, either
regionally or globally [18,19]. The existing literature sug-
gests that hypoconnectivity may be a late phenomenon
[20,21]; thus, increasing synaptic transmission may not be
an appropriate therapeutic approach, at least in young
ASD patients. Thus, in this article, we attempt to frame the
mechanism involved in initiating ASD in the context of
a new hypothesis that can explain large brain sizes and
hyperconnectivity based on findings reported in the lit-
erature and our own preliminary results.

Features of ASD that suggest increased neurotrophism
Hyperconnectivity in young ASD brains

As discussed above, earlier studies on brain connectivity
in ASD suggested hypoconnectivity as the core functional
pathology of ASD. Using fMR], Just et al. first provided ex-
perimental evidence for hypoconnectivity in ASD [16,21].
These researchers proposed that a diminished degree of in-
formation integration and synchronization might form the
neurobiological foundation of ASD. Subsequent fMRI stud-
ies reported supportive findings [22,23]. Hence, because of
its conceptual appeal and the availability of some support-
ing evidence, this theory was initially hailed as the “first
firm finding” on ASD pathobiology [24]. However, as add-
itional results accumulated, this early consensus faded and
divergent ideas have emerged. Given seemingly incompat-
ible results, Muller and colleagues critically analyzed 32
published studies and concluded that fMRI results may
vary depending on methodological differences such as task-
dependence and filter choice [25]. Moreover, because most
such studies examined an adult population, it remained un-
clear whether brain connectivity status in ASD is heteroge-
neous from the beginning or changes with aging.

More recently, Supekar and colleagues examined young
ASD patients using task-free fMRI and found hypercon-
nectivity throughout the brain [18]. In addition, Keown
and colleagues, using resting-state functional connectivity
MRI, found hyperconnectivity in posterior brain regions
of young ASD patients [26]. Both groups found a correl-
ation between hyperconnectivity and symptom severity,
indicating that the hyperconnectivity is not only a gen-
eral characteristic of young ASD patients but is also
likely responsible for ASD symptoms. These studies
strongly support the theory that brain hyperconnectivity
is the main underlying functional abnormality, at least
in young ASD patients.

Consistent with the hyperconnectivity theory, Markram
and Markram proposed the “intense world hypothesis”,
initially based on their findings obtained in the valproate
model of autism in rats [27]. They found that newborn



Koh et al. Molecular Brain 2014, 7:64
http://www.molecularbrain.com/content/7/1/64

rats exposed to valproate during fetal development exhib-
ited enhanced fear processing and memories [28]. These
changes were attributed to enhanced neuronal activity and
plasticity in brain areas such as the amygdala and neocor-
tex. Hence, they suggested that autistic brains are easily
trapped in a “painfully intense world”.

Taken together, these studies strongly suggest that, at
least during early brain development, overall hypercon-
nectivity rather than hypoconnectivity is the main circuit
abnormality in most ASD brains.

Large brains

Kanner first noted that some autistic children have macro-
cephaly [29]. Since then, other investigators have found
that macrocephaly is statistically over-represented in ASD
compared with the general population [30]. Interestingly,
it was reported that, whereas the head circumferences of
ASD patients are not larger at birth, they grow more rap-
idly between 6 and 14 months of age [31]. MRI studies
have confirmed that large heads correlate with large
brains, although the increases may not be uniform across
brain areas [32-34]. Postmortem studies have also shown
that the brains of ASD patients possess an excess number
of neurons, especially in the prefrontal cortex [35]. This
finding is consistent with the observation that frontal
lobes are enlarged more than occipital lobes in ASD pa-
tients [36]. Volumetric studies indicate that both white
and gray matter are enlarged [36-39].

Some cross-sectional studies indicate that the increased
brain growth in ASD may be age dependent. Courchesne
et al. reported that increased gray and white matter volume
may occur largely during early childhood, followed by
normalization to control values at older age [31]. This age
dependence appears consistent with the above-mentioned
putative changes in brain connectivity—that is, hyper
connectivity in young patients and hypoconnectivity in
older patients.

Although it is not certain whether more neurons and/or
glial cells (astrocytes, microglia, oligodendrocytes) are
generated during the brain growth spurt in ASD, various
trophic factors, including epidermal growth factor (EGF)
and insulin-like growth factor 1 (IGF1), have been pro-
posed to be involved [40,41]. However, evidence for a role
for EGF or IGF1 in ASD is mixed. Although some studies
have reported increased levels of EGF in ASD [40], others
have reported the opposite [42], leaving the molecular
basis for the brain overgrowth in young ASD patients un-
determined. Recently, however, investigators have noted
that BDNF levels are often increased in various models of
ASD and may underlie the brain overgrowth.

BDNF upregulation
BDNF is a potent neurotrophic factor that belongs to
the neurotrophin (NT) family. Other members of the
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family include nerve growth factor (NGF), NT3, and
NT4/5. The mature form of BDNF is generated from
proBDNF by proteolysis [43,44]. Whereas proBDNF pref-
erentially acts at the NGF receptor, p75NTR, mature
BDNEF tends to selectively activate TrkB. A number of cell
culture studies have demonstrated that activation of TrkB
induces increased neuronal hypertrophy and survival [45].
Consistent with this, injection of BDNF into the develop-
ing neocortex induces abnormally increased neurogenesis
[46]. In addition, BDNF/T1kB signaling contributes to syn-
aptic development and plasticity, neurite outgrowth and
dendritic spine formation, which are possible anatomical
correlates of hyperconnectivity in ASD.

In 2001, Nelson et al. first reported that the levels of
certain trophic factors, including BDNE, are increased in
the blood of young ASD patients [47]. Additional inter-
est in BDNF in ASD was prompted by the observation
that the gene involved in Rett syndrome, a neurodeve-
lopmental disorder exhibiting autistic features, encodes
MECP2 [48], which regulates BDNF expression in the
brain [49]. Mutations in the MECP2 gene result in a re-
duction in BDNF levels in the brain, indicating that a
deficiency in BDNF may contribute to the pathology of
Rett syndrome [50]. Though seemingly opposite to ex-
pectations, this result nevertheless attracted attention to
the possible role of BDNF in ASD. Subsequently, a num-
ber of studies reported varying results regarding BDNF
levels in the serum or brains of ASD patients. One pos-
sible explanation for this variation is that BDNF levels
may be dependent on age: whereas BDNF production is
enhanced during neonatal periods [47,51,52], it may be
reduced in adult patients [53].

Although it is difficult to pinpoint the underlying bases
for the widely variable findings regarding BDNF in ASD,
the above-mentioned age dependence may play a role. Ani-
mal models of ASD also exhibit variable changes in BDNF
levels. In a mouse model of fragile X syndrome (Fmrl-
knockout mice), BDNF levels are decreased in the cortex
but increased in the hippocampus [54]. However, TrkB re-
ceptor expression as well as calcium increases are increased
in these mice following BDNF exposure (ibid), indicating
that BDNE-TtkB signaling is upregulated in Fmr1-deficient
cells. Other ASD models in which BDNF upregulation has
been demonstrated include the valproate model [55] and
PTEN model [56]. Mutations in PTEN likely increase
BDNF levels by decreasing BDNF clearance. Notably, the
transcription factors MEF2A and 2D, mutations of which
are implicated in ASD, act at the promoter region of the
BDNF gene; knockdown of Mef2d results in the upregula-
tion of BDNF [57]. In general, models that show increased
BDNF levels are correlated with human counterparts that
exhibit increased brain connectivity and size.

In stark contrast, Mecp2-null mice, a model for Rett
syndrome, clearly show reduced BDNF expression. Also,
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mice lacking the cation-proton antiporter NHE6 exhibit
attenuated TrkB signaling [58]; notably, mutations in
NHEG6 cause Christianson syndrome, which exhibits aut-
istic features. Hence, it appears that genetic mutations
that cause ASD may be classified into two categories: one
with increased BDNF levels and hyperconnectivity (e.g.,
FMRI1, PTEN, MEF2A), and one with decreased BDNF
levels and hypoconnectivity (MECP2 and NHE6). Defects
in MECP2 or NHE6, which result in decreased BDNF
expression or TrkB signaling in Mecp2- and NHE6-null
mice, respectively, appear to be associated with micro-
cephaly in the corresponding human disorders, Rett syn-
drome and Christianson syndrome [59,60]. This apparent
correlation between BDNF levels and connectivity seems
to support the hypothesis that upregulation of BDNF sig-
naling during a critical period of brain development may
contribute to the large brain size and hyperconnectivity
noted in young idiopathic ASD patients. The key question
then becomes: how is BDNF upregulation triggered?

Formulation of the hypothesis

Are metalloproteases involved?

A variety of stimuli influence BDNF expression/signaling
[61]. Synaptic activity, which causes depolarization and cal-
cium influx, is a known stimulus for BDNF upregulation
[62]. Brain injuries, such as seizures, ischemia and inflam-
mation, also enhance BDNF expression, likely through
similar mechanisms [63-66]. Cleavage of proBDNF into
mature BDNF can be mediated by furin in the endoplasmic
reticulum [67]; in the extracellular milieu, BDNF process-
ing takes place via plasmin [68]. Mizoguchi et al. recently
showed that MMPs may be involved in the conversion
of pro-BDNF to BDNE, thus enhancing TrkB signaling
[69]. Because BDNF can upregulate MMP levels [70], a
positive feedback loop may exist between metallopro-
teases and BDNF.

Despite a potential link between metalloproteases and
BDNE, the possibility that metalloproteases are involved
in the pathogenesis of ASD has not yet been systematic-
ally addressed. However, there is some circumstantial
evidence to support such a link. In fragile X syndrome
(FXS), dysfunction of the gene product FMRP leads to
MMP9 over-activation [71]. The observation that mino-
cycline, an MMP inhibitory antibiotic, has some thera-
peutic efficacy [72] suggests that MMP9 over-activation
plays a causal role in FXS. Hence, MMP9 might possibly
contribute to the BDNF upregulation and megalence-
phaly that are associated with FXS [73]. Consistent with
this, FMRP dysfunction leads to an increase in the num-
ber of synaptic boutons and dendritic spines in animals
and humans [74,75], an alteration that is ameliorated by
minocycline [76]. In addition, MMP9 levels in idiopathic
ASD cases were found to be elevated compared with
controls [77]. Notably, plasma levels of secreted amyloid
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precursor protein-a (sAPPa), a product of the a-secretase
membrane metalloprotease ADAMI0 [78,79], are increased
in severe ASD patients [80]. Hence, the activity of various
metalloproteases may be increased in ASD.

Organic mercury compounds, especially thimerosal
(included historically in vaccines as a preservative), has
been implicated as a potential culprit in the pathogenesis
of ASD (Bernard et al., [81]). The unifying theme is that
these compounds may induce neurotoxicity in the devel-
oping brain through diverse mechanisms [82]. Whereas
a number of subsequent studies would appear to have
disproved this connection [83-86], some recent studies
continue to suggest that thimerosal may be a risk factor
for ASD [87-90]. Consistent with these reports, repeated
injections of thimerosal in young rats was shown to pro-
duce an autistic phenotype in a strain-dependent man-
ner [91]. These observations motivated us to explore a
possible connection between thimerosal and metallopro-
teases. Our preliminary data obtained from cortical cell
cultures indicate that thimerosal activates MMP and in-
creases the levels of free zinc, MMP, and BDNF in micro-
glia and neurons (Figure 1). Hence, it may be worthwhile
testing the effects of thimerosal on MMPs and BDNF in
animal brains. Notably, other environmental contributors
to ASD, such as LPS and testosterone, may also be capable
of activating metalloproteases in the brain [92,93].

Synaptic zinc, metalloproteases, and ASD

If increased metalloprotease activity contributes to ASD
pathogenesis, it is logical to ask what might trigger it.
Among the known environmental risk factors that might
be invoked as possible metalloprotease activators are brain
inflammation (LPS), thimerosal (organic mercurials), and
testosterone. To this list of factors we would propose add-
ing zinc, more specifically, synaptic zinc at zinc-containing
glutamatergic (gluzinergic) synapses [94], because of its
role in metalloprotease activation and increased BDNF
signaling in ASD.

A substantial amount of free or labile zinc is present
in synaptic vesicles of certain glutamatergic neurons,
mainly in terminals of cortical and hippocampal associa-
tive fibers; glutamatergic projection neurons do not appear
to have synaptic zinc [94]. Zinc transporter 3 (ZnT3) plays
an essential role in zinc accumulation in synaptic vesicles,
as evidenced by the fact that genetically deleting the ZnT3
gene results in complete disappearance of synaptic vesicle
zinc [95,96]. Upon neuronal activation, synaptic zinc is re-
leased along with glutamate [97] and likely serves diverse
signaling functions. For instance, zinc modulates the activ-
ity of ion channels, such as NMDA (N-methyl-D-aspar-
tate) and GABA (y-aminobutyric acid) receptors [98,99],
and contributes to synaptic plasticity, playing a role in
long-term potentiation (LTP) and long-term depression
(LTD) [100,101]. Although synaptic zinc likely plays
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Figure 1 Thimerosal increases BDNF levels in cultured microglia and neurons: Mediation by zinc and metalloproteases. (A) Primary
cultures of microglia and neuron were exposed to thimerosal (TM; 1 uM) for 60 min, and the resulting increase in free zinc was analyzed by
FluoZin-3 AM staining. Scale bar: 100 um. Representative of n =4 individual experiments. (B) Mixed cortical cell cultures were exposed to
thimerosal (TM; 1 uM) for 60 min. In situ zymography for MMP showed that TM exposure induced MMP activation in neuronal cells. APMA, a
potent MMP activator, also induced similar increases in MMP activity, whereas addition of GM6001 (GM), an MMP inhibitor, reduced increases in
MMP activity by TM. Scale bar: 100 um. The image is representative of n = 3 individual experiments. (C) Western blots of microglial (top left) and
neuronal (top right) cells with anti-BDNF antibody revealed that treatment with TM increased levels of BDNF in both cell types. Addition of
GM6001 (GM) attenuated the increase in BDNF. The image is representative of n =4 individual experiments. Bottom row graphs represent
respective densitometric analysis for each blots, in which BDNF/Actin for CTL (control) was set as 1. *p < 0.05 vs. CTL, #p < 0.05 vs. TM.
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diverse, important roles in synaptic biology, until re-
cently, few investigators specifically examined synaptic
zinc in ASD patients or animal models.

Several years ago, we found that concentrations of
extracellular zinc in the micromolar range, which is
attainable during intense neuronal activity, activated
metalloproteases in cultured cortical neurons [102].
Such exposure to zinc resulted in a concurrent increase
in the release of proBDNF and its conversion to mature
BDNE, both of which were metalloprotease dependent.
These results raised the possibility that synaptically
released zinc might activate BDNF/TrkB signaling in a
metalloprotease-dependent manner. Interestingly, one
study demonstrated that zinc can also transactivate
TrkB in BDNF-independent manner [103]. Since metal-
loprotease activation and BDNF upregulation around

synapses may contribute to the development of ASD,
the possible role of synaptic zinc in the pathogenesis of
ASD may need to be tested.

The first clue that synaptic zinc might play a role in
ASD was provided by the observed association of muta-
tions in Shank genes (Shank 1-3) with ASD [11,104,105].
Members of the Shank family are postsynaptic scaffold
proteins that may play a key role in synapse stability and
plasticity through formation of polymers [106]. A recent
report demonstrated that zinc rapidly induces Shank3
polymerization [107], leading to the suggestion that synap-
tic zinc is a key regulator of Shank protein polymerization.
A possible role for Shank proteins in normal brain
development is suggested by the observation that hap-
loinsufficiency of Shank3 causes Phelan-McDermid syn-
drome, which is characterized by mental retardation
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and autistic behavior [108,109]. Since a Shank3 deficiency
may cause ASD, it is reasonable to infer that a synaptic
zinc deficiency, which may cause a defect in Shank3
polymerization, might also contribute to synaptic dysfunc-
tion in ASD. In fact, a deficiency of dietary zinc was re-
ported to recapitulate several features of autism in mice,
perhaps by dysregulating activity-dependent changes in
Shank2 and Shank3 levels [104]. These findings suggest
the possibility that downregulation of synaptic zinc might
also contribute to ASD pathogenesis. However, at least in
animal studies, a zinc deficiency results in microcephaly
[110]. Hence, although a deficiency in synaptic zinc may
cause an autistic phenotype, is not readily compatible with
the increased brain size or hyperconnectivity observed
in ASD. Accordingly, we considered the possibility that
knockout of Shank genes enhances, rather than de-
creases, ZnT3 expression through a negative feedback,
compensatory mechanism. Consistent with this suppos-
ition, our preliminary result suggested that at 3 weeks of
age levels of free zinc and ZnT3 protein in Shank2-null
brains may be higher than in controls (unpublished).
Synapses that are deficient in Shank proteins may at-
tempt to restore the function of the Zinc-Shank pathway
by increasing presynaptic zinc levels; the undesirable con-
sequence of this compensatory response may be excessive
metalloprotease activation and upregulation of BDNF at
the synapse. Hence, although the synaptic dysfunction re-
mains, the number of neurons and synapses may be upreg-
ulated, resulting in megalencephaly and hyperconnectivity.

Similar mechanisms may be applicable to other models.
As discussed above, thimerosal and valproate are capable
of causing zinc dyshomeostasis. It would thus be interest-
ing to determine whether zinc dyshomeostasis also occurs
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in other models of ASD, especially those that are linked to
megalencephaly and hyperconnectivity.

The ZMB axis hypothesis

On the basis of published findings, described above, and our
own preliminary results, we propose the novel hypothesis
that an abnormality in the putative zinc-metalloprotease-
BDNF (ZMB) axis plays a crucial role in the development
of ASD. As discussed above, this hypothesis is easily test-
able in animal models and, if validated, could mechanistic-
ally account for megalencephaly and hyperconnectivity—
puzzling aspects of ASD that are currently unresolved. To
date, evidence for this hypothesis is admittedly sparse.
Still, considering the immensity of the problems posed by
ASD in current neuroscience and medicine, we believe
the hypothesis is worth pursuing.

The central feature of the hypothesis is that diverse
causes of ASD—environmental or genetic—converge on
upregulation of the ZMB axis during early brain devel-
opment. Whereas upregulation of BDNF may result dir-
ectly from epigenetic changes, as are possibly induced by
the known histone deacetylase inhibitor valproate, in
many cases, perhaps even in the valproate model, metallo-
protease activation may be involved. Inflammation may
release synaptic zinc and activate metalloproteases in
microglial cells. Environmental toxins such as thimerosal
may also release synaptic zinc and, at the same time, dir-
ectly activate neuronal and/or microglial metalloproteases
(Figure 2). Activation of metalloproteases may cause
long-lasting activation of BDNF/TrkB signaling, which
plays a central role in megalencephaly and hypercon-
nectivity in young ASD patients, at least in part through
epigenetic changes.

Genetic {

ZnT3

o

Metalloproteinase
Pro-BDNF

for ASD. Consequent aberrant activation of metalloproteases may result

Mef2A/2D, PTEN, Fmr1
(Neuroligin1/3, Shank1/2/3)

LPS
Valproic acid

Environmental {
Thimerosal

(epigenetic)

Gender { Testosterone
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N

Brain growth/hyperconnectivity
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Figure 2 The ZMB axis model of ASD. Synaptic zinc may be developmentally modulated by certain genetic, epigenetic, or gender risk factors

in prolonged upregulation of BDNF. The resulting enhancement in

neurotrophic influences may underlie brain overgrowth and hyperconnectivity, which may contribute to ASD.
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Testing the hypothesis
Tests of the ZMB hypothesis should begin with various
animal models of ASD. Three parameters—synaptic zinc,
MMP activity and BDNF expression levels—can be rela-
tively easily measured. First, it should be determined
whether synaptic zinc or ZnT3 affects outcome in these
ASD models. For instance, ZnT3 dosage effects could be
tested by crossing ZnT3*'~ male and female mice to pro-
duce ZnT3"*, ZnT3*'~ and ZnT37/~ offspring. Accord-
ingly, injection of valproate into a pregnant mouse should
reveal whether the levels of ZnT3 or synaptic zinc affect
manifestation of the ASD phenotype. MMP activity and
BDNF levels could be measured concurrently by zymogra-
phy and Western blotting/immunocytochemistry, respect-
ively. If the hypothesis is correct, ZnT3-null offspring
should exhibit diminished MMP activation and lower
BDNF expression than ZnT3 WT or heterozygous mice.
Shanks are postsynaptic proteins whose expression may
be controlled by zinc levels [104,107,111]. However, it has
not been shown whether synaptic zinc is reciprocally
modulated by Shank proteins. One intriguing possibility
would be the existence of bilateral crosstalk between
Shank proteins and synaptic zinc. This possibility could be
tested by examining Shank-null mice for altered ZnT3 or
synaptic zinc.

Implications of validating the ZMB axis hypothesis

If validated, this theory could be translated to human
cases, facilitating the search for early biomarkers as well
as therapeutic measures capable of halting progression
of the ASD pathology.

It has been demonstrated that levels of BDNF in the
CNS and peripheral blood (platelets) are closely corre-
lated [43,67,112]. However, blood BDNF level alone may
not provide a sufficiently specific test, since other causes
of mental retardation also can increase BDNF levels in
blood [113]. If excess synaptic zinc release and MMP ac-
tivation occur in early ASD brains, these changes may
be detectable in CSF or even in blood. Accordingly, the
profiles of all three parameters could be used to supple-
ment blood or CSF tests, strengthening diagnostic speci-
ficity. Of course, appropriate translational studies will
ultimately be required to validate the usefulness of this
approach as a diagnostic tool.

If early biochemical diagnosis is indeed feasible, then
preventative measures may be developed. Provided that
the ZMB axis hypothesis is validated, drugs that inter-
fere with actions of synaptic zinc such as clioquinol, or
metalloprotease inhibitors such as minocycline, may
prove effective in reducing the incidence of ASD. These
approaches could, and should, be tested in various ani-
mal models of ASD. Successful results may be readily
translatable to humans, since some of these drugs are
currently in clinical use.
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In addition to its practical significance, validating the
ZMB axis hypothesis would likely provide insight into
normal brain development and open up new avenues for
the study of ASD mechanisms.

Conclusion

It has long been known that some ASD children have
large heads/brains, but the clinical and/or neurobiological
significance of this finding has received relatively little
scrutiny until recently. Pathological studies have shown
that both gray and white matter increase in volume, sug-
gesting that ASD brains may be under increased trophic
influence. This finding is made more interesting by the
recent demonstration that ASD brains are likely hyper-
connected, which further supports the concept of in-
creased trophic influence. An increasing body of evidence
suggests that BDNF upregulation plays a key role in the
increased trophic effects in ASD. In several animal models
of ASD, BDNF expression is significantly increased. More-
over, in human ASD patients, blood levels of BDNF may
be increased. Case control studies on hair samples from
young ASD patients also described increased level of zinc
[114,115]. Although all these changes are likely intercon-
nected, how these changes are brought about in ASD re-
mains largely unclear. In this paper, we have proposed the
novel hypothesis that abnormalities involving the ZMB
axis may play a pivotal role in the hyperconnectivity and
megalencephaly observed in ASD. Validating this hypoth-
esis may shed light on the pathogenic mechanisms of
ASD and aid in the identification of biomarkers and the
development of preventive/therapeutic strategies.
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