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Abstract

Background: Phosphodiesterase (PDE) 10A is selectively expressed in medium spiny neurons of the striatum.
Nucleus accumbens (NAc) is a key region that mediates drug reward and addiction-related behaviors. To
investigate the potential role of PDE10A in the reinforcement properties of morphine, we tested the effect of
MP-10, a selective inhibitor of PDE10A, on acquisition, expression, and extinction of morphine-induced
conditioned place preference (CPP).

Results: The results show that 2.5 mg/kg MP-10, administered subcutaneously, significantly inhibited the
acquisition of morphine-induced CPP. The same dose of MP-10 alone did not result in the CPP. Moreover, MP-10
did not alter the expression of morphine-induced CPP, but did accelerate the extinction of morphine-induced
CPP. Additionally, chronic treatment with 2.5 mg/kg MP-10 decreased expression of phosphorylated CREB
(pCREB), activated cAMP response element binding protein, in dorsomedial striatum, in shell of NAc, and in
anterior cingulate cortex (ACC) as well as decreased expression of ΔFosB in the shell of NAc and ACC.

Conclusion: The results suggest that inhibition of PDE10A may have therapeutic potential in the treatment of
opioid addiction.

Keywords: Conditional place preference, Morphine, Nucleus accumbens, Phosphodiesterase10A, Striatum, cAMP
response element binding protein, Delta FosB
Background
Drug addiction can be considered a chronic, recurrent
brain disease. The conditioned place preference (CPP)
paradigm has been widely used to study the conditioned
rewarding effects of addictive drugs [1,2]. In this para-
digm, the conditioned rewarding properties of drugs are
evaluated by pairing drug effects with initially neutral
cues, such as the compartment of an apparatus. After
continuous medication, animals will display the condi-
tioned place preference to the drug-related place [3].
The acquisition, expression and extinction of CPP pro-
vide a model that is important not only for investigating
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the mechanism of addiction, but also for discovering
novel therapeutic approaches to addiction [1,4-6].
Cyclic nucleotides such as cyclic adenosine monopho-

sphate (cAMP), serve as prominent second messengers in
regulating a number of down-stream signaling molecules
and play a critical role in a variety of cell functions. Phos-
phodiesterases (PDEs), which have been classified into an
enzymes family consisting of 11 isozymes that hydrolyze
cAMP and/or cGMP, and are essential modulators in the
regulation of cAMP content in cells [7]. Among the PDE
subtypes, the 10A isozyme, is a dual-substrate PDE, which
is selectively expressed in medium spiny neurons (MSNs)
of the striatum [8]. MSNs are striatal output neurons that
represent 90% of all striatal neurons [9]. Modulation of
PDE10A activity has been shown to elicit behavioral re-
sponses in experimental animals. For instance, the
PDE10A inhibitor, papaverine, was found to suppress con-
ditioned avoidance responses in rats, suggesting potential
therapeutic roles in schizophrenia and in Alzhemier’s
disease [10]. MP-10, 2-[4-(1-methyl-4-pyridin-4-yl-1H-
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pyrazol-3-yl)-phenoxymethyl]-quinoline, an analog of
papaverine with excellent potency (IC50 = 1.26 nM) and
selectivity for PDE10A, was found to dose-dependently in-
crease striatal cAMP and cGMP levels in CF-1 mice, and
to improve negative symptoms and cognitive function in
schizophrenia-like animal models [11].
On the other hand, the ventral striatum/nucleus accum-

bens (NAc) is the principal region which is known to medi-
ate drug reward and addiction-related behaviors. This
brain region receives dopaminergic innervation from the
ventral tegmental area (VTA) in the midbrain and is
known as the mesolimbic dopamine system [12,13]. Most
drugs of abuse including morphine enhance dopaminergic
transmission from the VTA to the NAc and to other target
limbic regions such as prefrontal cortex [14-17]. It has
been previously reported that the application of a PDE4 in-
hibitor attenuates the rewarding properties of cocaine and
morphine [18]. Given the fact that PDE10A is specifically
located in striatum, an important structure involved in the
reward circuit, we hypothesized the PDE10A inhibitors
such as MP-10 may modulate the behavioral reinforcement
exerted by morphine.
Chronic exposure to drugs of abuse will give rise to per-

sistent structural and functional changes in the central
nervous system. These phenomena are usually referred as
‘drug-induced neuroplasticity’ and depend on changes in
gene expression [19]. The cAMP response element bind-
ing protein (CREB), as a downstream molecule in mediat-
ing the actions of cAMP and which MP-10 targets too, is
an important transcriptional factor in establishing and
maintaining addiction to drugs of abuse [13,20]. Psychosti-
mulants increase CREB activity, as measured by increased
phospho-CREB (pCREB) in multiple brain regions, includ-
ing the NAc and dorsal striatum [21,22]. Phosphorylation
of CREB at Ser133 activates a number of immediate early
genes (IEGs) including c-fos. Chronic administration of
drugs of abuse induces long-lasting expression of ΔFosB
particularly in NAc, dorsal striatum, and prefrontal cortex;
these changes persist after cessation of drug treatment
[23,24]. The increased expression of ΔFosB was found to
be associated with enhanced locomotion and with the re-
warding effects of opiates [25,26]. In the present study we
therefore also examined how modulation of PDE10A al-
ters the expression of ΔFosB and pCREB in NAc (core
and shell), dorsomedial striatum (DMS), and anterior cin-
gulate cortex (ACC) and their relation to morphine acqui-
sition, expression and extinction in the CPP model.

Results
MP-10 suppressed the acquisition but not the expression
of morphine CPP
We first tested if MP-10 suppressed the acquisition of
morphine CPP. As shown in Figure 1A, after chronic ad-
ministration of morphine, animals spent significantly more
time in the drug-paired compartment (F(5, 53) = 7.90, P <
0.0001). Significant inhibition of morphine-induced
CPP was observed at 2.5 mg/kg MP-10 (t = 5.457,
P < 0.001 compared with morphine group).
We also tested if administration of MP-10 alters the

expression of established morphine CPP. As shown in
Figure 1B, acute injection of MP-10 (2.5 mg/kg) 30 min
prior to placement into the apparatus produced no sig-
nificant attenuation of the previously established expres-
sion of morphine CPP.

Chronic low dose MP-10 treatment did not produce CPP
In order to elucidate why high doses of MP-10 failed to
suppress morphine CPP, we investigated if MP-10 alone
could lead to CPP. As 2.5 mg/kg of MP-10 did not pro-
duce CPP in our preliminary experiment, we thus omitted
1.25 mg/kg group. As shown in Figure 2, after 8 days of
conditioning sessions, administration of morphine caused
a significant preference for the drug-paired compartment
(F(4,42) = 4.941, P <0.01), whereas MP-10 (2.5 mg/kg and
5.0 mg/kg, s.c.) elicited no significant CPP or aversion. At
the dose of 10 mg/kg MP-10 induced a marginal CPP
preference score. This may contribute to the finding that
at this high dose of MP-10 the drug did not suppress mor-
phine CPP. The apparent CPP preference score obtained
with the high dose MP-10 completely disappeared when
the test was re-run one week following the first test.
Thus, it appears that at the high dose of MP-10 the
drug produces a weak and temporary preference.
However, this dose also produced catalepsy (descent
latency: 47 ± 8.5 sec for 2.5 mg/kg and 116 ± 15.8 sec
for 10.0 mg/kg). We thus used 2.5 mg/kg of MP-10
for the extinction experiments.

MP-10 treatment facilitates the extinction of morphine CPP
Repeated measure two-way ANOVA of the data (Figure 3)
reveals a significant difference in time (F(4, 80) = 3.030,
P < 0.05) and drug (F(2, 80) = 13.64, P < 0.001), but not in
time × drug interaction (F(8, 80) = 0.9646, P > 0.05). Bonfer-
roni post-test analysis revealed significant differences in
the time spent in the morphine-paired compartment at
the post-conditioning test (t = 2.734, P < 0.05), the first ex-
tinction test (t = 3.451, P < 0.01), and the second extinction
test (t =3.226, P < 0.01) between Mor/Veh and Sal/Veh
groups. Rats treated with 2.5 mg/kg MP-10 during extinc-
tion training exhibited significant differences only at the
post-conditioning test (t = 2.793, P < 0.05) and the first
extinction test (t = 2.782, P < 0.05). No preference was de-
tected at the second and third extinction tests. At the sec-
ond extinction test, a significant difference between Mor/
Veh and Mor/MP-10 (t = 2.778, P < 0.05) groups in the
time spent in the drug-paired compartment was obtained.
The results suggest that 2.5 mg/kg MP-10 treatment facili-
tates extinction of morphine-acquired CPP.



Figure 1 MP-10 suppressed the acquisition (A) but not the expression (B) of morphine CPP. (A) MP-10 (1.25-10 mg/kg, s.c.) or vehicle
(2 ml/kg, s.c.) were administered 30 min before morphine (10 mg/kg, s.c.) or saline (2 ml/kg, s.c.) during the conditioning sessions. ***P < 0.001
indicates difference in comparison with saline group, whereas ##P < 0.01 indicates comparison with the morphine group. N = 6-13 per group.
(B) Pretreatment of MP-10 (2.5 mg/kg) 30 min prior to placement in the apparatus on post-conditioning test day. *P < 0.05, compare with saline
group, N = 6-10 per group. CPP scores were assessed as the difference of time spent in the drug-paired compartment between the post and
pre-conditioning phases. Data were expressed as mean ± SEM.
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MP-10 causes long-lasting changes in expression of
pCREB and ΔFosB immunoreactivity in morphine CPP
tested rats
CREB and ΔFosB are important transcriptional factors
which are believed to play important roles in the devel-
opment of CPP. Acute morphine and PDE inhibition, by
altering the cAMP/cGMP content, were shown to in-
crease the expression of pCREB [22,27] and ΔFosB [28].
We therefore, investigated the potential long-lasting ef-
fects of MP-10 on the expression of these transcription
factors 48 h hours after acquisition of morphine CPP. As
shown in Figures 4 and 5, two-way ANOVA analyses in-
dicate that morphine significantly increased in the num-
ber of pCREB- immunoreactive cells in DMS, ACC, and
Figure 2 Chronic MP-10 alone did not produce CPP. TEST1 refers
to the test after conditioning sessions, while TEST2 refers to testing
one week after TEST1. During the conditioning sessions, rats in
treatment group received MP-10 (2.5 -10.0 mg/kg, s.c.) instead of
morphine to test for development of CPP. CPP scores were assessed
as the difference in time spent in the drug-paired compartment
between the post and pre-conditioning phases. Data are expressed
as mean ± SEM. ***P < 0.001, compared with saline group in TEST1.
#P < 0.05, when compared with saline group in TEST2. N = 7-12
per group.
NAc shell, but not in NAc core in rats that developed
morphine CPP. Although MP-10 alone at the dose of
2.5 mg/kg did not produce a long-lasting increase in the
number of pCREB-positive nuclei in any of the regions
assessed, but significantly decreased morphine-induced
pCREB expression in DMS (F(1, 16) = 4.643, P < 0.05; t =
2.965, P < 0.05) and ACC (F(1,16) = 4.548, P < 0.05; t =
2.634, P < 0.05). In contrast, 10.0 mg/kg MP-10 alone
produced significant long-lasting increases in the num-
ber of pCREB- immunoreactive cells in NAc shell
(F(1,16) = 9.666, P < 0.01; t = 3.091, P < 0.05); but not in
DMS, NAc shell, and ACC.
ΔFosB is a splice variant of the FosB protein and be-

longs to the Fos family. Chronic administration of drugs
of abuse, including morphine, induces long-lasting ex-
pression of ΔfosB that persists even after cessation of
drug treatment [23]. In agreement with previous obser-
vation, we detected (Figures 6 and 7) that morphine
produced significant increases in the number of ΔFosB-
immunoreactive cells in DMS, NAc shell, and ACC.
MP-10 alone, either at 2.5 mg/kg or 10.0 mg/kg, in-
creased the number of ΔFosB- positive nuclei in NAc
shell (F(1, 16) = 11.24, P < 0.01; t = 2.787, P < 0.05 and
F(1, 16) = 10.23, P < 0.01; t = 4.143, P < 0.01) and ACC
(F(1, 16) = 26.20, P < 0.001; t = 2.869, P < 0.05 and F(1, 16) =
8.606, P < 0.01; t = 2.749, P < 0.05). However, inhibition of
PDE10A by MP-10 (2.5 mg/kg) significantly decreased
morphine-induced expression of ΔFosB in ACC (t = 4.370,
P < 0.001) and NAc shell (t = 2.477, P < 0.05). In contrast,
10 mg/kg MP-10 enhanced morphine-induced expression
of ΔFosB in NAc shell (t = 3.710, P < 0.01), ACC (t = 3.455,
P < 0.01), and DMS (t = 4.097, P < 0.01).

Discussion
The cAMP signaling cascade plays a critical role in the
development and maintenance of addiction to drugs of



Figure 3 MP-10 treatment (2.5 mg/kg, s.c.) facilitates the extinction of morphine CPP. Figure (A) shows the treatment time line and figure
(B) shows the results. No compartment preferences developed in rats receiving saline throughout the experimental procedure (Sal/Veh). Rats
administered vehicle in extinction sessions show spontaneous extinction tendency until the third extinction test (Mor/Veh). Rats receiving
MP-10 (2.5 mg/kg) exhibited complete extinction of preference by the second and third extinction test (Mor/MP-10). The place preference score
is defined as the difference in time spent in drug-paired compartments. Data are expressed as mean ± SEM. *P < 0.05, **P < 0.01 compared
between Mor/Veh and Sal/Veh group. #P < 0.05 compared between Mor/MP-10 and Sal/Veh group. & P < 0.05 compared between Mor/Veh
and Mor/MP-10. N = 6-7 per group.
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abuse [29]. Modulation of cAMP content by altering its
production or hydrolysis has become an important focus
in developing potential therapeutic approaches for ad-
diction. For instance, a D1 receptor antagonist, which
blocks D1 receptor-mediated stimulation of cAMP, or a
D2 receptor antagonist, which abolishes D2 receptor-
mediated inhibition of cAMP formation, was shown to
have some potential therapeutic effects in drug abuse
[30,31]. PDE is a large family of enzymes that play a key
role in modulation of cAMP and/or cGMP cellular con-
tent via their ability to hydrolyze the two second mes-
sengers. It was shown that administration of the PDE4
inhibitor rolipram [18,32] and the PDE9 inhibitor BAY-
73-6691 [33] suppressed both the acquisition of cocaine
CPP and its extinction. Unlike the wide distribution
of PDE4 in brain, PDE10A is selectively expressed in
medium spiny neurons (MSNs) of striatum. The present
study provides evidence that selective inhibition of
PDE10A significantly attenuates the acquisition of, and
facilitates the extinction of morphine-induced CPP.
This suggests that PDE10A-mediated breakdown of cyc-
lic nucleotide in striatal neurons may participate in the
reward pathway of addictive drugs. Our results thus
provided the first evidence for the potential therapeutic
effect of a PDE10A inhibitor in morphine addiction. It
should be noted that acute inhibition of PDE10 failed to
alter the expression of morphine-induced CPP, suggest-
ing that the neuroplasticity induced by repeated MP-10
treatment may underlie drug-attenuated acquisition,
and drug-facilitated extinction.
MP-10 specifically inhibited PDE10A of MSN in stri-

atum and increased cAMP concentration in these neu-
rons, an effect that functionally resembles D1 receptor
stimulation or D2 receptor inhibition with regard to the
production of cAMP. It is well known that almost all
drugs of abuse exert their rewarding effect through the
release of dopamine and activation of dopamine recep-
tors in nucleus accumbens (NAc) [16]. Systemic admin-
istration of D2 receptor antagonists have been shown to
reverse morphine-induced CPP [31,34]. Those observa-
tions are in line with the effect of 2.5 mg/kg MP-10 on
morphine-induced CPP in the current study. It is rea-
sonable to assume that this effects may be attributed to
the increase in cAMP content in striatum by MP-10, as
it has been shown before that 3 mg/kg of MP-10 signifi-
cantly elevated striatal cAMP and cGMP [27]. It should
be noted that higher doses of MP-10 (5, 10 mg/kg) failed
to inhibit morphine CPP. One possible explanation for
this maybe that an optimal intracellular concentration of
cAMP/cGMP is required and that higher levels result in
damaged neuronal functions. In support, we found that
MP-10 (10 mg/kg) enhanced morphine-induced expres-
sion of ΔFosB in NAc shell, ACC, and DMS. Indeed, we
found that both 5 and 10 mg/kg of MP-10 produced
catalepsy as tested with a vertical wire-mesh grid, in
which the descent latency of 5, 10 mg/kg of MP-10 is



Figure 4 MP-10 (2.5 mg/kg) causes long-lasting changes in expression of pCREB immunoreactivity. (A) Immunofluorescence images of
pCREB in different brain areas from rats receiving saline (Sal, 2 ml/kg, s.c.), morphine (Mor, 10 mg/kg, s.c.), MP-10 (MP-10, 2.5 mg/kg, s.c.) or a
combination of both drugs (MP-10/Mor). MP-10 was administered 30 min prior to morphine and after CPP testing (scale bar represents 50 μm).
(B) Quantification of pCREB positive nuclei. Data are expressed as mean ± SEM and analyzed by two-way ANOVA followed by Bonferroni posttests.
*P < 0.05 when comparing between morphine and saline groups. #P < 0.05 when comparing the morphine group to the drug combination
group. N = 5 per group. DMS: dorsomedial striatum; CORE: NAc core; SHELL: NAc shell; ACC: anterior cingulate cortex.
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significantly more than that of 2.5 mg/kg (data not
shown). Another possible cause maybe attributed to the
transit and weak CPP (Figure 2) observed when a high
dose of MP-10 is administered alone.
To further understand the neurobiological mechanisms

underlying the effect of PDE10A inhibition on morphine-
induced CPP, we checked the expression of pCREB and
ΔFosB in nucleus accumbens (NAc), dorsomedial striatum
(DMS), and anterior cingulate cortex (ACC). In agreement
with previous reports [25,35], we detected elevations of
pCREB and ΔFosB in rat brain regions of morphine CPP
animals 48 hours after the last drug administration. MP-10
at the dose of 2.5 mg/kg significantly decreased morphine-
induced pCREB expressions in DMS and ACC as well as
the expression of ΔFosB in NAc shell and ACC. This may
be a result of negative feedback of striatal neurons onto
midbrain cells. There are a minority of MSNs which
make up the so-called “patch” population and target
only dopaminergic cells in the midbrain, ventral teg-
mental area (VTA) and substantia nigra pars compacta
(SNc) [9,36]. MP-10 targeted and activated striatal MSNs
including those projecting to the midbrain and the in-
creased release of GABA from those MSNs may have al-
tered the disinhibition caused by activation of mu-opioid



Figure 5 MP-10 (10.0 mg/kg) causes long-lasting changes in expression of pCREB immunoreactivity. (A) Immunofluorescence images of
pCREB in different brain areas from rats receiving saline (Sal, 2 ml/kg, s.c.), morphine (Mor, 10 mg/kg, s.c.), MP-10 (MP-10, 10.0 mg/kg, s.c.)
or a combination of both (MP-10/Mor, MP-10 was administared 30 min prior to morphine) after CPP testing (scale bar represents 50 μm).
(B) Quantification of pCREB positive nuclei. Data are expressed as mean ± SEM and analyzed by two-way ANOVA followed by Bonferroni
posttests. *P < 0.05, **P < 0.01 when compared with saline group. N = 5 per group. DMS: dorsomedial striatum; SHELL: NAc shell; ACC:
anterior cingulate cortex.
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receptors in VTA [9], thus, abolishing morphine-induced
dopamine release in striatum and PFC [16]. This is sup-
ported by the observation that MP-10 blocks D-
amphetamine-induced dopamine efflux in NAc through
D1-regulated feedback control of midbrain dopamine neu-
rons [37]. As a result, morphine-induced increases of
pCREB in ACC and of ΔFosB in NAc shell and ACC were
thus suppressed by MP-10. Ultimately and importantly,
morphine-induced CPP was also inhibited. In contrast to
the effect of 2.5 mg/kg MP-10, administration of 10 mg/kg
of the drug enhanced morphine-induced pCREB and
ΔFosB in DMS, NAc shell, and ACC. This may provide a
potential explanation for why 10.0 mg/kg MP-10 did not
inhibit the acquisition of morphine CPP. Since it is known
that ΔFosB plays an essential role in mediating a state of
prolonged sensitization to addictive drugs this may under-
lie the increased drive and motivation for drug seeking be-
havior [25]. Therefore, MP-10 (2.5 mg/kg) attenuated
morphine-increased ΔFosB levels in ACC and shell of NAc
may provide a potential molecular mechanism for the anti-
relapse effect of the drug. Given the fact that both mor-
phine and MP-10 alone increased the expression of ΔFosB,
it will be of great interest to investigate how MP-10 inhibits
the expression of ΔFosB in those brain regions.
We did not detect any significant changes in expres-

sion of either pCREB or ΔFosB in NAc core among
the experimental groups. Interestingly, a previous study
showed that nicotine dependent conditioning resulted
in elevated pCREB level in the NAc shell but not in
NAc core in mice [38]; and cocaine CPP was accom-
panied by significant increases in expression of Fos in
the shell rather than the core of NAc [39]. In addition,
it was reported that decreased pCREB expression was
observed in palladium of rats withdrawing from
morphine-induced behavioral sensitization [40]. The
reason for this discrepancy may be associated with the



Figure 6 MP-10 (2.5 mg/kg) causes long-lasting changes in expression of ΔFosB immunoreactivity. (A) Immunofluorescence images of
ΔFosB in different brain areas from rats that received saline (Sal, 2 ml/kg, s.c.), morphine (Mor, 10 mg/kg, s.c.), MP-10 (MP-10, 2.5 mg/kg, s.c.) or
combination of both MP-10/Mor, (MP-10 was administration 30 min prior to morphine and after CPP testing (scale bar, 50 μm). (B) Quantification
of ΔFosB-positive nuclei. Data are expressed as mean ± SEM and analyzed by two-way ANOVA followed by Bonferroni posttests. *P < 0.05,
**P < 0.01 when compared with saline group. #P < 0.05, ##P < 0.01, ###P < 0.001 when compared with MP-10/Mor group. N = 5 per group.
DMS: dorsomedial striatum; CORE: NAc core; SHELL: NAc shell; ACC: anterior cingulate cortex
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different paradigms employed and/or the distinct func-
tional involvement of different brain regions in re-
sponse to drug of abuse.

Conclusion
In conclusion, we found that MP-10 administration at the
dose of 2.5 mg/kg suppressed the acquisition of morphine-
induced CPP through inhibiting morphine- induced in-
creases in pCREB and ΔFosB in brain regions within the re-
warding circuit, such as dorsomedial striatum, shell of
nucleus accumbens, and anterior cingutate cortex. Our re-
sults reveal that MP-10 can inhibit morphine -induced CPP
and thus it may have therapeutic potential in opioid abuse.
Methods
Animals and drugs
Animals
Male Sprague–Dawley rats, weighed 150–200 g, were pur-
chased from Shanghai Laboratory Animal Co. LTD (Shanghai,
China). The rats were habituated for one week prior to the ex-
periments. All animals were housed in constant temperature
(21 ± 2°C) and humidity (about 60%) with a 12 h light/dark
cycle. Food and water were available ad libitum. All experi-
mental protocols were approved by the Institutional Animal
Care and Use Committee of Soochow University and were
conducted in accordance with the U.S. National Institutes of
Health Guide for the Care and Use of Laboratory Animals.



Figure 7 MP-10 (10.0 mg/kg) causes long-lasting changes in expression of ΔFosB immunoreactivity. (A) Immunofluorescence images
of ΔFosB in different brain areas from rats that received saline (Sal, 2 ml/kg, s.c.), morphine (Mor, 10 mg/kg, s.c.), MP-10 (MP-10, 10.0 mg/kg, s.c.)
or combination of both MP-10/Mor, (MP-10 was administration 30 min prior to morphine) after CPP testing (scale bar, 50 μm). (B) Quantification
of ΔFosB-positive nuclei. Data are expressed as mean ± SEM and analyzed by two-way ANOVA followed by Bonferroni posttests. *P < 0.05,
**P < 0.01, when compared with saline group. N = 5 per group. DMS: dorsomedial striatum; SHELL: NAc shell; ACC: anterior cingulate cortex.
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Drugs
MP-10 (2-[4-(1-methyl-4-pyridin-4-yl-1H-pyrazol-3-yl)-phe-
noxymethyl]-quinoline succinic acid), purchased from
Shanghai Pharmaresource Inc, was dissolved in 5% 2-
hydroxypropyl-β-cyclodextrine/0.5% carboxymethylcellulose
sodium for subcutaneous injection (s.c.). Morphine hydro-
chloride was purchased from Shenyang First Pharmaceutical
Factory, Northeast Pharmaceutical Group Corp. (Shenyang,
China) and dissolved in saline. Controls were injected (s.c.)
with the same volume of either 5% 2-hydroxypropyl-β
-cyclodextrine/0.5% carboxymethylcellulose sodium or sa-
line. All drugs or vehicles were administered with a volume
of 2 ml/kg.

Behavioral procedures
Apparatus
The apparatus for CPP conditioning and testing consisted
of eight identical plexiglas/polyvinyl chloride (PVC) boxes
purchased from Jiliang Ltd. (Shanghai, China). The boxes
were composed of two compartments with distinct visual
and textural cues. One compartment had white walls and a
fine wire mesh floor (0.5 × 0.5 cm2), whereas another had
black walls and a wide grid floor with metal rods spaced
1.6 cm apart. These two compartments were separated by a
removable wall with an arched gateway to allow the free
movement of animals through the whole apparatus during the
testing session, whereas during the conditioning session, the
separating wall was closed to restrict the animal in their desig-
nated conditioning compartment. The movements within the
compartments and time spent in each compartment were
recorded and automatically measured by a computer through
interruption of infrared beams by the test animals.

Conditioned place preference (CPP)
Animals were habituated in the test room for 1 hr before
the experiment began. The procedures were previously
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described and used with minor modification [1,4-6]. The
10-day CPP procedure included three main phases: a
pre-conditioning test session, eight daily conditioning
sessions and a post-conditioning test session. On day 0,
the base-line preferences of animals were determined by
placing them for 15 minutes in the apparatus with the
separating wall and the arched gateway present (pre-
conditioning test). Rats that spent more than 70% of the
session time in one compartment were excluded because
of their strong unconditioned preference. During the
second phase, conditioning was performed using an un-
biased, balanced protocol, after the separating wall was
inserted to restrict movement of the animal. The order
of injection (drug or vehicle), and the compartment
paired with the drug or saline, was counterbalanced
within each group. In this phase, each rat was trained
for eight consecutive days with alternative injections of
morphine (10 mg/kg, s.c.) and saline (2 ml/kg, s.c.). On
days 1, 3, 5, and 7, rats were injected with morphine and
immediately confined to the drug-paired compartment
for 45 min before returning to their home cages. On day
2, 4, 6, and 8, rats were injected with saline and confined
for 45 min in the opposite compartment (saline-paired
compartment). On the third phase, day 9, the separating
wall was reversed again with the arched gateway opening
to allow rats to freely explore for 15 min. The time spent
in each compartment during this session was recorded
(post-conditioning test). The CPP score was defined as
the difference of the time spent in the drug-paired com-
partment during the pre- and post-conditioning tests.

Experimental protocols
To study the effect of MP-10 on the acquisition of
morphine-induced CPP, the same general procedure as de-
scribed above was used to develop morphine CPP, except
for the following modifications: MP-10 (1.25-10 mg/kg, s.c.)
or vehicle was administered 30 min before each morphine
or saline conditioning sessions. On day 9, the animals were
tested for morphine CPP in a drug free state. An additional
experiment was carried out to evaluate whether MP-10
alone could induce CPP: rats received MP-10 (2.5-10 mg/
kg, s.c.) instead of morphine following the above-mentioned
conditioning procedure. In this experiment, administration
of 10.0 mg/kg MP-10 caused a mild preference trend, so a
second test was repeated one week afterward.
To observe the effect of MP-10 on the expression of

established morphine CPP, morphine (10 mg/kg, s.c.)
was used during the conditioning sessions in all the
groups except the saline-treated group. On the test day,
vehicle (2 ml/kg, s.c.) or MP-10 (2.5 mg/kg, s.c.) was
injected 30 min prior to placement in the apparatus,
with free access to the two compartments for 15 min.
The effect of MP-10 (2.5 mg/kg) on extinction to mor-

phine CPP was determined in a separate set of animals.
The general procedure described above was used to es-
tablish morphine CPP. After testing for the expression
of CPP in a drug-free state on the day 9, extinction con-
ditioning sessions were initiated. This extinction proced-
ure is very similar to the original acquisition training.
On day 10, 12, 14, 16, MP-10 (2.5 mg/kg, test group) or
vehicle (2 ml/kg, control group) was administered prior
to restricting the animals to the same drug-paired com-
partment as in acquisition training, whereas on day 11,
13, 15, 17, vehicle was administered prior to exposure to
the saline-paired compartment before placement in the
home cage. This extinction procedure was repeated
three times (Days 10–17, 19–26, and 28–35). During this
extinction procedure, rats in the saline group received
daily vehicle (2 ml/kg) injections prior to alternating
drug-paired or saline-paired compartment placement.
On day 18, 27, and 36, the place preference was tested
by allowing rats free access for 15 min. The place prefer-
ence score is defined as the time spent in drug-paired
compartments. Extinction of place preference occurred
when there was no significant difference in time spent in
drug-paired and saline-paired chambers among groups
that were previously exhibited morphine CPP.

Immunofluorescence Procedure
Tissue preparations
In the experiment of the effect of MP-10 (2.5 mg/kg and
10.0 mg/kg) on the acquisition of morphine-induced
CPP, immediately after the post-conditioning test had
finished, rats (n = 5 animals per group) were deeply
anesthetized with sodium pentobarbital (100 mg/kg, i.p.)
and perfused transcardially with saline, followed by 4%
paraformaldehyde in 0.1 M phosphate-buffered saline
(PBS, pH 7.4). The brains were then removed and post-
fixed overnight at 4°C using the same fixative solution.
Brain tissues were transferred to 15% sucrose for 24 h
before rinsing in 30% sucrose for an additional 24 h at
4°C. As shown in Figure 1, coronal sections (20 μm)
were prepared with a freezing microtome following the
rat brain atlas of Paxinos and Watson (2004, 5th ed.) as
follows: anterior cingulate cortex (bregma +2.16), dor-
somedial striatum (bregma +1.56), NAc (bregma +1.56).

Protein immunofluorescence
For immuno-staining, tissue sections were first washed
in 0.01 M PBS (3 × 10 min) and then incubated in
0.01 M PBS containing 10% normal goat serum (NGS),
0.1% Triton X-100, and 3% bovine serum albumin for 1 h
to decrease non-specific staining. The sections were then
incubated for 24 h at 4°C in 0.01 M PBS containing anti-
ΔFosB (SC-48; 1:400; Santa Cruz) or anti-pCREB rabbit
polyclonal antibody (06–519; 1:400; Millipore). Unbound
primary antibodies were washed in 0.01 M PBS (3 ×
10 min) prior to 24 h incubation at 4°C with FITC-
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conjugated goat anti-rabbit secondary antibody (1:400;
Sigma-Aldrich) followed rinse in PBS for 3 × 10 min.
Finally, 4′, 6′-diamidino-2-phenylindole (DAPI) was added
to label nuclei, and the sections were mounted with mount-
ing medium for fluorescence observation.
Image analysis
Quantification of ΔFosB and pCREB immuno-reactivity was
conducted using a Leica TCS-SP2 (Leica Instruments,
Germany) laser confocal microscope set at 40× magnifica-
tion and counted by an observer blind to treatment condi-
tions with the Image-Pro Plus software. For all regions, a
size of 0.125 mm2 area was counted for each section in each
hemisphere. Thus there were a total of six sample areas
which were counted for each animal (i.e., 1 sample area/2
hemispheres/3 sections). The counts from all six sample
areas from a particular region were averaged to obtain a
mean number of immunoreactive cells/0.125 mm2.
Statistical analysis
Data were expressed as mean ± SEM and were analyzed by
Graph Pad Prism® (Version 5.0) software. The results from
the acquisition and expression of the CPP test were analyzed
using one-way ANOVA followed by the Bonferroni’s mul-
tiple comparison tests. The data from immunofluorescence
experiments were analyzed with two-way ANOVA followed
by Bonferroni post-tests. Repeated measurement of two-
way ANOVA was conducted followed by Bonferroni post-
test to assess the differences of CPP scores in extinction of
CPP. Values of p < 0.05 were considered statistically
significant.
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