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Abstract

by the loss of pattern vision in early life.

Background: Binocular pattern deprivation from eye opening (early BD) delays the maturation of the primary visual
cortex. This delay is more pronounced for the peripheral than the central visual field representation within area 17,
particularly between the age of 2 and 4 months [Laskowska-Macios, Cereb Cortex, 2014].

Results: In this study, we probed for related dynamic changes in the cortical proteome. We introduced age,
cortical region and BD as principal variables in a 2-D DIGE screen of area 17. In this way we explored the
potential of BD-related protein expression changes between central and peripheral area 17 of 2- and
4-month-old BD (2BD, 4BD) kittens as a valid parameter towards the identification of brain maturation-
related molecular processes. Consistent with the maturation delay, distinct developmental protein expression
changes observed for normal kittens were postponed by BD, especially in the peripheral region. These
BD-induced proteomic changes suggest a negative regulation of neurite outgrowth, synaptic transmission
and clathrin-mediated endocytosis, thereby implicating these processes in normal experience-induced visual
cortex maturation. Verification of the expression of proteins from each of the biological processes via
Western analysis disclosed that some of the transient proteomic changes correlate to the distinct behavioral
outcome in adult life, depending on timing and duration of the BD period [Neuroscience 2013;255:99-109].

Conclusions: Taken together, the plasticity potential to recover from BD, in relation to ensuing restoration
of normal visual input, appears to rely on specific protein expression changes and cellular processes induced

Background

Previous investigations emphasizing the molecular de-
velopment of primary visual cortex typically dealt with
its central visual field representation, or did not take a
distinction between the central and peripheral visual
field representations into account. Age-dependent ex-
pression profiles of proteins involved in neurite outgrowth,
energy metabolism, synaptic development and neurotrans-
mission are described [1-7]. Yet, when considering ocular
dominance plasticity or synapse formation the develop-
ment of the peripheral visual field representation in cat
area 17 is slower than that of the central visual field
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representation [8, 9-12] (reviewed in [11]). In area 17 of
marmoset monkey, Bourne and colleagues [13] showed
that neurofilament protein patterns correlate with the mat-
uration state of a given neocortical brain region and that
the peripheral visual field representation in area 17 also
achieves such a mature pattern later than the central visual
field representation does.

In cat, lack of patterned visual input has been shown
to differentially affect the development of the X- and Y-
dominated functional pathways carrying information
predominantly derived from the central versus the per-
ipheral visual field respectively. At the level of the retina,
early binocular pattern deprivation (BD), an animal
model of congenital cataract, if applied for 6 months, re-
sults in permanent changes in the number and dendritic
tree stratification of Y-type motion-sensitive alpha retinal
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ganglion cells [14]. At the level of the thalamus, in the
LGN, BD specifically affects the development of the Y-
cell pathway, processing motion-sensitive visual informa-
tion, but not the X-cell pathway, dominant in processing
high resolution visual information (for review see [15]).
Importantly, the parallel motion perception impairments
observed in cat have also been described in patients with
congenital binocular cataract (cat: [16, 17, 18]; human:
[19, 20]). Furthermore, at the level of the visual cortex,
early BD delays the maturation of peripheral area 17 to a
larger extent than its central counterpart, as visualized by
age- and cortical region-dependent expression changes for
the activity reporter gene zif268 in the visual cortex of BD
Kkittens [8].

We therefore decided to apply a functional proteomics
approach to find molecular correlates for the centro-
peripheral developmental gradient in area 17 in order to
identify important proteins underlying cortical-region spe-
cific maturation. To this end, we separately assessed the
central and peripheral region of area 17 of 2- and 4-month
old BD (2BD and 4BD; early onset BD) kittens and age-
matched controls with normal visual experience. Age and
the distinct BD-induced delay of cortical maturation were
thus considered as factors influencing protein expression in
relation to cortical maturation. Two-Dimensional Differ-
ence Gel Electrophoresis (2-D DIGE) combined with mass
spectrometry and Ingenuity Pathway Analysis (IPA) allowed
the prediction of relevant molecular pathways and bio-
logical processes. To validate these proteomics observations
and to investigate and compare protein expression profiles
in additional experimental conditions, Western analysis
was also applied to homogenates from area 17 of 6-month
old BD Kkittens, a late onset BD group binocularly deprived
during the 3rd and 4th month of age after 2 months of nor-
mal vision (2N 2BD) and extra normally sighted controls of
1 and 6 months, and 2 years (Adult). Analysis of the devel-
opmental profiles of protein expression in the context of
normal visual stimulation, early onset as well as late onset
BD enabled us to determine if BD regulation of protein ex-
pression depended on time of onset of BD or not.

We demonstrate how specific developmental protein
expression changes are postponed especially in the
peripheral visual field representation under BD. In
particular, early BD exerts an influence on protein ex-
pression in a direction suggestive of a negative regula-
tion of neurite outgrowth, synaptic transmission and
clathrin-mediated endocytosis.

Results

2-D DIGE screening for protein expression changes
related to cortical maturation

Age, BD, and centro-peripheral expression differences were
considered valid parameters to chart molecular events in
relation to cortical maturation (Fig. 1a-c, Table 1).
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Analysis at spot level

Analysis of all the spot expression patterns revealed a
total of 39 differentially expressed spots (Fig. 1b). When
visualizing the effect of age on the number of differential
spots for central and peripheral area 17 for normal and
BD animals in a Venn diagram (Fig. 1c), a first indication
for a reduced effect of age on peripheral area 17 be-
comes apparent with only 4 differential spots for periph-
eral area 17 of BD cats versus 7 for normal subjects.

Analysis at protein level

Table 1 summarizes the results of a similar analysis upon
mass spectrometric identification of the 36 proteins in
32 spots (see Material and Methods, Additional file 1:
Table S1).

Normal

Comparison of the protein expression patterns within the
central or the peripheral regions in area 17 between kit-
tens of 2 and 4 months revealed an age-dependent expres-
sion level for 20 proteins (grey box). Only four proteins
(rows 3, 4, 8 and 19) were similarly regulated in the cen-
tral and peripheral region, whereas seven proteins were
specific for central and nine for peripheral area 17.

BD

When probing for the effect of early BD on these age-specific
expression patterns, only for CRMP2 and CRMP4 the expres-
sion changed in the same direction for both regions (rows 2
and 3). Eighteen out of twenty proteins did not show the same
age-dependent modulation as in normal kittens. Instead, the
factor age identified five additional proteins in BD Kkittens, not
differential between 2N and 4N (rows 21-25). Comparison of
the BD-subjects with their age-matched normal controls
(columns 2BD/2N and 4BD/4N) revealed an extra set of 11
proteins (rows 26-36) with an expression deviating from
normal levels, resulting in a list of 36 differential proteins with
a potential role in cortical maturation.

In general, age-dependent protein expression changes
occurred less frequently in peripheral than in central
area 17 under BD (five versus nine proteins; column
BD/age) indicating that protein expression changes rele-
vant to area 17 maturation may be postponed, especially
in the peripheral region. Likewise, centro-peripheral dif-
ferences in protein expression were observed only at
2 months in normal animals (proteins in rows 9, 12, 13
and 18 were upregulated in the peripheral region; 19 and
36 upregulated in the central region; Additional file 1:
Table S1), whereas in BD animals proteins showed a
centro-peripheral expression gradient for both age groups
(three proteins in 2BD and four in 4BD; indicated by ‘+’ in
columns 2BD/2N and 4BD/4N). Importantly, when com-
paring expression of all identified proteins between 4BD
and younger normal controls (2N), for the peripheral
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Effect of age

Normal

2422 .
‘ 2508 ] : d

. 40

.
. -
- - ' 5854 s 2835
Mw . , EET & ) ~
pH : ® » ,

Fig. 1 Tissue sampling for 2-D DIGE experiments. a lllustration of the tissue sampling in primary area 17: a frontal section of an in situ hybridization for
Zif268 in area 17 of a 2-month old normal kitten and the relevant level of the Rosenquist retinotopic map (1985). We have collected brain tissue from
the central (C) and peripheral (P) visual field representation (White/black boxes) at Horsley-Clarke coordinate posterior 7 (P7.0). White/black lines
demarcate the areal borders of area 17. Scale bar: 1 mm. b Visualization of all differential spots on an image of a preparative 2-D gel. Spot numbers
match with the information in Table 1. Mw: molecular weight. ¢ Venn diagrams illustrating the number of age-related differential spots as a function of
cortical region (central or peripheral area 17) for normal and BD cats

region 97 % did not differ (all proteins except for change expression with age in BD subjects. Together,
methylglutaconyl-CoA hydratase, row 18) whereas for these findings are a strong indication that especially
the central region, 69 % did not (column 3, proteins in  the peripheral region of area 17 still resembles that of
bold and italic). Also most of the proteins with a differ-  younger normal controls due to a BD-induced delay in
ent expression between the 2N and 4N groups did not = maturation.
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Table 1 List of 36 differentially expressed proteins in area 17

§ NORMAL BD
Spot number S Protein name
& age age 2BD/2N | 4BD/4N
c P c P cl|lP]C]|P
1 762 o |CRMP1 l !
2 | 537,623,628 | o [CRMP2 1
| s | o [onues ANNEE
4 737 o |tubulin alpha-6 chain l
5 974 o |dynactin subunit 2 i 1
14 o3 o |albumin Il 1
17 1577 o |coatomer subunit epsilon isoform 4 l
8 737 s |rab GDP dissociation inhibitor alpha 1 Ik
9 1222 s |septin § 1 - | =
6 623 ¢ |Hsc70 i T 1
7 974 ¢ |endophilin-B2 1 l
10 974 m |ATP synthase subunit beta i !
1 2189 m |ATP synthase subunit d 1 1
isocitrate dehydrogenase [NAD

= = ™ | subunit a!pha?mﬂgchondfial 2 T T
13 537 heat shock 70 kDa protein 12A A - | - 1
15 765, 769 MAGUK p55 subfamily member 2 Il ! 1
16 769 alpha-1-syntrophin ! l 1
18 1816 methylglutaconyl-CoA hydratase 1 - | = 1
19 1930 peroxiredoxin-6 1 1 - | -
20 2126 glutathione S-transferase P 1 1
21 389 o [Hsp90alpha isoform 2 T T+ +
22 567 o |NFL 1 1
23 2508 s, ¢ |alpha-synuclein 1 1
24 2943 m |L-lactate dehydrogenase B chain 1 1
25 717 mR |hnRNPL ! 1 |4 +
26 889 m |glucose-6-phosphate isomerase 1
27 889 m |ATP synthase subunit alpha 1
28 1162 m |cyclophilin D 1
29 913 m |glutamate dehydrogenase + |1+
30 2835 m |cytochrome b-c1 complex subunit 7 T+ + ] 1
31 2835 m |cytochrome ¢ T+ +] 1
32 2951 m |aldehyde dehydrogenase 1
33 2951 mR |hnRNPH i
34 2854 hemoglobin subunit alpha T+|1+
35 2854 hemoglobin subunit beta T+|1T+
36 2422 beta-synuclein - -

Categorization was done according to the effect of age, BD, cortical region and the process that a particular protein is involved in. The first two ‘age-regulated’ columns
visualize the presence and direction of difference (up or down) between the 2N and 4N group within central and peripheral area 17. The next two columns show the effect
of age when reared under BD conditions, indicating the presence and direction of difference between the 2BD and 4BD group. In the next four columns, proteins were
classified as ‘2BD-regulated’ or ‘4BD-regulated’ when their expression differed between a particular BD group and its age-matched normal control, or when there was a
difference between the central and peripheral region in a BD group but not in its age-matched normal control group (+) or vice versa (-). Between 4BD and 2N kittens, the
peripheral region was molecularly similar for 97% (except protein in row 18), the central region was similar for 69% (25 proteins, marked in bold italics) and all other proteins
showed higher expression in 4BD as compared with 2N. For CRMP2 and CRMP4 spot numbers that do not contain other proteins are in bold. Abbreviations: C: central;

P: peripheral; o: outgrowth; s: synaptic transmission; c: clathrin-mediated endocytosis; m: energy metabolism; mR: mRNA metabolism and transport; T — upregulation,

or |- downregulation. All presented differences are significant, p < 0.05
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Classification of identified proteins according to
biological function

To reveal molecular pathways and biological functions
potentially involved in cortical maturation, IPA software
was applied to categorize the data set of the 36 identified
proteins. The first two essential canonical pathways were
‘Parkinson’s Signaling, containing synuclein alpha, septin
5, cytochrome ¢ (p =5.7E-04); and ‘Mitochondrial Dys-
function, including the proteins involved in energy pro-
duction, such as ATP synthase subunit alpha and beta,
cytochrome ¢ and cytochrome b-cl1 complex subunit 7
(p=7.07E-04). A significant canonical pathway was also
‘Semaphorin Signaling in neurons regulating neurite
outgrowth, where CRMP1, CRMP2 and CRMP4 are the
main players (p =4.25E-03). Another canonical pathway
was ‘Clathrin-mediated Endocytosis Signaling’ involving
Hsc70, endophilin-B2 and albumin (p = 9.56E-02). Albu-
min was also a member of ‘Caveolar-mediated Endo-
cytosis  Signaling canonical pathway, which involved
coatomer subunit epsilon isoform 4 (p=1.15E-01). In
the nervous system, albumin is a cargo protein trans-
ported to astrocytes not via clathrin- but caveolar-
mediated endocytosis to promote synthesis and release
of the neurotrophic factor oleic acid and subsequent
neuronal differentiation and outgrowth [21]. Albumin
was therefore not considered as a protein involved in
clathrin-mediated endocytosis, but as a molecule trans-
ported via caveolar-mediated endocytosis.

Based on the IPA output we plotted a scheme present-
ing interactions between the identified proteins and their
involvement in different biological processes. Figure 2a
shows the interactions between 27 proteins related to
three biological processes: outgrowth, clathrin-mediated
endocytosis and synaptic transmission. Figure 2b illus-
trates a separate pathway linking the 11 proteins import-
ant for energy production. As eight out of the eleven
identified mitochondrial energy metabolism-associated
proteins had a higher expression in the 2BD group as
compared to age-matched normal controls (Table 1),
their upregulation suggests a higher energy demand to
support neuronal activity and thus corresponds well with
the previously revealed hyperactivity in area 17 of 2BD
subjects [8].

The effect of age and BD on developmental profiles of
proteins involved in outgrowth, synaptic transmission
and clathrin-mediated endocytosis

To validate the 2-D DIGE results and IPA interpretation,
we performed Western analysis for 4 proteins with a sig-
nificant change in expression and belonging to the main
biological processes highlighted in Fig. 2a: CRMP2 and
CRMP4 for outgrowth, alpha-synuclein for synaptic trans-
mission and Hsc70 for clathrin-mediated endocytosis. For
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synaptic transmission we additionally analyzed GAD65
and GADG67 expression in all experimental conditions as
markers of inhibitory transmission.

Outgrowth

2-D DIGE revealed a diverse effect of age and BD on the
different CRMP2 isoforms (Fig. 3a). Some isoforms in-
crease, others decrease with age in normal but not in
BD Kkittens. When probing for the overall CRMP2 ex-
pression level by Western analysis low levels were de-
tected in 1IN and 2N groups, which increased to the
adult level by the age of 4 months (Fig. 3b). This age-
dependent increase in CRMP2 expression was also ob-
served in early onset BD animals but lasted longer, until
6 months of age (Fig. 3a, b). Nevertheless, in comparison
to age-matched normal controls the total amount of
CRMP2 did not differ for either early or late onset BD
kittens (Fig. 3a, b).

In contrast to CRMP2, all CRMP4 isoforms showed a
similar age dependent profile in normal and BD kittens
as visualized by 2-D DIGE (Fig. 3c). Western blotting
also revealed this initial decrease in expression until
month 4, and an increase towards the age of 6 months,
to achieve adult levels (Fig. 3d). In all BD conditions
CRMP4 levels were higher as compared to age-matched
normal controls in both regions of area 17 (Fig. 3¢, d;
Table 2). Nevertheless the expression profile remains
parallel to the normal developmental course.

Synaptic transmission

GAD67 produces the main cellular pool of GABA,
whereas GAD65 produces GABA that is preferentially
packed into vesicles for fast neurotransmitter use [22-29].
The expression of GAD65 and GAD67 increased during
normal cortical development achieving mature levels at
6 months of age for GAD67 and at 4 months for GAD65
for both central and peripheral area 17 (Fig. 4a, b). In early
and late onset BD animals GAD67 expression levels did
not differ from age-matched normal controls or across re-
gions (Fig. 4a). The only difference we detected relates to
the lack of a significant increase in GADG67 levels between
month 4 and 6. The developmental increase of GAD65
expression was slower in BD compared to normal animals
in both regions of area 17, achieving the highest level only
in 6BD kittens (Fig. 4b). Additionally, in the central region
of 4BD kittens GAD65 did not show a developmental in-
crease, maintaining a lower level as compared to the 4N
group (Fig. 4b). As such, the GAD65 expression level in
4BD was similar to that in 2N kittens (Fig. 4b). In 2N2BD,
GADG65 expression did not differ from age-matched 4N
controls or younger 2N animals. However, similar to 4BD,
2N2BD showed a lower GAD65 level than 6BD in both
regions, indicating that both late onset and short early
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Table 2 Results summary
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2BD 4BD 2N2BD 6BD
proteins involved in C P C P C P C P
excitation CRMP2
inhibition CRMP4 1 i i 1 1 1 il 1
GAD67
GAD65 1
synaptic  a-synuclein l 1 1 T |
transmission Hsc70 l L l

Summary of protein expression differences between BD animals and their age-matched normal controls as investigated by semi-quantitative Western blotting.
The highest number of protein expression changes is observed in 2BD and the lowest in 6BD kittens. See Fig. 2a to follow interactions between analyzed proteins.
Arrows denote difference and its direction as compared to age-matched normal control groups. Abbreviations: C — central region, P — peripheral region, white

squares — lack of difference between BD animals and age-matched normal controls

onset BD arrests the developmental increase in GAD65
levels (Fig. 4b).

Alpha-synuclein is involved in the regulation of vesicle
storage and turnover as well as in the maturation and
modulation of synaptic function [30-32]. It promotes
SNARE-complex assembly during exocytosis in pre-
synaptic terminals [32]. The Western blot experiment
showed that specifically at the age of 1 month alpha-
synuclein expression is lower in peripheral area 17. This
centro-peripheral gradient is lost from 2N onwards.
After the age of 6N, both cortical regions exhibit a drop
to adult expression levels (Fig. 5). Western analysis con-
firmed the 2-D DIGE result showing a lower level of
alpha-synuclein in the central region of 2BD kittens as
compared to age-matched normal controls (Fig. 5). In
2N2BD subjects both central and peripheral area 17
showed a lower alpha-synuclein level as compared to
age-matched normal controls, exhibiting a similar effect
to that observed for early onset, age-matched 4BD kit-
tens (Fig. 5).

Clathrin-mediated endocytosis

Western analysis for Hsc70 revealed an opposite ex-
pression profile for early onset BD kittens compared
with normal animals (Fig. 6). In normal kittens, a de-
crease from the age of 2 months into adulthood charac-
terized both regions of area 17, and in the 1 N group
Hsc70 expression was lower in central as compared to
peripheral area 17 (Fig. 6). However, in early onset BD
animals expression was lower and only reached normal
levels by 6BD (Fig. 6). The effects of late onset 2N2BD
differed markedly from those observed in early onset
age-matched 4BD animals, but not from age-matched
normal controls. Together, this could suggest that
Hsc70 plays an important role in early development
since it is mostly affected by a lack of pattern vision
from eye opening.

Discussion

Normal development of primary visual cortex is shaped
by visual experience and mirrored by region-specific ac-
tivity reporter gene expression, in conjunction with the
previously described central-to-peripheral maturation
gradients in the visual system (reviewed in [11]). During
normal development, in cat, the peripheral region of
area 17 still undergoes intensive developmental changes
between the 2™ and 4™ month of age when its central
counterpart is already in a more mature state [8]. We
also witnessed such a centro-peripheral maturation
gradient in 1N and 2N kittens based on protein expres-
sion patterns. As predicted, BD exerted a cortical
region-specific effect on these protein expression pro-
files. Several of these developmental protein expression
changes occurring between 2 and 4 months in normal
animals (Table 1; column normal/age; rows 1-20) were
absent in BD subjects. In fact, protein expression in
peripheral area 17 hardly differed between 4BD kittens
and the younger 2N animals, confirming our previous
results where we showed that BD exerts a stronger
delay effect on the maturation of peripheral area 17 as
measured by visually-induced activity reporter gene
zif268 expression [8]. Additionally, under BD, centro-
peripheral differences were observed up to 4 months.
Together, these observations indicate that BD may not
only delay but also prolong and enhance the centro-
peripheral protein expression gradient related to the
development of area 17. In sum, by exploiting the im-
pact of BD on cortical maturation we could implicate
four biological processes and thirty-six proteins in vis-
ual cortex development.

Metabolism
The constant energy demand for protein synthesis
needed for neurite outgrowth and the formation of
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Fig. 4 Semi-quantitative Western blotting for proteins involved in GABA
synthesis: GAD67 (@) and GADG65 (b). GAD67 expression increased with
age and was not different in BD animals as compared to age-matched
normal controls. Nevertheless, the increase between month 4 and 6
observed in BD animals was not present in normal animals. GAD65
expression also increased with age, with a significantly slower rate in BD
as compared to normal animals in both regions of area 17, achieving
the highest level at 6 instead of 4 months. Additionally, in the central
region of 4BD kittens GAD65 did not show a developmental increase,
maintaining a lower level as compared to the 4N group. Together all
observations are indicative for a delay in the development of normal
cortical inhibition levels. Asterisks above bars denote significant
differences (P < 0.05) for a given region between age groups of a
given condition (normal or BD). Numbers above BD-related bars
denote the % statistical difference between BD and age-matched
normal control groups (P < 0.05). Results are means with + SD
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new connections was reflected by changes in protein
expression related to energy metabolism. It has been
suggested before that processes that underlie synaptic
plasticity may rely on changes in energy metabolism
and expression of genes and proteins involved in
metabolic processes, which is often defined as ‘meta-
bolic plasticity’ [33—-37] (reviewed in [38]). According
to our 2-D DIGE data, 2 months of BD from birth,
but not 4 months, induces a wide range of changes
in expression of proteins involved in energy produc-
tion, indicating the presence of a period of enhanced
visual cortex plasticity. 2BD animals may thus exhibit
more plasticity potential as compared to 2N animals,
which are indeed already in the declining phase of
the critical period for ocular dominance plasticity
[39-41]. Indeed, in 1IN Kkittens expression of mito-
chondrial genes was higher [42]. This hypothesis is in
line with recent work [8], where we showed that 2BD
kittens exhibited a pattern of high molecular activity
in area 17, similar to 1-month-old controls, which are
at the peak of the critical period for ocular domin-
ance plasticity [40, 43]. Dark rearing also induces an
upregulation of several mitochondrial genes (ATPase 6,
cytochrome b, NADH dehydrogenase subunit 4 and 2;
[42]). Altogether, these observations indicate that the high
expression of proteins involved in energy metabolism may
not only reflect the neuronal activity level and metabolic
demand, but also is an indicator of neuronal plasticity.
The upregulation of L-lactate dehydrogenase in 2BD
kittens supports this interpretation, as L-lactate signal-
ing was shown to be involved in plasticity processes
during memory formation where it mediates molecular
changes such as induction of phospho-CREB, Arc and
phospho-cofilin [44]. Furthermore, L-lactate derived
from astrocytes also affects NMDA receptor signaling
and induces expression of IEGs including arc, zif268
and c-fos in vitro and in vivo, inducers of synaptic plas-
ticity and activity [45].

Outgrowth

The differential regulation of CRMP2 and CRMP4 under
BD may be related to their cell-type specific expression
and to the signaling pathways related to structural plasti-
city they are involved in. CRMP2 mediates repulsive sema-
phorin3A (Sema3A) signaling through the Rac-dependent
pathway [46, 47] or a Rho kinase-dependent cascade reac-
tion. Growth cone collapse is induced by activation of
RhoA GTPase and Rho kinase (ROCK), leading to subse-
quent microtubule disassembly (reviewed in [48]). CRMP4
also interacts with RhoA GTPase [49], but is not known
to be a ROCK substrate. While both CRMP2 and CRMP4
are capable of binding to tubulin heterodimers [50],
CRMP4 is suggested to interact mainly with the actin
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cytoskeleton as it was shown to bundle with F-actin [51].
These data suggest that BD may reorganize the actin cyto-
skeleton in cat area 17 in a way that slows down the devel-
opmentally regulated formation of new connections.

We observed an age-dependent decrease in CRMP4
expression in both regions of area 17 as previously ob-
served for cats and rodents [1, 2, 52, 53]. Crucial to the
interpretation of our data, CRMP2 and CRMP4 exhibit
cell-type specific expression. CRMP4-immunoreactive
neurons appear mainly as non-pyramidal and parvalbumin-
positive, a marker for a distinct subset of inhibitory inter-
neurons, whereas CRMP2-immunopositive neurons are
mainly parvalbumin-negative and display a clear pyramidal
shape, typical for excitatory neurons [3, 54]. The develop-
ment of inhibitory connectivity in cat area 17, measured by

the number of symmetric synapses, follows a linear increase
that reaches adult values by month 4 [55, 56], when the
lowest CRMP4 expression is observed. A correlation be-
tween the CRMP4 expression profile and the development
of inhibitory connectivity would be in line with the specific
immuno-localization of CRMP4 in parvalbumin-positive
interneurons [3].

Synaptic transmission

Consistent with previous results by Guo and coworkers
[5], in animals with normal visual experience, GAD65
and GAD67 achieved adult expression levels at 4 and
6 months of age respectively, in line with observations in
humans [57]. In BD animals we observed a delay in the
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developmental increase of GAD65. In mice with a re-
duced synthesis of GABA, due to knockout of the gene
encoding GADG65, ocular dominance plasticity is not
present and the critical period is postponed until an ap-
propriate level of inhibition is experimentally acquired
[58, 59]. Experience-dependent plasticity therefore re-
quires a minimal level of cortical inhibition to establish
a threshold in the excitation/inhibition balance (for re-
view see [60, 61]). The delay in the developmental in-
crease in GADG65 in BD kittens thus reflects the delayed
maturation of area 17. Dark rearing was shown to de-
crease the number of GAD65 puncta on layer 2/3 pyr-
amidal neurons in mouse visual cortex [62, 63]. In rat,
immature GABAergic inhibition in the visual cortex
has also been observed in the context of dark-rearing
from birth [64]. Together these observations indicate

that visual experience is permissive to reach mature in-
hibitory networks. In the 2N2BD group no difference
in GAD expression was detected when compared to
age-matched normal controls. It is not surprising since
a late-onset dark rearing period, preceded by normal
visual experience during the first 3 weeks of life, also
did not change GABAergic transmission in 5-week-old
dark reared rats [64].

The expression of alpha-synuclein, a modulator of
synaptic neurotransmission, was higher in kittens than
in adult cats. Interestingly, for alpha-synuclein we ob-
served higher levels in central as compared to periph-
eral area 17 in 1-month-old normal control kittens. A
Zebra Finch homolog of alpha-synuclein is expressed in
the song control nucleus when song plasticity is at its
maximum [65]. Thus, the higher expression of alpha-
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synuclein in the central region at 1N may be an indicator
of an earlier critical period onset for central area 17 as
compared to peripheral area 17 [66]. Alpha-synuclein was
shown to promote exocytosis. Its decreased expression
in both regions of 2BD and in the central region of
4BD Kkittens, in combination with our observations for
GAD65 and CRMP4, may suggest a negative regulation
of inhibitory neurotransmission [30, 32].

Clathrin-mediated endocytosis

In our study a higher level of Hsc70 is observed in kit-
tens than in adult cats, which is in line with a higher in-
tensity of receptor recycling in younger animals [67].
High levels of Hsc70 may be related to an increased in-
tensity of clathrin-mediated endocytosis responsible for
developmental rearrangements in N-methyl-D-aspartate
receptor (NMDAR) subunit (NR1, NR2A, NR2B) num-
ber and composition at the excitatory glutamate synapse
(Fig. 2a, [68]). In kittens, all NMDAR subunits show a
peak expression at 2 months of age with a subsequent
decline into adulthood [7]. Much of the decline in ex-
pression of NMDAR subunits occurs between the age of
2 and 4 months in cat [6, 7]. Enhanced internalization of
NMDARs at early developmental stages contributes to
the preferential insertion of NR2B over NR2A, while the
decline in NMDAR internalization during neuronal mat-
uration may be related to the stabilization of the mature
NR2A/NR2B expression ratio at the synapse [68, 69]
(reviewed in [70]).

BD resulted in a downregulation of Hsc70 in both area
17 regions in 2BD and in the peripheral region only of
4BD as compared to age-matched normal controls, in
agreement with our previous observation that retinal
lesion-induced visual cortex plasticity involves downreg-
ulation of Hsc70 [37]. Our 2-D DIGE data showed that
the other protein indicated by IPA to be involved in
clathrin-mediated endocytosis, endophilin-B2 [71], was
also downregulated under BD, in the central region of
2BD kittens. Another protein that was shown to enhance
clathrin-mediated endocytosis after neuronal stimulation
is alpha-synuclein [72], which reveals a comparable
modulation by BD to that observed for Hsc70.

Hsc70 may be involved in the formation of a complex
of proteins that anchor GAD65 to the synaptic vesicle
membrane [25, 29]. Thus, the decrease of Hsc70 expres-
sion up to the age of 4 months under early onset BD
may not only indicate a downregulation of clathrin-
mediated endocytosis but also a decrease in the activity
of synaptic vesicles, reduced GABA synthesis and neuro-
transmission. Clathrin-mediated endocytosis is a major
pathway for synaptic vesicle recycling (reviewed in [73]),
thus downregulation of this pathway is again in line with
downregulation of inhibitory synaptic transmission.
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Distinct behavioral outcomes of pattern deprivation in
adult cats can be foreseen in the developmental
molecular profiles

Overall, our assessment of the developmental cortical
proteome confirms the recently described immature state
of the primary visual cortex due to early onset BD [8].
For 2BD kittens we detected an upregulation of pro-
teins involved in energy production as if the cortex is
in a more immature state. 4BD kittens exhibited a delay
in maturation specifically for peripheral area 17. Exactly
the peripheral region of 4BD subjects had a proteomic
signature of more immature 2-month-old normal con-
trol kittens and correspondingly, centro-peripheral pro-
tein expression gradients were detected up to 4 months
of BD. This molecular immaturity of the primary visual
cortex at the end of a given BD period seems to permit
a different behavioral outcome in relation to the func-
tional compensation induced by ensuing normal visual
input [16]. Once adult, 2BD cats indeed outscore nor-
mal cats on most of the tested motion perception
tasks. 4BD cats perform at the same level as normal
subjects. In contrast, delayed onset 2N2BD or 6 BD
cats show specific deficiencies in motion perception
tasks [16], here mirrored by an adult-like molecular
profile at the end of the BD period (summarized in
Table 2), as described for zif268 expression [8]. Specifically
these two BD regimes did not induce a downregulation of
Hsc70 (Table 2), a protein involved in clathrin-mediated
endocytosis. 6BD subjects also did not show a downregu-
lation of alpha-synuclein, a protein involved in synaptic
transmission (Table 2) and show the most profound
anatomical deficiencies in adulthood specific to motion
perception, e.g., anatomical rearrangements of motion
sensitive alpha retinal ganglion cells [14] and severe
impairment of the simplest motion detection task [17
compare with 16, 18]. Most likely the impaired develop-
ment of primary visual cortex becomes stabilized at some
point, thereby preventing further modifications even in de
context of restoration of normal visual experience.

Conclusions

Taking advantage of the recently described impact of a
postnatal BD period on primary visual cortex matur-
ation [8] we could implicate four biological processes
and thirty-six proteins in subregion-specific cortical
development within area 17. We could correlate transi-
ent negative regulation of neurite outgrowth, synaptic
transmission and clathrin-mediated endocytosis to the
previously reported differences in behavioral outcome
in adult cats with regard to the timing and duration of
such a BD period in early life [16]. Combined, our find-
ings suggest that the cortical plasticity potential to
functionally recover from an early BD period once nor-
mal visual input is restored may evolve as a function of
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the specific sets of protein expression changes or de-
lays, instigated by the loss of pattern vision in early life.

Methods

Animals

All experiments were carried out in accordance with
the European Parliament and the Council Directive of
September 22th 2010 (2010/63/EU). The cats were
raised under a daily photoperiod of 12 h light and 12 h
darkness with water and food ad libitum (Nencki Institute,
Warsaw, Poland). All efforts were made to minimize
animal discomfort. The cat brain material for this protein
investigation has already been used in parallel in another
study [8].

To screen for proteomic changes in relation to area 17
maturation under normal visual stimulation (N) and to
screen for the effect of binocular deprivation from pat-
terned visual experience (BD), we analyzed central and
peripheral regions of area 17 of cats with normal visual
experience at the age of two (2N, n = 3) and four (4N, n
=3) months and of cats binocularly deprived for either
two (2BD, n=3) or four (4BD, n=3) months from eye
opening (P8). Western blot analysis was also performed
on additional animal groups: normal kittens of one (1N,
n=2) and six months (6N, n =3), normal adult cats of
1-2 years (n=3), kittens binocularly deprived for six
months from eye opening (6BD, n =3) and kittens from
a delayed onset BD group that were deprived for the
third and fourth month of life after two initial months of
normal visual input (2N2BD, n = 3).

BD was always achieved by having the cats wearing
double thickness linen masks covering their eyes. This
procedure reduces retinal illumination to a similar level
as lid suturing, but is less traumatic [74]. The masks
were replaced daily in a normally lit animal facility room
where the kittens lived. The changing procedure lasted
no longer than one minute per day for each cat, which is
not sufficient to maintain normal vision [75, 76] and
allowed constant adjustment of the size of the masks to
the growing head. The masks were removed at the end
of the deprivation period.

Prior to administration of an overdose of sodium
pentobarbital (Nembutal, 60 mg/kg, i.p.) all animals were
maintained overnight in total darkness followed by 1-h
light stimulation. Brains were dissected, instantly frozen
by immersion in dry ice cooled isopetane (Poch, Gliwice,
Poland) and stored at —80 °C.

Protein extraction

We collected tissue from the central and peripheral re-
gion of area 17 at Horsley-Clarke level posterior 6.0 -7.0.
Using the in situ hybridization films for zif268 [8] and
the cat visual cortex map of [77] as a guide, we punched
~10 mm?® cortical tissue, containing all cortical layers
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(Fig. 1a), from 3—4 consecutive 200 pm-thick frontal sec-
tions for each experimental and normal control condi-
tion to obtain sufficient protein material.

For 2-D DIGE, brain tissue was transferred to 100 ul
ice-cold lysis buffer, containing 7 M urea (Chem-Lab),
2 M thiourea (Fluka), 4 % w/v CHAPS (Applichem), 1 %
w/v dithiothreitol (DTT) (Applichem), 40 mM Tris base
(Sigma), and Complete Protease Inhibitor Cocktail (Roche
Diagnostics). Brain tissue was homogenized on ice, briefly
centrifuged at 13 000 rpm, sonicated, followed by a
complete solubilization of the proteins for 1 h at RT.
The proteins were sonicated again and centrifuged for
20 min at 13 000 rpm at 4 °C to precipitate cell debris.
The supernatant was dialyzed against milli-Q water
for 2 h to remove residual salt using a membrane with
a 500-Da cut-off (Spectra/Por, Biotech, Omnilabo).
Protein concentrations were determined according to
the Qubit” Quantitation Platform (Invitrogen) using a
Qubit™ fluorometer (Invitrogen, Merelbeke, Belgium).
Samples were kept at —80 °C.

For Western blotting, the collected brain tissue was
homogenized in 100 pl lysis solution (2 % w/v sodium
dodecyl sulfate (SDS) [Sigma- Aldrich], 50 mM Tris—
HCI [Sigma-Aldrich], 10% glycerol [Acros Organics],
pH 6.8) containing 4 ul protease inhibitor (Complete
Protease Inhibitor Cocktail tablets; Roche Diagnos-
tics). After mechanical homogenization by drill-driven
pestles, all the samples were sonicated for 5 x 10 s,
heated at 70 °C for 5 min, and centrifuged for
20 min at 13 000 rpm at 4 °C. The supernatant was
isolated and the total protein concentration was de-
termined as described above.

Two-dimensional difference Gel electrophoresis

The fluorescent cyanine dyes, Cy2 (Cy2), propyl-Cy3 (Cy3),
and methyl-Cy5 (Cy5) were in-house synthesized [1, 2]
according to the method by Unlii et al. [78]. All other che-
micals were purchased from GE Healthcare, unless men-
tioned otherwise. Pre-cast Immobiline DryStrips (24 cm,
pH 3-11 nonlinear) were rehydrated overnight in DeStreak
Rehydratation Solution containing 0.5 % v/v immobilized
pH gradient (IPG) buffer in a reswelling tray covered with
paraffin oil (Merck). The next day 50 pg protein of each cat
area 17 sample was randomly labeled with either propyl-
Cy3 or methyl-Cy5. Equal fractions of all samples were
pooled and 50 pg of this pool was labeled with Cy2 to serve
as an internal standard. The minimal amount of dye that
gave a maximum number of spots and the highest signal-
to-noise ratio was set to approximately 200 pmol as de-
scribed previously [1, 2]. The samples were incubated for
30 min on ice in the dark during the labeling process; sub-
sequently, the reaction was terminated by addition of 1 ul
lysine (10 mM; Merck) for 15 min. The Cy2-, Cy3-, and
Cyb5-labeled fractions were mixed together, and an equal
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volume of lysis solution was added. Isoelectric focusing
(IEF) was performed on an Ettan IPGphor Cup Loading
Manifold system according to manufacturer’s instructions.
Actual run conditions were 300 V for 3 h, 600 V for 3 h,
followed by a 6-h gradient to 1000 V, a 3-h gradient to
8000 V, and 8 h at 8000 V for a total of 50 kVh (at 50 pA/
strip). After IEF, the strips were equilibrated twice for
15 min in equilibration buffer (6 M urea, 34.5 % v/v gly-
cerol and 10 % w/v SDS in Tris—=HCIl buffer [1.5 M,
pH 8.8]). DTT (1 % w/v) was added to the first equilibra-
tion step and 4.5 % w/v iodoacetamide (Sigma-Aldrich) to
the second step. Electrophoresis of the IPG strips was done
on 1.5-mm-thick SDS-polyacrylamide gels (12.5 % T; 2.6 %
C) in the Ettan DALT twelve system for 30 min at 30 mA
and 24 h at 13 °C at 15 mA/gel.

2-D DIGE gel image analysis and statistics

Gels were scanned with the Ettan DIGE Imager (soft-
ware 1.0; GE Healthcare) and generated gel image trip-
lets (Cy2, Cy3, and Cy5) comprising the CyDye-labeled
proteins. Quantitative analysis was carried out with the
DeCyder 2D difference analysis software (Version 7.0;
GE Healthcare). Spot detection and matching was per-
formed automatically with the DeCyder Batch processor.
The gel-to-gel matching was also checked manually
followed by statistical analysis of protein abundance
change between samples in the biological variation ana-
lysis (BVA) module embedded in the DeCyder Software
[37, 79, 80]. Spots of interest differentially expressed at
least in two comparisons with p <0.05, and spots dif-
ferentially expressed in one comparison with p <0.01
were further analyzed with MS (39 spots fulfilled the
criteria, Fig. 1b).

Protein identification

Two preparative gels were run under the same conditions
as described above with the exception of the first dimen-
sion separation, which was run for a total of 50 kVh (at
50 pA/strip). Each gel was loaded with 1 mg of protein
from the pool sample, from which only a 50-pg fraction
was labeled with Cy3. Glass plates were pretreated with
BindSilane, and 2 reference markers were applied to en-
able automatic spot picking. The preparative gels were
scanned in the Ettan DIGE Imager to obtain an image of
the Cy3 signal.

Subsequently, the total protein load was visualized by
Lava Purple total protein fluorescent stain according to
manufacturer’s instructions (Fluorotechnics), and the
gels were scanned again. Matching with the analytical
gels was as before carried out automatically with manual
correction by the BVA module of the DeCyder software.
A pick list of the proteins of interest was generated and
imported into the Spot Picker Version 1.20 software that
controls the Ettan Spot Picker (GE Healthcare).
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Protein identification

In collaboration with the Centre de Recherche Public-
Gabriel Lippmann in Luxemburg, MS and MS/MS spec-
tra were acquired using a 5800 MALDI TOEF-TOF
(Absciex, Sunnyvale, CA, U.S.A.) and calibrated using
the 4700 peptide mass calibration kit (Applied Biosys-
tems). Proteins were identified by searching against the
NCBI database, limited to the taxonomy Mammalia
(downloaded on 4/06/2012, 1,063,527 sequences), using
an in-house MASCOT server (version 2.3.0 Matrix
Science, www.matrixscience.com, London, U.K.). All
searches were carried out defining trypsin as cleavage
agent and allowing for 2 missed cleavages. A mass win-
dow of 100 ppm was tolerated for the precursor mass
and 0.75 Da for fragment ion masses. The search param-
eters allowed for carboxymethylation of cysteine as fixed
modification and oxidation of methionine and trypto-
phan (double oxidation, and kynurenin formation) as
variable modifications. Proteins were considered as iden-
tified when two, none overlapping, individual peptides
surpassed the peptide score threshold or when the expect
value <5.0e-005. When this criterion was not met, add-
itional precursors were selected and searched using the
above-described parameters. In total, we identified 36
unique proteins (Additional file 1: Table S1) in 32 spots
(all 39 spots classified for identification with MS are indi-
cated in Fig. 1b). Occasionally, proteins with the same
name were detected in more than one spot due to the fact
that the 2-D DIGE method is sensitive enough to separate
different isoforms and posttranslational modifications of
one protein (Table 1, e.g., rows 2 and 3; CRMP2 and
CRMP4). In one case, Western blot results were opposite
to the 2-D DIGE findings, likely due to the co-occurrence
of two proteins, Hsc70 and CRMP2, in one spot (nr 623).
Therefore only the Western blot data were used to de-
scribe the Hsc70 results.

The 36 identified proteins from the 2-D DIGE analysis
were analyzed by means of the QIAGEN’s Ingenuity Path-
way Analysis (IPA°, QIAGEN Redwood City, www.qiagen.-
com/ingenuity) software. IPA calculates the significance
value of a given canonical pathway as the probability that
the pathway is associated with the data set by random
chance. To reveal key biological pathways, functions and
molecular networks comprising the identified proteins we
applied the stringent Benjamin-Hochberg (B-H) multiple
testing correction method.

Western blotting and statistics

To obtain the optimal protein load, a protein dilution
series was performed with total protein amounts of 0.5-
25 pg per lane. A concentration that resulted in a good
signal to noise ratio and still was in the linear range of
the detection system was chosen. For CRMP2, CRMP4,
Hsc70, alpha-synuclein, GAD65/67 this resulted in 2.5,
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8, 4, 30 and 15 pg respectively. After the addition of 5 pl
reducing agent (10x, Invitrogen) and 2 pl LDS sample
buffer (4x, Invitrogen), the samples were denatured
(10 min, 70 °C). Protein samples were loaded onto a 4-
12 % Bis-Tris NuPagel gel (Invitrogen). Electrophoresis
was carried out using the Xcell4 SureLock Midi-Cell
module (Invitrogen) according to the manufacturer’s in-
structions and subsequently transferred to a PVDF or
Nitrocellulose (for alpha-synuclein) membrane (iBlot,
Gel Transfer Stack; Invitrogen). The Spectra’ Multicolor
High range protein ladder (ThermoScientific) was used
as molecular weight standard. After blotting, the mem-
brane was incubated for 1-2 h in a 5% ECL blocking
agent (GE Healthcare, Buckinghamshire, UK) in Tris-
saline (0.01 M Tris, 0,9% NaCL, 0,1% TX-100, pH 7.6)
and incubated overnight with a primary antibody (di-
luted in 5% blocking agent in Tris Saline) against
CRMP2 (1/24000, mouse Ab, generously provided by
Dr. Y. Ihara, University of Tokyo, Department of
Neuropathology, Japan), CRMP4 (1/10000, rabbit Ab,
AB5454 Millipore), Hsc70 (1/2000, rabbit Ab, SPA-816,
Stressgen Bioreagents), alpha-synuclein (1/1000, rabbit
Ab, in house produced and characterized by Prof.
Veerle Baekelandt, KU Leuven, Department of Neuro-
sciences, Belgium [81]), GAD65/67 (1/6000, rabbit Ab,
ab11070, Abcam). The next day, the blots were washed
in Tris-Saline (3x5min) and 30 min incubated with a
horseradish peroxidase-conjugated secondary goat anti-
mouse (GaM-HRP, 1/50000, Dako, Glostrup, Denmark),
goat anti-rabbit (GaR-HRP, 1/50000; Dako, Glostrup,
Denmark) or donkey anti-goat Ab (1/50000, sc-2020,
Santa Cruz Biotechnology) (diluted in 5% blocking
agent in Tris Saline), followed by a rinse in Tris-Saline
(3x5min) and Tris-stock (1x5min; 0,05 M Tris, pH 7.6).
Immunoreactivity was visualized using chemilumines-
cence detection (Supersignal West Dura, Thermo Sci-
entific, Pierce) on ECL hyperfilm (GE Healthcare). The
protein bands were semi-quantitatively evaluated by
densitometry (ImageQuant TL v. 7.0; GE Healthcare).
For the Hsc70 antibody two bands were detected in
samples of young cats (up to 4 months), independent of
visual manipulation, as previously reported for adult
cats with retinal lesions [37]. Only the lower one (MW
of 73 k kDa, [82]) was considered to be specific accord-
ing to the molecular-weight size marker.

To account for intra-gel and inter-gel variability in-
cluding loading differences, incomplete transfer, or pos-
ition on the blot, a total protein stain (LavaPurple,
Gelcompany) was used rather than the use of a single
reference protein [37, 83] (Additional file 2: Figure S1,
Additional file 3: Figure S2, Additional file 4: Figure S3,
Additional file 5: Figure S4) according to manufac-
turer’s instructions. For semi-quantitative densitometry,
non-uniform staining was corrected for by inter-lane
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measurements and normalization. For each protein of
interest, the specific protein band per cat was normal-
ized to its corresponding normalized total protein stain.
Also, each experiment on the same cat was repeated
two times. A reference sample (pool) consisting of a
mixture of each prepared tissue sample was run with
the same optimal amount of protein on each gel to
gauge blot-to-blot variability (first left lane in each blot
in Figs. 3, 4, 5 and 6). Statistical analysis of WB data
was performed using a nested-design ANOVA model
to investigate the effects of group, cortical region and
blot nested in cat [84] by means of data analysis software
system STATISTICA version 10. There was a significant
effect of interaction between group and region for GAD65
(p=0.0269, F =248, df=38), alpha-synuclein (p =0.0001,
F=14.01, df=8), Hsc70 (p=0.0001, F=6.305 df=38).
There was a significant effect of group for CRMP2 (p =
0.0056, F =3.57, df =6), CRMP4 (p =0.0001, F = 68.60,
df =6) and GAD67 (p =0.0001, F =8.45, df =6). A post
hoc test was carried out using the Tukey HSD method.
Statistical differences were indicated for p < 0.05.

Additional files

Additional file 1: Table S1. List of proteins identified by mass
spectrometry. (PDF 104 kb)

Additional file 2: Figure S1. Total protein stain for normalization of
CRMPs specific bands. (PDF 607 kb)

Additional file 3: Figure S2. Total protein stain for normalization of
GADs specific bands. (PDF 331 kb)

Additional file 4: Figure S3. Total protein stain for normalization of a-
synuclein specific bands. (PDF 316 kb)

Additional file 5: Figure S4. Total protein stain for normalization of
Hsc70 specific bands. (PDF 262 kb)
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